Какое из уравнений имеет бесчисленное множество корней. Уравнение и его корни: определения, примеры. Что такое корень уравнения

Страница 2

Построить график уравнения х+у=3 и с помощью графика узнать несколько решений этого уравнения.

Далее внимание учащихся обращается на то, что график линейного уравнения с двумя переменными с двумя переменными проще строить, если уравнение преобразовано к виду y=kx+b, для которого употребляется термин «линейная функция». Позднее им сообщается, что существуют и другие функции, например у=х2 (ее изучению посвящена глава 7).

В учебнике вводятся теоремы без доказательства, например:

Теорема 2. Графиком линейной функции y=kx+b является прямая.

Теорема 4. Прямая, служащая графиком линейной функции y=kx+b, параллельна прямой, служащей графиком прямой пропорциональности y=kx.

С квадратичной функцией учащиеся в учебниках Ш.А. Алимова впервые сталкиваются в 8 классе.

В §35 учащиеся знакомятся с определением квадратичной функции. Даются примеры из жизни, где имеет место быть квадратичная функция. Например, зависимость площади квадрата от его стороны является примером функции y=x2.

В §36 предлагается рассмотреть функцию y=x2, т.е. квадратичную функцию y=ax2+bx+c при, а=1, b=0, с=0.

Для построения функции составляется таблица, а затем точки отмечаются на координатной плоскости и соединяются. График функции y=x2 называется параболой.

После чего выясняются некоторые свойства функции y=x2.

В §37 учащимся предлагается построить график функции y=ax2. Сравнивается графики функций y=ax2 и y=x2. Говорят, что график функции y=аx2 получается растяжением графика функции y=x2 от оси Ох вдоль оси Оу в а раз.

Рассматриваются свойства функции y=ax2, где а¹0

1) если а>0, то функция y=ax2 принимает положительные значения при х¹0;

если а<0, то функция y=ax2 принимает отрицательные значения при х¹0;

2) Парабола y=ax2 симметрична относительно оси ординат;

3) Если а>0, то функция y=ax2 возрастает при х³0 убывает и при х£0;

Если а<0, то функция y=ax2 убывает при х³0 и возрастает при х£0.

В §38 автор предлагает построить график квадратичной функции. Для этого предлагается использовать метод выделения полного квадрата (получили у=(х+т)2+п), а затем сравнить полученный график с графиком функции у=х2. Делается вывод что мы получаем параболу сдвинутую на т единиц по оси Ох и на п единиц по оси Оу.

В §39 приводится алгоритм построения графика любой квадратичной функции y=ax2+bx+c:

Построить вершину параболы (х0, у0), вычислив х0, у0 по формулам .

Провести через вершину параболы прямую параллельную оси ординат, - ось симметрии параболы.

Найти нули функции, если они есть, и построить на оси абсцисс соответствующие точки параболы.

Построить две какие-то точки параболы, симметричные относительно ее оси. Для этого надо взять две точки на оси, симметричные относительно точки х0 (х0 ¹ 0), и вычислить соответствующие значения функции (эти значения одинаковы). Например, можно построить точки параболы с абсциссами х=0 и х=2х0 (ординаты этих точек равны с)

Провести через построенные точки параболу.

При изучении темы формируются умения определять по графику промежутки возрастания функции, промежутки знакопостоянства, нули функции. Нахождение наибольшего и наименьшего значений функции и решение задач с их применением не входит в число обязательных.

В заключении, учащимся предоставляется возможность еще раз повторить решение систем двух уравнений, одно из которых первой, а другое второй степени.

В учебниках Ю.Н. Макарычева и др. с функцией y=x2 учащиеся впервые сталкиваются в 7 классе. Все сведения рассматриваются в этом параграфе аналогично учебнику Ш.А. Алимова за 8 класс.


Получив общее представление о равенствах , и познакомившись с одним из их видов - числовыми равенствами , можно начать разговор еще об одном очень важном с практической точки зрения виде равенств - об уравнениях. В этой статье мы разберем, что такое уравнение , и что называют корнем уравнения. Здесь мы дадим соответствующие определения, а также приведем разнообразные примеры уравнений и их корней.

Навигация по странице.

Что такое уравнение?

Целенаправленное знакомство с уравнениями обычно начинается на уроках математики во 2 классе. В это время дается следующее определение уравнения :

Определение.

Уравнение – это равенство, содержащее неизвестное число, которое надо найти.

Неизвестные числа в уравнениях принято обозначать с помощью маленьких латинских букв, например, p , t , u и т.п., но наиболее часто используются буквы x , y и z .

Таким образом, уравнение определяется с позиции формы записи. Иными словами, равенство является уравнением, когда подчиняется указанным правилам записи – содержит букву, значение которой нужно найти.

Приведем примеры самых первых и самых простых уравнений. Начнем с уравнений вида x=8 , y=3 и т.п. Чуть сложнее выглядят уравнения, содержащие вместе с числами и буквами знаки арифметических действий, например, x+2=3 , z−2=5 , 3·t=9 , 8:x=2 .

Разнообразие уравнений растет после знакомства со – начинают появляться уравнения со скобками, например, 2·(x−1)=18 и x+3·(x+2·(x−2))=3 . Неизвестная буква в уравнении может присутствовать несколько раз, к примеру, x+3+3·x−2−x=9 , также буквы могут быть в левой части уравнения, в его правой части, или в обеих частях уравнения, например, x·(3+1)−4=8 , 7−3=z+1 или 3·x−4=2·(x+12) .

Дальше после изучения натуральных чисел происходит знакомство с целыми, рациональными, действительными числами, изучаются новые математические объекты: степени, корни, логарифмы и т.д., при этом появляются все новые и новые виды уравнений, содержащие эти вещи. Их примеры можно посмотреть в статье основные виды уравнений , изучающиеся в школе.

В 7 классе наряду с буквами, под которыми подразумевают некоторые конкретные числа, начинают рассматривать буквы, которые могут принимать различные значения, их называют переменными (смотрите статью ). При этом в определение уравнения внедряется слово «переменная», и оно становится таким:

Определение.

Уравнением называют равенство, содержащее переменную, значение которой нужно найти.

Например, уравнение x+3=6·x+7 – уравнение с переменной x , а 3·z−1+z=0 – уравнение с переменной z .

На уроках алгебры в том же 7 классе происходит встреча с уравнениями, содержащими в своей записи не одну, а две различные неизвестные переменные. Их называют уравнениями с двумя переменными. В дальнейшем допускают присутствие в записи уравнений трех и большего количества переменных.

Определение.

Уравнения с одной, двумя, тремя и т.д. переменными – это уравнения, содержащие в своей записи одну, две, три, … неизвестные переменные соответственно.

Например, уравнение 3,2·x+0,5=1 – это уравнение с одной переменной x , в свою очередь уравнение вида x−y=3 – это уравнение с двумя переменными x и y . И еще один пример: x 2 +(y−1) 2 +(z+0,5) 2 =27 . Понятно, что такое уравнение – это уравнение с тремя неизвестными переменными x , y и z .

Что такое корень уравнения?

С определением уравнения непосредственно связано определение корня этого уравнения. Проведем некоторые рассуждения, которые нам помогут понять, что такое корень уравнения.

Допустим, перед нами находится уравнение с одной буквой (переменной). Если вместо буквы, входящей в запись этого уравнения, подставить некоторое число, то уравнение обратиться в числовое равенство. Причем, полученное равенство может быть как верным, так и неверным. Например, если вместо буквы a в уравнение a+1=5 подставить число 2 , то получится неверное числовое равенство 2+1=5 . Если же мы в это уравнение подставим вместо a число 4 , то получится верное равенство 4+1=5 .

На практике в подавляющем большинстве случаев интерес представляют такие значения переменной, подстановка которых в уравнение дает верное равенство, эти значения называют корнями или решениями данного уравнения.

Определение.

Корень уравнения – это такое значение буквы (переменной), при подстановке которого уравнение обращается в верное числовое равенство.

Отметим, что корень уравнения с одной переменной также называют решением уравнения. Другими словами, решение уравнения и корень уравнения – это одно и то же.

Поясним это определение на примере. Для этого вернемся к записанному выше уравнению a+1=5 . Согласно озвученному определению корня уравнения, число 4 есть корень этого уравнения, так как при подстановке этого числа вместо буквы a получаем верное равенство 4+1=5 , а число 2 не является его корнем, так как ему отвечает неверное равенство вида 2+1=5 .

На этот момент возникает ряд естественных вопросов: «Любое ли уравнение имеет корень, и сколько корней имеет заданное уравнение»? Ответим на них.

Существуют как уравнения, имеющие корни, так и уравнения, не имеющие корней. Например, уравнение x+1=5 имеет корень 4 , а уравнение 0·x=5 не имеет корней, так как какое бы число мы не подставили в это уравнение вместо переменной x , мы получим неверное равенство 0=5 .

Что касается числа корней уравнения, то существуют как уравнения, имеющие некоторое конечное число корней (один, два, три и т.д.), так и уравнения, имеющие бесконечно много корней. Например, уравнение x−2=4 имеет единственный корень 6 , корнями уравнения x 2 =9 являются два числа −3 и 3 , уравнение x·(x−1)·(x−2)=0 имеет три корня 0 , 1 и 2 , а решением уравнения x=x является любое число, то есть, оно имеет бесконечное множество корней.

Пару слов стоит сказать о принятой записи корней уравнения. Если уравнение не имеет корней, то обычно так и пишут «уравнение не имеет корней», или применяют знак пустого множества ∅. Если уравнение имеет корни, то их записывают через запятую, или записывают как элементы множества в фигурных скобках. Например, если корнями уравнения являются числа −1 , 2 и 4 , то пишут −1 , 2 , 4 или {−1, 2, 4} . Допустимо также записывать корни уравнения в виде простейших равенств. Например, если в уравнение входит буква x , и корнями этого уравнения являются числа 3 и 5 , то можно записать x=3 , x=5 , также переменной часто добавляют нижние индексы x 1 =3 , x 2 =5 , как бы указывая номера корней уравнения. Бесконечное множество корней уравнения обычно записывают в виде , также при возможности используют обозначения множеств натуральных чисел N , целых чисел Z , действительных чисел R . Например, если корнем уравнения с переменной x является любое целое число, то пишут , а если корнями уравнения с переменной y является любое действительное число от 1 до 9 включительно, то записывают .

Для уравнений с двумя, тремя и большим количеством переменных, как правило, не применяют термин «корень уравнения», в этих случаях говорят «решение уравнения». Что же называют решением уравнений с несколькими переменными? Дадим соответствующее определение.

Определение.

Решением уравнения с двумя, тремя и т.д. переменными называют пару, тройку и т.д. значений переменных, обращающую это уравнение в верное числовое равенство.

Покажем поясняющие примеры. Рассмотрим уравнение с двумя переменными x+y=7 . Подставим в него вместо x число 1 , а вместо y число 2 , при этом имеем равенство 1+2=7 . Очевидно, оно неверное, поэтому, пара значений x=1 , y=2 не является решением записанного уравнения. Если же взять пару значений x=4 , y=3 , то после подстановки в уравнение мы придем к верному равенству 4+3=7 , следовательно, эта пара значений переменных по определению является решением уравнения x+y=7 .

Уравнения с несколькими переменными, как и уравнения с одной переменной, могут не иметь корней, могут иметь конечное число корней, а могут иметь и бесконечно много корней.

Пары, тройки, четверки и т.д. значений переменных часто записывают кратко, перечисляя их значения через запятую в круглых скобках. При этом записанные числа в скобках соответствуют переменным в алфавитном порядке. Поясним этот момент, вернувшись к предыдущему уравнению x+y=7 . Решение этого уравнения x=4 , y=3 кратко можно записать как (4, 3) .

Наибольшее внимание в школьном курсе математики, алгебры и начал анализа уделяется нахождению корней уравнений с одной переменной. Правила этого процесса мы очень подробно разберем в статье решение уравнений .

Список литературы.

  • Математика . 2 кл. Учеб. для общеобразоват. учреждений с прил. на электрон. носителе. В 2 ч. Ч. 1 / [М. И. Моро, М. А. Бантова, Г. В. Бельтюкова и др.] - 3-е изд. - М.: Просведение, 2012. - 96 с.: ил. - (Школа России). - ISBN 978-5-09-028297-0.
  • Алгебра: учеб. для 7 кл. общеобразоват. учреждений / [Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова]; под ред. С. А. Теляковского. - 17-е изд. - М. : Просвещение, 2008. - 240 с. : ил. - ISBN 978-5-09-019315-3.
  • Алгебра: 9 класс: учеб. для общеобразоват. учреждений / [Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова]; под ред. С. А. Теляковского. - 16-е изд. - М. : Просвещение, 2009. - 271 с. : ил. - ISBN 978-5-09-021134-5.

В алгебре существует понятие двух видов равенств - тождества и уравнения. Тождества - это такие равенства, которые выполнимы при любых значениях букв, в них входящих. Уравнения - это тоже равенства, но выполнимы они лишь при некоторых значениях входящих в них букв.

Буквы по условию задачи обычно бывают неравноправными. Это значит, что одни из них могут принимать любые допустимые значения, называемые коэффициентами (или параметрами), другие же - их называют неизвестными - принимают значения, которые необходимо найти в процессе решения. Как правило, неизвестные величины обозначают в уравнениях буквами, последними в (x.y.z и т.д.), либо такими же буквами, но с индексом (х 1 ,х 2 , и т.д.), а известные коэффициенты - первыми буквами того же алфавита.

По количеству неизвестных выделяют уравнения с одним, двумя и несколькими неизвестными. Таким образом, все значения неизвестных, при которых решаемое уравнение превращается в тождество, называются решениями уравнений. Уравнение можно считать решенным в том случае, если найдены все его решения или доказано, что оно таковых не имеет. Задание «решить уравнение» на практике встречается часто и означает, что нужно отыскать корень уравнения.

Определение : корнями уравнения называются те значения неизвестных из области допустимых, при которых решаемое уравнение превращается в тождество.

Алгоритм решения абсолютно всех уравнений одинаков, и смысл его заключается в том, чтобы с помощью математических преобразований данное выражение привести к более простому виду.
Уравнения, которые имеют одинаковые корни, в алгебре называются равносильными.

Простейший пример: 7х-49=0, корень уравнения х=7;
х-7=0, аналогично, корень х=7, следовательно, уравнения равносильные. (В частных случаях равносильные уравнения могут совсем не иметь корней).

Если корень уравнения одновременно является корнем другого, более простого уравнения, полученного из исходного путем преобразований, то последнее называется следствием предыдущего уравнения.

Если их двух уравнений одно является следствием другого, то они считаются равносильными. Еще их называют эквивалентными. Приведенный выше пример это иллюстрирует.

Решение даже самых простых уравнений на практике нередко вызывает сложности. В результате решения можно получить один корень уравнения, два и более, даже бесконечное количество - зависит это от вида уравнений. Есть и такие, у которых нет корней, они называются неразрешимыми.

Примеры:
1) 15х -20=10; х=2. Это единственный корень уравнения.
2) 7х - y=0. Уравнение имеет бесконечное множество корней, так как у каждой переменной может быть бесчисленное количество значений.
3) х 2 = - 16. Число, возведенное во вторую степень, всегда дает положительный результат, поэтому невозможно отыскать корень уравнения. Это и есть одно из неразрешимых уравнений, о которых говорилось выше.

Правильность решения проверяется подстановкой найденных корней вместо букв и решением получившегося примера. Если тождество соблюдается, решение верное.