Градусная мера дуги окружности равна. Градусная мера дуги окружности. Выявление места и причины затруднения

Утверждать, что вы знаете математику, невозможно, если вы не умеете строить графики, изображать неравенства на координатной прямой, работать с осями координат. Визуальная составляющая в науке жизненно необходима, ведь без наглядных примеров в формулах и вычислениях порой можно сильно запутаться. В данной статье мы посмотрим, как работать с осями координат, и научимся строить простейшие графики функций.

Применение

Координатная прямая - это основа простейших видов графиков, с которыми сталкивается школьник на своем учебном пути. Она используется практически в каждой математической теме: при расчёте скорости и времени, проецировании размеров объектов и вычислении их площади, в тригонометрии при работе с синусами и косинусами.

Главная ценность такой прямой - это наглядность. Поскольку математика - это наука, в которой требуется высокий уровень абстрактности мышления, графики помогают в представлении объекта в реальном мире. Как он себя ведет? В какой точке пространства будет находиться через несколько секунд, минут, часов? Что можно сказать о нём в сопоставлении с другими объектами? Какой скоростью он обладает в случайно выбранный момент времени? Как охарактеризовать его движение?

А про скорость речь идёт неспроста - именно её зачастую отображают графики функции. А ещё они могут отображать изменение температуры или давления внутри объекта, его размеров, ориентации относительно горизонта. Таким образом, построить координатную прямую зачастую требуется и в физике.

Одномерный график

Существует понятие многомерности. В достаточно всего одного числа, чтобы определить местоположение точки. Это как раз и есть случай с применением координатной прямой. Если пространство двухмерное, то потребуется два числа. Графики такого типа используются гораздо чаще, и чуть дальше в статье мы их обязательно рассмотрим.

Что можно увидеть с помощью точек на оси, если она всего одна? Можно увидеть размер объекта, его положение в пространстве относительно некоторого «нуля», т. е. точки, выбранной в качестве начала отсчёта.

Изменение параметров с течением времени увидеть не удастся, так как все показания будут отображаться для одного конкретного момента. Однако с чего-то надо начинать! Итак, приступим.

Как построить координатную ось

Для начала требуется провести горизонтальную линию - это и будет наша ось. С правой стороны «заострим» её, чтобы она была похожа на стрелку. Таким образом мы обозначим направление, в котором числа будут увеличиваться. В сторону уменьшения стрелка обычно не ставится. Традиционно ось направлена вправо, поэтому мы просто последуем данному правилу.

Поставим нулевую отметку, которая будет отображать начало координат. Это то самое место, от которого ведется отсчёт, будь то размер, вес, скорость или что угодно другое. Кроме нуля, мы обязательно должны обозначить так называемую цену деления, т. е. ввести стандарт единицы, в соответствии с которой будем откладывать на оси те или иные величины. Это обязательно нужно делать, чтобы уметь находить длину отрезка на координатной прямой.

Через равное расстояние друг от друга поставим точки или «зарубки» на линии, а под ними напишем соответственно 1,2,3 и так далее. И вот, всё готово. Но с получившимся графиком надо ещё научиться работать.

Виды точек на координатной прямой

С первого взгляда на предложенные в учебниках рисунки становится понятно: точки на оси могут быть закрашенные или не закрашенные. Вы думаете, это случайность? Вовсе нет! «Сплошная» точка используется при нестрогом неравенстве - том, которое читается как «больше или равно». Если же нужно строго ограничить интервал (например, «икс» может принимать значения от нуля до единицы, но не включает её), мы воспользуемся «полой» точкой, то есть, по сути, маленьким кружком на оси. Надо заметить, что ученики не очень любят строгие неравенства, потому что с ними сложнее работать.

В зависимости от того, какие точки вы используете на графике, будут называться и построенные интервалы. Если неравенство с двух сторон нестрогое, то мы получим отрезок. Если с одной стороны он окажется «открыт», то называться будет полуинтервалом. Наконец, если часть прямой ограничена с двух сторон полыми точками, она будет называться интервалом.

Плоскость

При построении двух прямых на мы уже можем рассматривать графики функций. Скажем, горизонтальная линия будет осью времени, а вертикальная - расстоянием. И вот уже мы в состоянии определить, какое расстояние преодолеет объект через минуту или час пути. Таким образом, работа с плоскостью даёт возможность следить за изменением состояния объекта. Это гораздо интереснее, чем исследование статичного состояния.

Простейший график на такой плоскости - прямая, она отражает функцию Y(X) = aX + b. Линия изгибается? Это означает, что объект меняет свои характеристики в процессе исследования.

Представьте, вы стоите на крыше здания и держите в вытянутой руке камень. Когда вы отпустите его, он полетит вниз, начав своё движение с нулевой скорости. Но уже через секунду он будет преодолевать 36 километров в час. Камень продолжит ускоряться и дальше, и чтобы нарисовать его движение на графике, вам потребуется замерить его скорость в несколько моментов времени, выставив точки на оси в соответствующих местах.

Отметки на горизонтальной координатной прямой по умолчанию получают название X1, X2,X3, а на вертикальной - Y1, Y2,Y3 соответственно. Проецируя их на плоскость и находя пересечения, мы находим фрагменты результирующего рисунка. Соединив их одной линией, мы получим график функции. В случае с падающим камнем квадратичная функция будет иметь вид: Y(X) = aX * X + bX + c.

Масштаб

Конечно, не обязательно выставлять рядом с делениями на прямой целочисленные значения. Если вы рассматриваете движение улитки, которая ползет со скоростью 0,03 метра в минуту, выставьте в качестве значений на координатной прямой дроби. В данном случае задайте цену деления как 0,01 метра.

Особенно удобно выполнять такие чертежи в тетради в клетку - здесь сразу видно, хватит ли места на листе для вашего графика, не выйдете ли вы за поля. Свои силы рассчитать несложно, ведь ширина клетки в такой тетради - 0,5 сантиметра. Понадобилось - уменьшили рисунок. От изменения масштаба графика он не потеряет и не изменит своих свойств.

Координаты точки и отрезка

Когда на уроке дается математическая задача, в ней могут содержаться параметры различных геометрических фигур как в виде длин сторон, периметра, площади, так и в виде координат. В этом случае может потребоваться как построить фигуру, так и получить какие-то данные, связанные с ней. Возникает вопрос: как найти на координатной прямой требуемую информацию? И как построить фигуру?

Например, речь идёт о точке. Тогда в условии задачи будет фигурировать заглавная буква, а в скобках будут стоять несколько цифр, чаще всего две (это значит, считать мы будем в двухмерном пространстве). Если в скобках три числа, записанные через точку с запятой или через запятую, то это трехмерное пространство. Каждое из значений - это координата на соответствующей оси: сначала по горизонтальной (X), затем - по вертикальной (Y).

Помните, как построить отрезок? Вы проходили это на геометрии. Если есть две точки, то между ними можно провести прямую. Их-то координаты и указываются в скобках, если в задаче фигурирует отрезок. Например: A(15, 13) - B(1, 4). Чтобы построить такую прямую, нужно на координатной плоскости найти и отметить точки, а затем их соединить. Вот и всё!

А любые многоугольники, как вы знаете, можно нарисовать с помощью отрезков. Задача решена.

Расчёты

Допустим, есть некоторый объект, положение которого по оси X характеризуется двумя числами: начинается он в точке с координатой (-3) и заканчивается в (+2). Если мы хотим узнать длину этого предмета, то должны вычесть из большего числа меньшее. Обратите внимание, что отрицательное число поглощает знак вычитания, потому что «минус на минус даёт плюс». Итак, мы складываем (2+3) и получаем 5. Это и есть требуемый результат.

Другой пример: нам дана конечная точка и длина объекта, но не дана начальная (и требуется её найти). Пусть положение известной точки будет (6), а размер изучаемого предмета - (4). Вычитая длину из конечной координаты, мы получим ответ. Итого: (6 - 4) = 2.

Отрицательные числа

Нередко требуется на практике работать с отрицательными значениями. В этом случае мы будем уходить по оси координат влево. Например, объект высотой 3 сантиметра плавает в воде. На треть он погружен в жидкость, на две трети находится на воздухе. Тогда, выбрав в качестве оси поверхность воды, мы с помощью простейших арифметических вычислений получаем два числа: верхняя точка объекта имеет координату (+2), а нижняя - (-1) сантиметр.

Нетрудно заметить, что в случае с плоскостью у нас образуется четыре четверти координатной прямой. Каждая из них имеет свой номер. В первой (верхней правой) части будут располагаться точки, имеющие две положительные координаты, во второй - слева сверху - значения по оси «икс» будут отрицательные, а по «игрек» - положительные. Третья и четвертая отсчитываются дальше против часовой стрелки.

Важное свойство

Вы знаете, что прямую можно представить как бесконечное множество точек. Мы можем просмотреть сколь угодно внимательно любое количество значений в каждую сторону оси, но не встретим повторяющихся. Это кажется наивным и понятным, но проистекает то утверждение из важного факта: каждому числу соответствует одна и только одна точка на координатной прямой.

Заключение

Помните, что любые оси, фигуры и по возможности графики необходимо строить по линейке. Единицы измерений были придуманы человеком не случайно - допустив погрешность при черчении, вы рискуете увидеть уже не то изображение, которое должно было получиться.

Будьте внимательны и аккуратны в построении графиков и вычислениях. Как и любая наука, изучаемая в школе, математика любит точность. Приложите немного старания, и хорошие оценки не заставят себя долго ждать.

Лекция: Величина угла, градусная мера угла, соответствие между величиной угла и длиной дуги окружности

Мерой угла называют величину, на которую отклоняется некоторый луч относительно первоначального положения.

Мера угла может измеряться двумя величинами: градусами и радианами, отсюда и название единиц – градусная и радианная мера угла.

Градусная мера угла


Градусная мера дает возможность оценить, какое количество градусов, минут или секунд помещается в тот или иной угол.

Расчет углов в градусах производится с точки зрения того, что полный поворот луча – это 360°. Половина поворота 180° - развернутый угол, четверть – 90° - прямой угол и т.д.


Радианная мера угла

А теперь давайте же разберемся, что такое радианная мера угла. Как известно из физики, существуют дополнительные единицы. Например, для измерения температуры основной единицей являются Кельвины, а дополнительной градусы Цельсия. Для измерения длины мы используем метры, а англичане используют футы. Данный список можно продолжать и далее. Смысл в том, чтобы Вы поняли, что, кроме градусной меры измерения угла, существует радианная мера, которая так же имеет право на существование.



Для определения радианной меры угла используют окружность. Считается, что радианная мера – это длина дуги окружности, описанная центральным углом.


Напомним, что центральный угол – это угол, вершина которого находится в центре окружности, а лучи опираются на некоторую дугу.

Итак, угол в 1 рад имеет градусную меру в 57,3°. Радианная мера угла описывается либо натуральными числами, или же с использованием числа π ≈ 3,14.


Для геометрии удобнее использовать градусную меру угла, однако для тригонометрии используют радианную меру.

Средний уровень

Окружность и вписанный угол. Визуальный гид (2019)

Основные термины.

Хорошо ли ты помнишь все названия, связанные с окружностью? На всякий случай напомним - смотри на картинки - освежай знания.

Ну, во-первых - центр окружности - такая точка, расстояния от которой до всех точек окружности одинаковые.

Во-вторых - радиус - отрезок, соединяющий центр и точку на окружности.

Радиусов очень много (столько же, сколько и точек на окружности), но длина у всех радиусов - одинаковая.

Иногда для краткости радиусом называют именно длину отрезка «центр - точка на окружности», а не сам отрезок.

А вот что получится, если соединить две точки на окружности ? Тоже отрезок?

Так вот, этот отрезок называется «хорда» .

Так же, как и в случае с радиусом, диаметром часто называют длину отрезка, соединяющего две точки на окружности и проходящего через центр. Кстати, а как связаны диаметр и радиус? Посмотри внимательно. Конечно же, радиус равен половине диаметра.

Кроме хорд бывают еще и секущие.

Вспомнили самое простое?

Центральный угол - угол между двумя радиусами.

А теперь - вписанный угол

Вписанный угол - угол между двумя хордами, которые пересекаются в точке на окружности .

При этом говорят, что вписанный угол опирается на дугу (или на хорду) .

Смотри на картинку:

Измерения дуг и углов.

Длина окружности. Дуги и углы измеряются в градусах и радианах. Сперва о градусах. Для углов проблем нет - нужно научиться измерить дугу в градусах.

Градусная мера (величина дуги) - это величина (в градусах) соответствующего центрального угла

Что здесь значит слово «соответствующего»? Смотрим внимательно:

Видишь две дуги и два центральных угла? Ну вот, большей дуге соответствует больший угол (и ничего страшного, что он больше), а меньшей дуге соответствует меньший угол.

Итак, договорились: в дуге содержится столько же градусов, сколько в соответствующем центральном угле.

А теперь о страшном - о радианах!

Что же это за зверь такой «радиан»?

Представь себе: радианы - это способ измерения угла … в радиусах!

Угол величиной радиан - такой центральный угол, длина дуги которого равна радиусу окружности.

Тогда возникает вопрос - а сколько же радиан в развёрнутом угле?

Иными словами: сколько радиусов «помещается» в половине окружности? Или ещё по-другому: во сколько раз длина половины окружности больше радиуса?

Этим вопросом задавались учёные ещё в Древней Греции.

И вот, после долгих поисков они обнаружили, что отношение длины окружности к радиусу никак не хочет выражаться «человеческими» числами вроде и т.п.

И даже не получается выразить это отношение через корни. То есть, оказывается, нельзя сказать, что половина окружности в раза или в раз больше радиуса! Представляешь, как удивительно это было обнаружить людям впервые?! Для отношения длины половины окружности к радиусу на хватило «нормальных» чисел. Пришлось вводить букву.

Итак, - это число, выражающее отношение длины полуокружности к радиусу.

Теперь мы можем ответить на вопрос: сколько радиан в развёрнутом угле? В нём радиан. Именно оттого, что половина окружности в раз больше радиуса.

Древние (и не очень) люди на протяжении веков (!) попытались поточнее подсчитать это загадочное число, получше выразить его (хоть приблизительно) через «обыкновенные» числа. А мы сейчас до невозможности ленивы - нам достаточно двух знаков после занятой, мы привыкли, что

Задумайся, это значит, например, что y окружности с радиусом единица длина приблизительно равна, а точно эту длину просто невозможно записать «человеческим» числом - нужна буква. И тогда эта длина окружности окажется равной. И конечно, длина окружности радиуса равна.

Вернёмся к радианам.

Мы выяснили уже, что в развёрнутом угле содержится радиан.

Что имеем:

Значит, рад., то есть рад. Таким же образом получается табличка с наиболее популярными углами.

Соотношение между величинами вписанного и центрального углов.

Имеет место удивительный факт:

Величина вписанного угла вдвое меньше, чем величина соответствующего центрального угла.

Посмотри, как это утверждение выглядит на картинке. «Соответствующий» центральный угол такой, у которого концы совпадают с концами вписанного угла, а вершина в центре. И при этом «соответствующий» центральный угол должен «смотреть» на ту же хорду (), что и вписанный угол.

Почему же так? Давай разберёмся сначала на простом случае. Пусть одна из хорд проходит через центр. Ведь бывает же так иногда, верно?

Что же тут получается? Рассмотрим. Он равнобедренный - ведь и - радиусы. Значит, (обозначили их).

Теперь посмотрим на. Это же внешний угол для! Вспоминаем, что внешний угол равен сумм двух внутренних, не смежных с ним, и записываем:

То есть! Неожиданный эффект. Но и есть центральный угол для вписанного.

Значит, для этого случая доказали, что центральный угол вдвое больше вписанного. Но уж больно частный случай: правда ведь, далеко не всегда хорда проходит прямиком через центр? Но ничего, сейчас этот частный случай нам здорово поможет. Смотри: второй случай: пусть центр лежит внутри.

Давай сделаем вот что: проведём диаметр. И тогда … видим две картинки, которые уже разбирали в первом случае. Поэтому уже имеем, что

Значит, (на чертеже, а)

Ну вот, и остался последний случай: центр вне угла.

Делаем то же самое: проводим диаметр через точку. Все то же самое, но вместо суммы - разность.

Вот и всё!

Давай теперь сформируем два главных и очень важных следствия из утверждения о том, что вписанный угол вдвое меньше центрального.

Следствие 1

Все вписанные углы, опирающиеся на одну дугу, равны между собой.

Иллюстрируем:

Вписанных углов, опирающихся на одну и ту же дугу (у нас эта дуга) - бесчисленное множество, они могут выглядеть совсем по-разному, но у них у всех один и тот же центральный угол (), а значит, все эти вписанные углы равны между собой.

Следствие 2

Угол, опирающийся на диаметр - прямой.

Смотри: какой угол является центральным для?

Конечно, . Но он равен! Ну вот, поэтому (а так же ещё множество вписанных углов, опирающихся на) и равен.

Угол между двумя хордами и секущими

А что, если интересующий нас угол НЕ вписанный и НЕ центральный, а, например, такой:

или такой?

Можно ли его как-то выразить всё-таки через какие-то центральные углы? Оказывается, можно. Смотри: нас интересует.

a) (как внешний угол для). Но - вписанный, опирается на дугу - . - вписанный, опирается на дугу - .

Для красоты говорят:

Угол между хордами равен полусумме угловых величин дуг, заключённых в этот угол.

Так пишут для краткости, но конечно, при использовании этой формулы нужно иметь в виду центральные углы

b) А теперь - «снаружи»! Как же быть? Да почти так же! Только теперь (снова применяем свойство внешнего угла для). То есть теперь.

И значит, . Наведём красоту и краткость в записях и формулировках:

Угол между секущими равен полуразности угловых величин дуг, заключённых в этот угол.

Ну вот, теперь ты вооружён всеми основными знаниями об углах, связанных с окружностью. Вперёд, на штурм задач!

ОКРУЖНОСТЬ И ВПИСАННЫЙ УГОЛ. СРЕДНИЙ УРОВЕНЬ

Что такое окружность, знает и пятилетний ребёнок, не правда ли? У математиков, как всегда, на этот счёт есть заумное определение, но мы его приводить не будем (смотри ), а лучше вспомним, как называются точки, линии и углы, связанные с окружностью.

Важные термины

Ну, во-первых:

центр окружности - такая точка, расстояния от которой до всех точек окружности одинаковые.

Во-вторых:

Тут есть ещё одно принятое выражение: «хорда стягивает дугу». Вот, здесь на рисунке, например, хорда стягивает дугу. А если хорда вдруг проходит через центр, то у неё есть специальное название: «диаметр».

Кстати, а как связаны диаметр и радиус? Посмотри внимательно. Конечно же,

А теперь - названия для углов.

Естественно, не правда ли? Стороны угла выходят из центра - значит, угол - центральный.

Вот здесь иногда возникают сложности. Обрати внимание - НЕ ЛЮБОЙ угол внутри окружности - вписанный, а только такой, у которого вершина «сидит» на самой окружности.

Давай увидим разницу на картинках:

По-другому ещё говорят:

Тут есть один хитрый момент. Что такое «соответствующий» или «свой» центральный угол? Просто угол с вершиной в центре окружности и концами в концах дуги? Не совсем так. Посмотри-ка на рисунок.

Один из них, правда, и на угол-то не похож - он больше. Но это в треугольнике не может быть углов больше, а в окружности - вполне может! Так вот: меньшей дуге AB соответствует меньший угол (оранжевый), а большей - больший. Просто как, не правда ли?

Соотношение между величинами вписанного и центрального угла

Запомни очень важное утверждение:

В учебниках этот же факт любят записывать так:

Правда, с центральным углом формулировка проще?

Но всё же давай найдём соответствие между двумя формулировками, а заодно научимся находить на рисунках «соответствующий» центральный угол и дугу, на которую «опирается» вписанный угол.

Смотри: вот окружность и вписанный угол:

Где же его «соответствующий» центральный угол?

Снова смотрим:

Какое же правило?

Но! При этом важно, чтобы вписанный и центральный угол «смотрели» с одной стороны на дугу. Вот, например:

Как ни странно, голубой! Потому что дуга-то длинная, длиннее половины окружности! Вот и не путай никогда!

Какое же следствие можно вывести из «половинчатости» вписанного угла?

А вот, например:

Угол, опирающийся на диаметр

Ты уже успел заметить, что математики очень любят об одном и том же говорить разными словами? Зачем это им? Понимаешь, язык математики хоть и формальный, но живой, а поэтому, как и в обычном языке, каждый раз хочется сказать так, как удобнее. Ну вот, что такое «угол опирается на дугу» мы уже видели. И представь себе, та же самая картина называется «угол опирается на хорду». На какую? Да конечно на ту, которая стягивает эту дугу!

Когда же опираться на хорду удобнее, чем на дугу?

Ну, в частности, когда эта хорда - диаметр.

Для такой ситуации есть удивительно простое, красивое и полезное утверждение!

Смотри: вот окружность, диаметр и угол, который на него опирается.

ОКРУЖНОСТЬ И ВПИСАННЫЙ УГОЛ. КОРОТКО О ГЛАВНОМ

1. Основные понятия.

3. Измерения дуг и углов.

Угол величиной радиан - такой центральный угол, длина дуги которого равна радиусу окружности.

Это число, выражающее отношение длины полуокружности к радиусу.

Длина окружности радиуса равна.

4. Соотношение между величинами вписанного и центрального углов.

Муниципальное бюджетное общеобразовательное учреждение средняя общеобразовательная школа № 10

План – конспект урока по теме:

«ГРАДУСНАЯ МЕРА ДУГИ ОКРУЖНОСТИ»

Выполнила: учитель математики

Пенза, 2014г.

Тема урока: ГРАДУСНАЯ МЕРА ДУГИ ОКРУЖНОСТИ

Тип урока : «Открытие нового знания»

Цель урока: организовать деятельность учащихся по нахождению градусной меры дуги окружности и первичному закреплению новых знаний.

Задачи :

Предметного направления :

Формирование понятий градусная мера дуги окружности, центральный угол;

Отработка навыка нахождения градусной меры дуги окружности.

Личностного направления :

Создание условий для развития умений анализировать познавательный объект;

Развитие умений выделять главное в познавательном объекте;

Развитие умения ясно, точно и грамотно излагать свои мысли в устной и письменной речи;

Развитие креативности мышления, инициативы, находчивости, активности при решении математических задач

Метапредметного направления :

Формирование умений определять и формулировать темы урока с помощью учителя, проговаривать последовательность действий на уроке;

Формирование умений планировать своё действие в соответствии с поставленной задачей;

Формирование умений высказывать своё предположение;

Формирование умений слушать и понимать речь других;

Формирование умений ориентироваться в своей системе знаний: отличать новое от уже известного с помощью учителя;

Формирование умений добывать новые знания: находить ответы на вопросы, используя учебник, свой жизненный опыт и информацию, полученную на уроке.

Учебник: Л.С. Атанасян «Геометрия 7- 9»

План урока (длительность урока – 40 мин.):

1. Мотивация к учебной деятельности (1 мин)

2. Актуализация знаний и пробное учебное действие (5 мин)

3. Выявление места и причины затруднения (4 мин)

4. Построение проекта выхода из затруднения (5 мин)

5. Реализация построенного проекта (7 мин)

6. Первичное закрепление с комментированием во внешней речи (5 мин)

7. Самостоятельная работа с самопроверкой по эталону (4 мин)

8. Включение в систему знаний и повторение (7 мин)

9. Рефлексия учебной деятельности на уроке (2 мин)

п/п

Этапы урока

Деятельность учителя

Деятельность учащихся

Формируемые УУД

Мотивация к учебной деятельности

Приветствует обучающихся, настраивает на работу,

Создаёт рабочий настрой на урок.

«Слушаю – забываю.

Смотрю – запоминаю.

Делаю - понимаю»

Приветствуют учителя, настраиваются на урок, читают эпиграф.

Коммуникативные: планирование учебного сотрудничества с учителем и сверстниками.

Актуализация знаний и пробное учебное действие

1. Актуализирует учебное содержание, необходимое для восприятия нового материала.

  1. Что такое окружность?

    Какие элементы окружности вам известны?

    Укажите все радиусы на рисунке.

    Что такое хорда и изображена ли она на слайде?

    А что называется диаметром окружности? И сколько диаметров вы видите на рисунке?

    Как называются прямые а и в?

    В каких единицах измерения мы находим величину радиуса, хорды, диаметра?

Отвечают на вопросы учителя; распознают перечисленные элементы на чертеже

геометрическая фигура, состоящая из всех точек плоскости, расположенных на заданном расстоянии от данной точки

радиус, хорда, диаметр, дуги

ОС, ОD , ОТ

отрезок, соединяющий любые две точки на окружности; КМ

это хорда, проходящая через центр окружности

секущая и касательная

в единицах длины, т. е. в см, дм и тд.

Регулятивные УУД :

Уметь проговаривать последовательность действий на уроке.

Познавательные УУД

Уметь преобразовывать информацию из одной формы в другую.

Коммуникативное УУД:

Выявление места и причины затруднения

Создаёт проблемную ситуацию, вызывающую у учеников затруднения и формирующую потребность обсуждения. Организует и регулирует работу учащихся по определению темы урока.

Назовите несколько дуг, изображенных на слайде.

Действительно, любые две точки делят окружность на несколько частей. Сколько дуг при этом образуется?

Для того чтобы различать эти дуги вводят дополнительные точки на окружности, например M и N . Тогда в нашем случае мы получим дуги ͝͝ AMB и ͝ ANB .

А в каких единицах измеряется дуга окружности?

Что еще в геометрии измеряется с помощью градусов?

Значит, существует связь между углами и дугами окружности?! Но какая? Давайте в этом попробуем сегодня разобраться.

Какой же будет тема урока?

Отвечают на вопросы учителя, анализируют, приходят к выводу о связи между углами и дугами окружности.

Формулируют тему и цели урока, записывают в тетрадь тему.

Познавательные:

самостоятельное выделение-формулирование познавательной цели;

Регулятивные УУД :

Уметь проговаривать последовательность действий на уроке, принимать решение в проблемной ситуации.

Коммуникативное УУД:

Уметь оформлять свои мысли в устной форме.

Построение проекта выхода из затруднения

На какие две группы можно разделить все рисунк?

Почему вы рисунки 1, 5 и 6 поместили в одну группу?

Какой угол называется центральным?

С новым видом углов познакомились, но связь между градусной между градусной мерой углов и градусной мерой дуги окружности еще не нашли. Какую же задачу поставим перед собой?

Организует поиск решения поставленных задач.

Рассмотрите рисунки и выскажите гипотезу о связи градусной меры дуги окружности и градусной меры центрального угла.

Отвечают на вопросы учителя, классифицируют углы.Пытаются сформулировать определение центрального угла.

Формулируют задачи урока: найти связь между центральным углом и дугой окружности.

Выполняют практическую работу.

Формулируют гипотезу нахождения дуги окружности:

«Градусная мера дуги окружности равна градусной мере центрального угла».

Познавательные:

самостоятельное формулирование определений понятий, задач урока;

Логические (подведение под понятие, построение логической цепи рассуждений).

логические- формулирование проблемы;

Коммуникативные УУД:

Уметь отстаивать точку зрения, аргументировать, принимать точку зрения других.

Реализация построенного проекта

Контролирует создание учащимися способов нахождения градусной меры дуги окружности в трех случаях:

А) дуга меньше полуокружности

Б) дуга является полуокружностью

В) дуга больше полуокружности

Подтверждают выдвинутую гипотезу, рассматривают все возможные случаи нахождения градусной меры дуги окружности

Коммуникативные УУД : постановка вопросов, инициативное сотрудничество, умеют принимать точку зрения других;

Познавательные УУД: самостоятельное решение проблемы, построение логической цепи рассуждений;

Регулятивные УУД: планирование, прогнозирование.

Первичное закрепление с комментированием во внешней речи

Установление правильности и осознанности изучения темы.

Выявление пробелов первичного осмысления изученного материала, коррекция выявленных пробелов, обеспечение закрепления в памяти детей знаний и способов действий, которые им необходимы для самостоятельной работы по новому материалу.

Устно решают задачи по готовым чертежам

Регулятивные УУД : волевая саморегуляция.

Познавательные УУД: выбор наиболее эффективных способов решения задач.

Личностные УУД: самоопределение, умеют принимать точку зрения другого.

Самостоятельная работа с самопроверкой по эталону

Проводит самостоятельную работу с самопроверкой.

Выполняют задания в тетрадях, по окончанию проверяют своё решение по эталону.

Регулятивные УУД :

Уметь выполнять работу по предложенному плану. Уметь вносить необходимые коррективы в действие после его завершения на основе его оценки и учёта характера сделанных ошибок.

Личностные УУД:

Включение в систему знаний и повторение

Организует поиск решения задачи.

Контролирует выполнение составленного учащимися плана решения.

Создают алгоритм решения задачи и реализуют его в тетрадях.

Познавательные УУД:

делают предположения об информации, нужной для решения учебной задачи;

Регулятивные УУД :

Уметь составлять алгоритм решения предложенной задачи; выполнять работу по намеченному плану. Личностные УУД:

Способность к самооценке на основе критерия успешности учебной деятельности.

Рефлексия учебной деятельности на уроке