Теорема по третьему признаку равенства треугольников. Первый признак равенства треугольников. Второй и третий признаки равенства треугольников. Евклид употребляет выражения

Для многих, кто изучает русский язык, настоящим камнем преткновения становится написание «не» с именами прилагательными - слитное или раздельное . Невозможно просто запомнить, как пишется каждое слово. Но есть несколько простых правил, и они помогут определить порядок написания в каждом конкретном случае.

Раздельное употребление - в качестве отрицательной частицы

«Не» ставится отдельно, как самостоятельная частица, в следующих случаях:

  • При использовании в предложении с другими частицами или словами, выражающими отрицание. Например - нисколько не интересная книга, ничем не примечательное лицо, вовсе не захватывающий фильм.
  • При употреблении вместе с качественными прилагательными в сравнительной степени. К примеру - не тверже льда, не слаще сахара, не смелее льва.
  • При наличии некоего противопоставления во фразе, чаще всего передаваемого при помощи частицы «а». Например - человек не злой, а добрый, погода не солнечная, а пасмурная, учитель не старый, а молодой.
  • При наличии отрицания в отношении какого-либо качественного, притяжательного или относительного имени прилагательного. Например - «это не бабушкины очки», «это не зеленая книга», «эта мебель не деревянная».

Когда «не» выполняет роль приставки и ставится слитно со словом?

Правила слитного написания тоже довольно просто запомнить.

  • Некоторые слова могут использоваться только с этой приставкой. Например, человек может быть «невзрачным», а вот слова «взрачный» в природе не существует. День может быть «ненастным», но если убрать приставку «не», то слово снова перестанет существовать.
  • Фраза, в которой используется прилагательное, не содержит в себе противопоставления, и при этом само прилагательное можно заменить синонимом без приставки «не». Например - «на пригорке росло невысокое дерево». Если во фразе не содержится дополнительного упоминания о том, что дерево было «низким», то значит, и противопоставления нет - однако слово «низкое» остается синонимом. В этом случае «не» будет приставкой.
  • Прилагательное с приставкой «не» участвует в перечислении каких-либо признаков без противопоставления. Например, «дерево было невысокое, но раскидистое».
  • Прилагательное используется вместе с такими наречиями, как «очень», «крайне», «чрезвычайно». Например - «дом был очень неуютный», «погода крайне неприветливая».

Удобно, что данные правила действуют одинаково как для полной, так и для краткой формы прилагательных.

Теорема

Доказательство

Рассмотрим треугольники АВС и A 1 B 1 C 1 , у которых АВ = A 1 B 1 , ∠A = ∠A 1 , ∠B = ∠B 1 (рис. 68). Докажем, что Δ АВС = Δ А 1 В 1 С 1 .

Рис. 68

Наложим треугольник АВС на треугольник A 1 B 1 C 1 так, чтобы вершина А совместилась с вершиной А 1 , сторона АВ - с равной ей стороной AjBj, и вершины С и С 1 оказались по одну сторону от прямой А 1 В 1 .

Так как ∠A = ∠A 1 и ∠B = ∠B 1 , то сторона АС, наложится на луч А 1 С 1 , а сторона ВС - на луч В 1 С 1 . Поэтому вершина С - общая точка сторон АС и ВС - окажется лежащей как на луче А 1 С 1 , так и на луче B 1 C 1 и, следовательно, совместится с общей точкой этих лучей - вершиной С 1 . Значит, совместятся стороны АС и A 1 C 1 , ВС и В 1 С 1 .

Итак, треугольники АВС и А 1 В 1 С 1 полностью совместятся, поэтому они равны. Теорема доказана.

Третий признак равенства треугольников

Теорема

Доказательство

Рассмотрим треугольники АВС и A 1 B 1 C 1 , у которых АВ = А 1 В 1 , ВС = В 1 С 1 , СА = С 1 А 1 (рис. 69).


Рис. 69

Докажем, что Δ АВС = Δ А 1 В 1 С 1 . Приложим треугольник АВС к треугольнику A 1 B 1 C 1 так, чтобы вершина А совместилась с вершиной А 1 , вершина В - с вершйной В 1 , а вершины С и С 1 оказались по разные стороны от прямой A 1 B 1 (рис. 70).


Рис. 70

Возможны три случая: луч С 1 С проходит внутри угла А 1 С 1 В 1 (рис. 70, а); луч С 1 С совпадает с одной из сторон этого угла (рис. 70, б); луч С 1 С проходит вне угла А 1 С 1 В 1 (рис. 70, в). Рассмотрим первый случай (остальные случаи рассмотрите самостоятельно).

Так как по условию теоремы стороны АС и А 1 С 1 , ВС и В 1 С 1 равны, то треугольники А 1 С 1 С и В 1 С 1 С - равнобедренные (см. рис. 70, а). По теореме о свойстве углов равнобедренного треугольника ∠1 = ∠2, ∠3 = ∠4, поэтому ∠A 1 CB 1 = ∠A 1 C 1 B 1 . Итак, АС = А 1 С 1 , ВС = В 1 С 1 , ∠C = ∠C 1 .

Следовательно, треугольники АВС и А 1 В 1 С 1 равны по первому признаку равенства треугольников. Теорема доказана.

Из третьего признака равенства треугольников следует, что треугольник - жёсткая фигура . Поясним, что это означает.

Представим себе две рейки, у которых два конца скреплены гвоздём (рис. 71, а). Такая конструкция не является жёсткой: сдвигая или раздвигая свободные концы реек, мы можем менять угол между ними. Теперь возьмём ещё одну рейку и скрепим её концы со свободными концами первых двух реек (рис. 71, б).


Рис. 71

Полученная конструкция - треугольник - будет уже жёсткой. В ней нельзя сдвинуть или раздвинуть никакие две стороны, т. е. нельзя изменить ни один угол. Действительно, если бы это удалось, то мы получили бы новый треугольник, не равный исходному. Но это невозможно, так как новый треугольник должен быть равен исходному по третьему признаку равенства треугольников.

Это свойство - жёсткость треугольника - широко используется на практике. Так, чтобы закрепить столб в вертикальном положении, к нему ставят подпорку (рис. 72, а); такой же принцип используется при установке кронштейна (рис. 72, б).


Рис. 72

Задачи

121. Отрезки АВ и CD пересекаются в середине О отрезка АВ, ∠OAD = ∠OBC.

    а) Докажите, что Δ СВО = Δ DAO;
    б) найдите ВС и СО, если CD = 26 см, AD = 15 см.

122. На рисунке 53 (см. с. 31) ∠1 = ∠2, ∠3 = ∠4.

    а) Докажите, что Δ АВС = Δ CDA;
    б) найдите АВ и ВС, если АО =19 см, CD = 11 см.

123. На биссектрисе угла А взята точка D, а на сторонах этого угла - точки В и С такие, что ∠ADB = ∠ADC. Докажите, что BD = CD.

124. По данным рисунка 73 докажите, что ОР = ОТ, ∠P = ∠T.


Рис. 73

125. На рисунке 74 ∠DAC = ∠DBC, АО = ВО. Докажите, что ∠C = ∠D и AC = BD.


Рис. 74

126. На рисунке 74 ∠DAB = ∠CBA, ∠CAB = ∠DBA, АС =13 см. Найдите BD.

127. В треугольниках АВС и А 1 B 1 С 1 АВ = А 1 В 1 , ВС = B 1 C 1 , ∠B - ∠B 1 . На сторонах АВ и A 1 B 1 отмечены точки D и D 1 так, что ∠ACO = ∠A 1 C 1 D 1 . Докажите, что Δ BCD = Δ B 1 C 1 D 1 .

128. Докажите, что в равных треугольниках биссектрисы, проведённые к соответственно равным сторонам, равны.

129. Отрезки АС и BD пересекаются в середине О отрезка АС, ∠BCO = ∠DAO. Докажите, что Δ ВОА = Δ DOC.

130. В треугольниках АВС и A 1 В 1 С 1 отрезки СО и С 1 О 1 - медианы, BC = B 1 C 1 , ∠B - ∠B 1 и ∠C = ∠C 1 . Докажите, что:

    а) Δ АСО = Δ А 1 С 1 О 1 ;
    б) Δ ВСO = Δ В 1 С 1 O.

131. В треугольниках DEF и MNP EF - NP, DF = MP и ∠F = ∠P. Биссектрисы углов Е и D пересекаются в точке О, а биссектрисы углов М и N - в точке К. Докажите, что ∠DOE = ∠MKN.

132. Прямая, перпендикулярная к биссектрисе угла А, пересекает стороны угла в точках М и N. Докажите, что треугольник AMN - равнобедренный.

133. Докажите, что если биссектриса треугольника является его высотой, то треугольник - равнобедренный.

134. Докажите, что равнобедренные треугольники равны, если основание и прилежащий к нему угол одного треугольника соответственно равны основанию и прилежащему к нему углу другого треугольника.

135. Докажите, что если сторона одного равностороннего треугольника равна стороне другого равностороннего треугольника, то треугольники равны.

136. На рисунке 52 (см. с. 31) АВ-АС, BD = DC и ∠BAC = 50°. Найдите ∠CAD.

137. На рисунке 53 (см. с. 31) BC = AD, AB = CD. Докажите, что ∠B = ∠D.

138. На рисунке 75 AB = CD и BD = АС. Докажите, что: a) ∠CAD = ∠ADB; б) ∠BAC = ∠CDB.


Рис. 75

139. На рисунке 76 AB = CD, AD = BC, BE - биссектриса угла ABC, a DF - биссектриса угла ADC. Докажите, что:

    а) ∠ABE = ∠ADF;
    б) Δ АВЕ = Δ CDF.


Рис. 76

140. В треугольниках АВС и А 1 В 1 С 1 медианы ВМ и В 1 М 1 равны, АВ = А 1 В 1 АС = А 1 С 1 . Докажите, что Δ АВС = Δ А 1 В 1 С 1 .

141. В треугольниках АВС и А 1 В 1 С 1 отрезки AD и A 1 D 1 - биссектрисы, АВ = А 1 В 1 , BD = B 1 D 1 и AD = A 1 D 1 . Докажите, что Δ АВС = Δ А 1 В 1 С 1 .

142. Равнобедренные треугольники ADC и BCD имеют общее основание DC. Прямая АВ пересекает отрезок CD в точке О. Докажите, что: a) ∠ADB = ∠ACB; б) DO = OC.

Ответы к задачам

    121. б) ВС = 15 см, СО = 13 см.

    122. б) АВ = 11 см, ВС =19см.

    142. Указание. Рассмотреть два случая. Точка В лежит: а) на луче АО; б) на продолжении луча АО.

Видеоурок «Третий признак равенства треугольников» содержит доказательство теоремы, представляющей собой признак равенства двух треугольников по трем сторонам. Данная теорема является важной частью геометрии. Она часто используется для решения практических задач. Ее доказательство базируется на известных уже ученикам признаках равенства треугольников.

Доказательство данной теоремы сложое, поэтому для улучшения качества обучения, формирования умения доказывать геометрические утверждения желательно использовать данное наглядное пособие, которое поможет сконцентрировать внимание учеников на изучаемом материале. Также оно при помощи анимации, наглядной демонстрации построений и доказательства дает возможность улучшить качество обучения.

В начале урока демонстрируется название темы и формулируется теорема о том, что треугольники равны в случае, если все стороны одного треугольника попарно равны всем сторонам второго треугольника. Текст теоремы демонстрируется на экране и может быть записан учениками в тетрадь. Далее рассматривается доказательство данной теоремы.

Для доказательства теоремы строятся треугольники ΔАВС и ΔА 1 В 1 С 1 . Из условия теоремы следует, что стороны попарно равны, то есть АВ=А 1 В 1 , ВС=В 1 С 1 и АС=А 1 С 1 . В начале доказательства демонстрируется наложение треугольника ΔАВС на ΔА 1 В 1 С 1 так, чтобы вершины А и А 1 , а также В и В 1 данных треугольников совместились. При этом вершины С и С 1 должны располагаться по разные стороны от наложенных сторон АВ и А 1 В 1 . При данном построении возможно несколько вариантов расположения элементов треугольников:

  1. Луч С 1 С лежит внутри угла ∠А 1 С 1 В 1 .
  2. Луч С 1 С совпадает с одной из сторон угла ∠А 1 С 1 В 1 .
  3. Луч С 1 С лежит вне угла ∠А 1 С 1 В 1.

Каждый случай необходимо рассматривать отдельно, так как доказательство не может быть одинаковым для всех данных случаев. В первом случае рассматривается два треугольника, образованных в результате построения. Так как по условию в данных треугольниках стороны АС=А 1 С 1 , а ВС=В 1 С 1 , то получившиеся треугольники ΔВ 1 С 1 С и ΔА 1 С 1 Сравнобедренные. Используя изученное свойство равнобедренных треугольников, мы можем утверждать, что углы ∠1 и ∠2 равны между собой, а также ∠3 и ∠4 равны. Так как данные углы равны, то и в сумме ∠1 и ∠3, а также ∠2 и ∠4 также будут давать равные углы. Поэтому углы ∠С и ∠С 1 равны. Доказав данный факт, мы можем заново рассмотреть треугольники ΔАВС и ΔА 1 В 1 С 1 , в которых стороны ВС=В 1 С 1 и АС=А 1 С 1 по условию теоремы, и доказано, что углы между ними ∠С и ∠С 1 также равны. Соответственно, данные треугольники будут равны по первому признаку равенства треугольников, который уже известен ученикам.

Во втором случае при наложении треугольников точки С и С 1 легли на одну прямую, проходящую через точку В(В 1). В сумме двух треугольников ΔАВС и ΔА 1 В 1 С 1 получился треугольник ΔСАС 1 , в котором две стороны АС=А 1 С 1 по условию теоремы являются равными. Соответственно, данный треугольник является равнобедренным. В равнобедренном треугольнике при равных сторонах лежат равные углы, поэтому можно утверждать, что углы ∠С=∠С 1 . Также из условия теоремы следует, что стороны ВС и В 1 С 1 равны между собой, поэтому ΔАВС и ΔА 1 В 1 С 1 с учетом изложенных фактов равны между собой по первому признаку равенства треугольников.

Доказательство в третьем случае, аналогично первым двум, использует первый признак равенства треугольников. Построенная наложением треугольников геометрическая фигура при соединении отрезком вершин С и С 1 преобразуется в треугольник ΔВ 1 С 1 С. Данный треугольник является равнобедренным, так как его стороны В 1 С 1 и В 1 С по условию равны. А при равных сторонах в равнобедренном треугольнике углы ∠С и ∠С 1 также равны. Так как по условию теоремы равны стороны АС=А 1 С 1 , то углы при них в равнобедренном треугольнике ΔАСС 1 также равны. С учетом того, что углы ∠С и ∠С 1 равны, и углы ∠DCAи ∠DC 1 A равны между собой, то и углы ∠АСВ и ∠АС 1 В также равны. Учитывая данный факт, для доказательства равенства треугольников ΔАВС и ΔА 1 В 1 С 1 можно использовать первый признак равенства треугольников, так как две стороны у данных треугольников равны по условия, а равенство углов между ними доказано в ходе рассуждений.

В конце видеоурока демонстрируется важное приложение третьего признака равенства треугольников - жесткость данной геометрической фигуры. На примере разъясняется, что значит данное утверждение. В качестве примера гибкой конструкции приводятся две рейки, соединенные гвоздем. Данные рейки могут быть раздвинуты и сдвинуты под любым углом. Если же к рейкам прикрепить еще одну, соединенную концами с имеющимися рейками, то мы получим жесткую конструкцию, в которой невозможно поменять угол между рейками. Получение треугольника с данными сторонами и другими углами невозможно. Это следствие теоремы имеет важное практическое значение. На экране изображаются инженерные конструкции, в которых применяется данное свойство треугольников.

Видеоурок «Третий признак равенства треугольников» облегчает учителю подачу нового материала на уроке геометрии по данной теме. Также видеоурок может с успехом использоваться для дистанционного обучения математике, поможет разобраться в сложностях доказательства ученикам самостоятельно.