Неправильные фигуры. Геометрические фигуры: энергия геометрических форм. Какие же всё-таки геометрические формы принято считать правильными

1 слайд

2 слайд

Правильные многоугольники Выпуклый многоугольник называется правильным, если у него все стороны равны и все углы равны. Центром правильного многоугольника называется точка, равноудаленная от всех его вершин и всех его сторон. Центральным углом правильного многоугольника называется угол, под которым видна сторона из его центра.

3 слайд

Свойства правильного многоугольника: Правильный многоугольник является вписанным в окружность и описанным около окружности. Центр правильного многоугольника совпадает с центрами вписанной и описанной окружностей. Периметры правильных n-угольников относятся как радиусы описанных окружностей.

4 слайд

5 слайд

Правильные многогранники «Правильных многогранников вызывающе мало, – написал когда-то Л. Кэрролл – но этот весьма скромный по численности отряд сумел пробраться в самые глубины различных наук».

6 слайд

Многогранник- это такое тело, поверхность которого состоит из конечного числа плоских многоугольников. Многогранник называется выпуклым, если он расположен по одну сторону плоскости каждого плоского многоугольника на его поверхности. Общая часть такой плоскости и поверхности выпуклого многогранника называется гранью. Грани выпуклого многогранника являются плоскими выпуклыми многоугольниками. Стороны граней называются рёбрами многогранника, а вершины – вершинами многогранника.

7 слайд

Существует 5 видов правильных многогранников: 1)тетраэдр 2) гексаэдр 3) додекаэдр 4)октаэдр 5)икосаэдр

8 слайд

Тетраэдр Свойства: Параллельные плоскости, проходящие через пары скрещивающихся рёбер тетраэдра, определяют описанный около тетраэдра параллелепипед. Отрезок, соединяющий вершину тетраэдра с точкой пересечения медиан противоположной грани, называется его медианой, опущенной из данной вершины. Отрезок, соединяющий середины скрещивающихся рёбер тетраэдра, называется его бимедианой, соединяющей данные рёбра. Отрезок, соединяющий вершину с точкой противоположной грани и перпендикулярный этой грани, называется его высотой, опущенной из данной вершины. Теорема. Все медианы и бимедианы тетраэдра пересекаются в одной точке. Эта точка делит медианы в отношении 3:1, считая от вершины. Эта точка делит бимедианы пополам.

9 слайд

Гексаэдр Свойства: Четыре сечения куба являются правильными шестиугольниками - эти сечения проходят через центр куба перпендикулярно четырём его главным диагоналям. В куб можно вписать тетраэдр двумя способами. В обоих случаях четыре вершины тетраэдра будут совмещены с четырьмя вершинами куба и все шесть рёбер тетраэдра будут принадлежать граням куба. В первом случае все вершины тетраэдра принадлежат граням трехгранного угла, вершина которого совпадает с одной из вершин куба. Во втором случае попарно скрещивающиеся ребра тетраэдра принадлежат попарно противолежащим граням куба. Такой тетраэдр является правильным. В куб можно вписать октаэдр, притом все шесть вершин октаэдра будут совмещены с центрами шести граней куба. Куб можно вписать в октаэдр, притом все восемь вершин куба будут расположены в центрах восьми граней октаэдра. В куб можно вписать икосаэдр, при этом шесть взаимно параллельных рёбер икосаэдра будут расположены соответственно на шести гранях куба, остальные 24 ребра - внутри куба. Все двенадцать вершин икосаэдра будут лежать на шести гранях куба.

10 слайд

Додекаэдр (от греческого dodeka – двенадцать и hedra – грань) Правильный многогранник, составленный из 12 равносторонних пятиугольников. Додекаэдр имеет 20 вершин и 30 ребер. Вершина додекаэдра является вершиной трех пятиугольников, таким образом, сумма плоских углов при каждой вершине равна 324°.

11 слайд

Октаэдр (от греческого octo – восемь и hedra – грань) Правильный многогранник, составленный из 8 равносторонних треугольников. Октаэдр имеет 6 вершин и 12 рёбер. На примере октаэдра можно проверить формулу Эйлера 6в+8г-12р=2. В каждой вершине сходятся 4 треугольника,таким образом, сумма плоских углов при вершине октаэдра составляет 240°.Из определения правильного многогранника следует, что все ребра октаэдра имеют равную длину, а грани - равную площадь.

12 слайд

Икосаэдр Свойства: Икосаэдр можно вписать в куб, при этом, шесть взаимно перпендикулярных рёбер икосаэдра будут расположены соответственно на шести гранях куба, остальные 24 ребра внутри куба, все двенадцать вершин икосаэдра будут лежать на шести гранях куба В икосаэдр может быть вписан тетраэдр, притом, четыре вершины тетраэдра будут совмещены с четырьмя вершинами икосаэдра. Икосаэдр можно вписать в додекаэдр, при этом вершины икосаэдра будут совмещены с центрами граней додекаэдра. В икосаэдр можно вписать додекаэдр с совмещением вершин додекаэдра и центров граней икосаэдра. Усечённый икосаэдр может быть получен срезанием 12 вершин с образованием граней в виде правильных пятиугольников. При этом число вершин нового многогранника увеличивается в 5 раз (12×5=60), 20 треугольных граней превращаются в правильные шестиугольники (всего граней становится 20+12=32), а число рёбер возрастает до 30+12×5=90.

Убедитесь, что тело является водонепроницаемым, так как описанный метод подразумевает погружение тела в воду. Если тело полое или в него может проникнуть вода, то вы не сможете точно определить его объем, используя этот метод. Если тело поглощает воду, убедитесь, что вода не повредит его. Не погружайте в воду электрические или электронные предметы, так как это может привести к поражению электрическим током и/или к повреждению самого предмета.

  • Если возможно, запечатайте тело в водонепроницаемый пластиковый пакет (предварительно выпустив из него воздух). В этом случае вы вычислите довольно точное значение объема тела, так как объем пластикового пакета, скорее всего, будет небольшим (по сравнению с объемом тела).

Найдите емкость, в которой помещается тело, объем которого вы вычисляете. Если вы измеряете объем небольшого предмета, воспользуйтесь мерным стаканом с нанесенной градуировкой (шкалой) объема. В противном случае найдите емкость, объем которой можно легко вычислить, например, емкость в форме прямоугольного параллелепипеда, куба или цилиндра (стакан тоже можно рассматривать как емкость цилиндрической формы).

  • Возьмите сухое полотенце, чтобы положить на него тело, вытащенное из воды.
  • Наполните емкость водой так, чтобы в нее можно было полностью погрузить тело, но при этом оставьте достаточно места между поверхностью воды и верхней кромкой емкости. Если основание тела имеет неправильную форму, например, закругленные нижние углы, заполнить емкость так, чтобы поверхность воды достигала часть тела правильной формы, например, прямые прямоугольные стенки.

    Отметьте уровень воды. Если емкость с водой прозрачная, отметьте ее уровень с внешней стороны емкости при помощи водостойкого маркера. В противном случае отметьте уровень воды с внутренней стороны емкости, используя цветную клейкую ленту.

    • Если вы используете мерный стакан, то отмечать ничего не нужно. Просто запишите уровень воды согласно градуировке (шкале) на стакане.
  • Погрузите тело полностью в воду. Если оно поглощает воду, подождите, по крайней мере, тридцать секунд, а затем вытащите тело из воды. Уровень воды должен опуститься, так как часть воды находится в теле. Удалите отметки (маркер или клейкую ленту) о предыдущем уровне воды и отметьте новый уровень. Затем еще раз погрузите тело в воду и оставьте его там.

    Если тело плавает, прикрепите к нему тяжелый предмет (в качестве грузила) и продолжите вычисления с ним. После этого повторите вычисления исключительно с грузилом, чтобы найти его объем. Затем вычтите объем грузила из объема тела с прикрепленным грузилом и вы найдете объем тела.

    • При вычислении объема грузила прикрепите к нему то, чем вы крепили грузило к рассматриваемому телу (например, ленту или булавки).
  • Отметьте уровень воды с погруженным в нее телом. Если вы используете мерный стакан, запишите уровень воды согласно шкале на стакане. Теперь вы можете вытащить тело из воды.

    Изменение объема воды равно объему тела неправильной формы. Способ измерения объема тела с помощью емкости с водой основан на том, что при погружении тела в жидкость объем жидкости с погруженным в нее телом увеличивается на величину объема тела (то есть тело вытесняет объем воды, равный объему этого тела). В зависимости от формы используемой емкости с водой существуют различные способы вычисления объема вытесненной воды, который равен объему тела.

    Если вы использовали мерный стакан, то у вас записаны два значения уровня воды (ее объема). В этом случае из значения объема воды с погруженным в нее телом вычтите значение объема воды до погружения тела. Вы получите объем тела.

  • Если вы использовали емкость в форме прямоугольного параллелепипеда, измерьте расстояние между двумя метками (уровень воды до погружения тела и уровень воды после погружения тела), а также длину и ширину емкости с водой. Объем вытесненной воды найдите посредством перемножения длины и ширины емкости, а также расстояния между двумя метками (то есть вы вычисляете объем небольшого прямоугольного параллелепипеда). Вы получите объем тела.

    • Не измеряйте высоту емкости с водой. Измерьте только расстояние между двумя метками.
    • Используйте
  • Вообще правильность фигуры понимается как равенство ее однородных элементов. Поэтому правильными называют такие многоугольники, у которых соответственно равны друг другу все стороны и все углы (рис. 12.1). Далее, правильным называют такой многогранный угол, у которого все грани равны друг другу, углы и все двугранные углы между гранями также равны (рис. 12.2). Если центр сферы S поместить в вершине правильного многогранного угла V, то сфера пересечет этот угол по правильному сферическому многоугольнику (рис. 12.3). Кроме того, мы знакомы с правильными пирамидами и правильными призмами.

    Обратимся к правильным многогранникам.

    Поскольку правильность фигуры - это равенство ее однородных элементов, то естественно назвать многогранник правильным, если равны друг другу все его ребра, все углы его граней и все двугранные углы между соседними гранями (рис. 12.4). Равенство всех ребер правильного многогранника ведет к равенству сторон в каждой его грани. Равенство же углов в гранях позволяет сделать вывод о том, что каждая грань правильного многогранника является правильным многоугольником и что все эти грани равны друг другу.

    Чаще всего правильный многогранник и определяют как многогранник, у которого все грани - это равные друг другу правильные многоугольники, а также равны друг другу углы между соседними гранями.

    Существует всего пять правильных многогранников (рис. 12.5). Построением этих многогранников Евклид заканчивал свои "Начала". Вот последняя фраза этого сочинения: "Итак, кроме упомянутых пяти тел нельзя построить другой телесной фигуры, заключенной между равносторонними и равноугольными фигурами, что и требовалось доказать".

    В Древней Греции пяти правильным многогранникам придавали особый мистический смысл, называли их Платоновыми телами. Согласно Платону, атомы четырех основных элементов, из которых строится мир, имеют форму правильных многогранников. Огню соответствует тетраэдр, земле - куб, воздуху - октаэдр, воде - икосаэдр. А вся Вселенная, согласно Платону, имеет вид додекаэдра

    Инструкция

    Попробуйте определить центр тяжести плоской фигуры опытным путем. Возьмите новый незаточенный карандаш, поставьте его вертикально. Сверху на него поместите плоскую фигуру. Отметьте на фигуре точку, в которой она устойчиво держится на карандаше. Это и будет центр тяжести вашей фигуры . Вместо карандаша использовать просто вытянутый вверх указательный палец. Но это , ведь надо добиться того, чтобы палец стоял ровно, не раскачивался и не дрожал.

    Для демонстрации того, что полученная точка и есть центр масс, проделайте в ней иголкой дырочку. Проденьте в отверстие нитку, на одном из концов завяжите узелок − так, чтобы нитка не выскакивала. Держась за другой конец нитки, подвесьте тело на ней. Если центр тяжести верно, фигура расположится ровно, параллельно полу. Ее бока не будут раскачиваться.

    Найдите центр тяжести фигуры геометрическим путем. Если у вас дан треугольник, постройте в нем . Эти отрезки соединяют вершины треугольника с серединой противоположной стороны. Точка станет центром масс треугольника. Чтобы найти срединную точку стороны, можно даже сложить фигуру пополам, но учтите, что при этом нарушится однородность фигуры .

    Сравните результаты, полученные геометрическим и опытным путем. Сделайте о ходе эксперимента. Небольшие погрешности считаются нормой. Объясняются они неидеальностью фигуры , неточностью приборов, человеческим фактором (мелкими огрехами в работе, несовершенством человеческого глаза и т.д.).

    Источники:

    • Вычисление координат центра тяжести плоской фигуры

    Центр фигуры можно найти несколькими способами, смотря какие данные о ней уже известны. Стоит разобрать нахождение центра окружности, которая является совокупностью точек, располагающихся на равном расстоянии от центра, так как эта фигура - одна из наиболее распространенных.

    Вам понадобится

    • - угольник;
    • - линейка.

    Инструкция

    Простейший способ найти центр окружности – согнуть листок бумаги, на котором она начерчена, убедившись, глядя на просвет, что она сложилась точно пополам. Затем согните лист перпендикулярно первому сгибу. Так вы получите диаметры, точка пересечения которых и есть центр фигуры.

    P1= m1*g, Р2= m2*g;

    Центр тяжести находится между двумя массами. И если все тело подвесить в т.О, наступит значение равновесие, то есть эти перестанут перевешивать друг друга.

    Разнообразные геометрические фигуры имеют физические и расчеты по поводу центра тяжести. К каждому свой подход и свой метод.

    Рассматривая диск, уточняем, что центр тяжести находится внутри него, точнее диаметров (как показано на рисунке в т.С - точка пересечение диаметров). Таким же способом находят центры параллелепипеда или однородного шара.

    Представленный диск и два тела с массами m1 и m2 - однородной массы и правильной формы. Здесь можно отметить, что искомый нами центр тяжести находится внутри этих предметов. Однако, в телах с неоднородной массой и неправильной формы центр может находится за . Чувствуете сами, что задача уже становится сложнее.

    Мода на «женщин, которые похожи на мальчиков» уже давно прошла, но многие представительницы слабого пола хотят до сих пор обладать плоской попой. Хотя на сегодняшний день «в моде» демонстрировать всю цветущую сексуальность, гармоничное, красивое и тренированное тело. Ведь именно в таком случае, красивая попка является непременной составляющей не только женской, но также и мужской красоты.

    Инструкция

    Для того, чтобы попу плоской, необходимо выполнять следующие . 1 упражнение "Поднимание ног".Это упражнение можете в нескольких вариантах.Встаньте на четвереньки - в исходное положение, а затем делайте поочередно подъемы каждой ноги, чтобы бедро было параллельно полу. Зафиксируйте ногу в прижатом положении к и производите пружинящие движения наверх. При этом, обратите внимание на фиксацию вашей ноги в голеностопном, а также коленном суставе, старайтесь данное положение не изменять.

    2 упражнение "Поднятие таза".Лягте на , руки расположите параллельно телу, а ноги согните в коленях. После этого приподнимите таз от пола, сильно напрягая ягодицы. При этом верхняя часть и руки от пола не должны отрываться.В таком же положении сделайте пружинистых движений наверх.

    3 упражнение "Поднятие ".Встаньте, ноги расположите на ширине плеч. Попеременно поднимайте и опускайте по одному колену как можно выше. При поднятии колена старайтесь как можно дольше удержаться, не двигаясь, на одной ноге.Этим упражнением очень хорошо прорабатывается зона, которая находится чуть выше попы.

    4 упражнение "Приседание с отведением таза".Встаньте так, чтобы ноги были шире плеч, а стопы параллельно им. В этом случае левая нога должна быть немного позади правой. Затем присядьте, опираясь на левую ногу и отводя таз назад. При этом руки протяните перед левой стопой, спину держите прямой. После этого встаньте, перенесите весь вес на правую ногу, левую отведите назад и поднимите руки над головой.Данное упражнение повторите 10 раз, затем смените ногу.

    5 упражнение "Выпады колесом".Сделайте выпад вперед, начиная с левой ноги, чуть разверните стопу по часовой стрелке. Затем наклонитесь вперед от бедра. При этом широко разведите руки, словно хотите сделать колесо. Задержитесь на несколько секунд в этом положении, затем встаньте, сохранив положение правой ноги. Левой совершите шаг влево и разверните наружу мысок. Присядьте и наклонитесь влево.

    Видео по теме

    Источники:

    • плоские попы в 2019

    В обыденном смысле центр тяжести воспринимают как точку, к которой можно приложить равнодействующую всех сил, действующих на тело. Самый простой пример - это детские качели в виде обычной доски. Без всяких вычислений любой ребенок подберет опору доски так, чтобы уравновесить (а может, и перевесить) на качелях тяжелого мужчину. В случае сложных тел и сечений без точных расчетов и соответствующих формул не обойтись. Даже если получаются громоздкие выражения, главное - не пугаться их, а помнить, что исходно речь идет о практически элементарной задаче.

    Инструкция

    Рассмотрите простейший рычаг (см. рис 1), находящийся в положении равновесия. Расположите на горизонтальной оси с абсциссой х₁₂ и поместите на краях материальные точки масс m₁ и m₂. Считайте их координаты по оси 0х известными и равными х₁ и х₂. Рычаг находится в положении равновесия, если моменты сил веса Р₁=m₁g и P₂=m₂g равны. Момент равен произведению силы на ее плечо, которое можно найти как длину перпендикуляра опущенного из точки приложения силы на вертикаль х=х₁₂. Поэтому, в соответствии с рисунком 1, m₁gℓ₁= m₂gℓ₂, ℓ₁=х₁₂-х₁, ℓ₂=х₂-х₁₂. Тогда m₁(х₁₂-х₁)=m₂(х₂-х₁₂). Решите это уравнение и получите х₁₂=(m₁x₁+m₂x₂)/(m₁+m₂).

    Для выяснения ординаты y₁₂ примените те же самые рассуждения и выкладки, как и на шаге 1. По-прежнему следуйте иллюстрации, приведенной на рисунке 1, где m₁gh₁= m₂gh₂, h₁=y₁₂-y₁, h₂=y₂-y₁₂. Тогда m₁(y₁₂-y₁)=m₂(y₂-y₁₂). Результат - у₁₂=(m₁у₁+m₂у₂)/(m₁+m₂). Далее считайте, что вместо системы из двух точек имеется одна точка М₁₂(x12,у12) общей массы (m₁+m₂).

    К системе из двух точек добавьте еще одну массу (m₃) с координатами (х₃, у₃). При вычислении следует по-прежнему считать, что имеете дело с двумя точками, где вторая из них имеет массу (m₁+m₂) и координаты (x12,у12). Повторяя уже для этих двух точек все действия шагов 1 и 2, придете к центра трех точек x₁₂₃=(m₁x₁+m₂x₂+m₃x₃)/(m₁+m₂+m₃), у₁₂₃=(m₁у₁+m₂у₂+m₃y₃)/(m₁+m₂+m₃). Далее добавляйте четвертую, пятую и так далее точки. После многократного повторения все той же процедуры убедитесь, что для системы n точек координаты центра тяжести вычисляются по формуле (см. рис. 2). Отметьте для себя тот факт, что в процессе работы ускорение свободного падения g сокращалось. Поэтому координаты центра масс и тяжести совпадают.

    Представьте себе, что в рассматриваемом сечении расположена некоторая область D, поверхностная плотность которой ρ=1. Сверху и снизу фигура ограничена графиками кривых у=φ(х) и у=ψ(х), х є [а,b]. Разбейте область D вертикалями x=x₍i-1₎, x=x₍i₎ (i=1,2,…,n) на тонкие полоски, такие, что их можно приблизительно считать прямоугольниками с основаниями ∆хi (см. рис. 3). При этом середину отрезка ∆хi считайте положите совпадающим с абсциссой центра масс ξi=(1/2). Высоту прямоугольника считайте приблизительно равной [φ(ξi)-ψ(ξi)]. Тогда ордината центра масс элементарной площади ηi=(1/2)[φ(ξi)+ψ(ξi)].

    В силу равномерного распределения плотности считайте, что центр масс полоски совпадет с ее геометрическим центром. Соответствующая элементарная масса ∆mi=ρ[φ(ξi)-ψ(ξi)]∆хi=[φ(ξi)-ψ(ξi)]∆хi сосредоточена в точке (ξi,ηi). Наступил момент обратного перехода от массы, представленной в дискретной форме, к непрерывной. В соответствии с формулами вычисления координат (см. рис. 2) центра тяжести образуются интегральные суммы, проиллюстрированные на рисунке 4а. При предельном переходе при ∆xi→0 (ξi→xi) от сумм к определенным интегралам, получите окончательный ответ (рис. 4b). В ответе масса отсутствует. Равенство S=M следует понимать лишь как количественное. Размерности здесь отличны друг от друга.

    Невозможная фигура — один из видов оптических иллюзий, фигура, кажущаяся на первый взгляд проекцией обычного трёхмерного объекта,

    при внимательном рассмотрении которой становятся видны противоречивые соединения элементов фигуры. Создаётся иллюзия невозможности существования такой фигуры в трёхмерном пространстве.

    Невозможные фигуры

    Наиболее известные невозможные фигуры: невозможный треугольник, бесконечная лестница и невозможный трезубец.

    Невозможный треугольник Перроуза

    Иллюзия Рейтерсварда (Reutersvard, 1934)

    Обратите внимание также и на то, что изменение организации "фигура-фон" сделало возможным восприятие расположенной в центре "звезды".
    _________


    Невозможный куб Эшера


    На самом деле все невозможные фигуры могут существовать в реальном мире. Так, все объекты, нарисованные на бумаге, являются проекциями трёхмерных объектов, следовательно, можно создать такой трёхмерный объект, который при проецировании на плоскость будет выглядеть невозможным. При взгляде на такой объект из определённой точки он также будет выглядеть невозможным, но при обзоре с любой другой точки эффект невозможности будет теряться.

    13-метровая скульптура невозможного треугольника из алюминия была воздвигнута в 1999 году в городе Перт (Австралия). Здесь невозможный треугольник был изображен в наиболее общей форме — в виде трёх балок, соединённых друг с другом под прямыми углами.


    Чёртова вилка
    Среди всех невозможных фигур особое место занимает невозможный трезубец («чертова вилка»).

    Если закрыть рукой правую часть трезубца, то мы увидим вполне реальную картину - три круглых зуба. Если закрыть нижнюю часть трезубца, то мы тоже увидим реальную картину - два прямоугольных зубца. Но, если рассматривать всю фигуру целиком, то получается что три круглых зубца постепенно превращаются в два прямоугольных.

    Таким образом, можно увидеть, что передний и задний планы данного рисунка конфликтуют. То есть, то что было изначально на переднем плане уходит назад, а задний план (средний зуб) вылезает вперед. Кроме смены переднего и заднего планов в данном рисунке присутствует еще один эффект - плоские грани правой части трезубца становятся круглыми в левой.

    Эффект невозможности достигается за счет того, что наш мозг анализирует контур фигуры и пытается подсчитать количество зубцов. Мозг сравнивает количество зубцов фигуры в левой и правой части рисунка, из-за чего возникает ощущение невозможности фигуры. Если количество зубцов у фигуры было значительно больше (например, 7 или 8), то этот парадокс был бы менее ярко выражен.

    Некоторые книги утверждают, что невозможный трезубец принадлежит к классу невозможных фигур, которые не могут быть воссозданы в реальном мире. На самом деле это не так. ВСЕ невозможные фигуры можно увидеть в реальном мире, но невозможными они будут выглядеть только с одной единственной точки зрения.

    ______________

    Невозможный слон


    Сколько ног у слона?

    Психолог из Стенфорда Роджер Шепард (Roger Shepard) использовал идею трезубца для своей картины невозможного слона.

    ______________


    Лестница Пенроуза (бесконечная лестница, невозможная лестница)

    Бесконечная лестница" - одна из самых известных классических невозможностей.



    Представляет собой такую конструкцию лестницы, при которой в случае движения по ней в одном направлении (на рисунке к статье против часовой стрелки) человек будет бесконечно подниматься, а при движении в обратном — постоянно спускаться.


    Другими словами, перед нами предстает лестница, ведущая, казалось бы, вверх или вниз, но при этом человек, шагающий по ней, не поднимается и не опускается. Завершив свой визуальный маршрут, он окажется в начале пути. Если бы вам в самом деле пришлось пройти по этой лестнице, вы бы бесцельно поднимались и спускались по ней бесконечное число раз. Можно назвать это нескончаемым сизифовым трудом!

    С тех пор как Пенроузы опубликовали эту фигуру, она появлялась в печати чаще, чем какой-либо другой невозможный объект. "Бесконечную лестницу" можно встретить в книгах об играх, головоломках, иллюзиях, в учебниках по психологии и другим предметам.


    «Восхождение и нисхождение»

    «Бесконечной лесницей"» с успехом воспользовался художник Мауриц К. Эшер, на этот раз в своей чарующей литографии «Восхождение и нисхождение», созданной в 1960 году.
    В этом рисунке, отражающем все возможности фигуры Пенроуза, вполне узнаваемая Бесконечная лестница аккуратно вписана в крышу монастыря. Монахи в капюшонах непрерывно движутся по лестнице в направлении по часовой стрелке и против нее. Они идут навстречу друг другу по невозможному пути. Им так и не удается ни подняться наверх, ни спуститься вниз.

    Соответственно, «Бесконечная лестница» стала чаще ассоциироваться с Эшером, перерисовавшим ее, чем с Пенроузами, которые ее придумали.


    Сколько тут полок?

    Куда открыта дверь?

    Наружу или вовнутрь?

    Невозможные фигуры изредка появлялись на полотнах мастеров прошлого, например, такова виселица на картине Питера Брейгеля (Старшего)
    «Сорока на виселице» (1568)

    __________

    Невозможная арка

    Жос де Мей (Jos de Mey) - фламандский художник, обучался в Королевской Академии Изящных Искусств в Генте (Бельгия), а затем обучал студентов дизайну интерьеров и цвету на протяжении 39 лет. Начиная с 1968 года центром его внимания стало рисование. Он наиболее известен тщательным и реалистичным исполнением невозможных структур.


    Наиболее известны невозможные фигуры в работах художника Мориса Эшера. При рассматривании таких рисунков каждая отдельная деталь кажется вполне правдоподобной, однако при попытке проследить линию, оказывается, что эта линия уже, например, не внешний угол стены, а внутренний.

    «Относительность»

    Эта литография голландского художника Эшера впервые была напечатана в 1953 году.

    На литографии изображен парадоксальный мир, в котором не применяются законы реальности. В одном мире объединены три реальности, три силы тяжести направлены перпендикулярно одна другой.



    Создана архитектурная структура, реальности объединены лестницами. Для людей, живущих в этом мире, но в разных плоскостях реальности, одна и та же лестница будет направлена или вверх или вниз.

    «Водопад»

    Эта литография голландского художника Эшера впервые была напечатана в октябре 1961 года.

    В этой работе Эшера изображен парадокс — падающая вода водопада управляет колесом, которое направляет воду на вершину водопада. Водопад имеет структуру «невозможного» треугольника Пенроуза: литография была создана по мотивам статьи в «Британском журнале психологии».

    Конструкция составлена из трёх перекладин, положенных друг на друга под прямым углом. Водопад на литографии работает как вечный двигатель. Кажется также, что обе башни одинаковы; на самом деле та, что справа, на этаж ниже левой башни.

    Ну и более современные работы:о)
    Бесконечная фотография



    Удивительная стройка

    Шахматная доска


    Перевёрнутые картинки


    Что вы видите: огромную ворону с добычей или рыбака в лодке, рыбу и остров с деревьями?


    Распутин и Сталин


    Молодость и старость

    _________________


    Вельможа и Королева

    ___________________


    Злой и Весельчак