Влияние географических факторов на уровень загрязнения атмосферы. Уровни загрязнения атмосферного воздуха. Справка. Загрязнения атмосферного воздуха

Уровень приземной концентрации вредных веществ в атмосфере от стационарных и подвижных объектов промышленности и транс-порта при одном и том же массовом выбросе может существенно меняться в атмосфере в зависимости от техногенных и природ-но-климатических факторов.

К техногенным факторам относятся:

· интенсивность и объем выброса вредных веществ;

· высота расположения устья источника выбросов от по-верхности земли;

· размер территории, на которой осуществляются загрязнения;

· уровень техногенного освоения региона.

К природно-климатическим факторам относятся:

· характеристика циркуляци-онного режима;

· термическая устойчивость атмосферы;

· атмосферное давление, влажность воздуха, температурный режим;

· температур-ные инверсии, их повторяемость и продолжительность;

· скорость ветра, повторяемость застоев воздуха и слабых ветров (0 – 1 м/с);

· продолжительность туманов, рельеф местности, геологическое строение и гидрогеология района;

· почвенно-растительные условия (тип почв, водопроницаемость, пористость, гранулометрический со-став почв, эродированность почвенного покрова, состояние расти-тельности, состав пород, возраст, бонитет);

· фоновые значения пока­зателей загрязнения природных компонентов атмосферы, в том числе существующих уровней шума;

· состояние животного мира, в том числе ихтиофауны.

В природной среде непрерывно меняются температура воздуха, скорость, сила и направление ветра, поэтому распространение энер­гетических и ингредиентных загрязнений происходит в постоянно новых условиях. Неблагоприятна следующая синоптическая ситуация – антициклон с безградиентным полем изобар в межгор­ных замкнутых котловинах. Процессы разложения токсических ве­ществ в высоких широтах при малых значениях солнечной радиации замедляются. Осадки и высокие температуры, наоборот, способст­вуют интенсивному разложению токсичных веществ.

В Москве, например, неблаго­приятные по условиям загрязнения воздуха метеорологические условия, связанные с застоями воздуха и ин­версиями, создаются летом, преиму­щественно в ночные часы при слабых северных и восточных ветрах.

При общей закономерности сни­жения уровня загрязнения по мере удаления от дороги снижение уров­ня шума происходит за счет рассеи­вания звуковой энергии в атмосфере и поглощения ее поверхностным по­кровом. Рассеивание отработавших газов зависит от направления и ско­рости ветра (рис. 5.1).

Более высокая температура у поверхности земли в дневное время заставляет воздух подниматься вверх, что приводит к дополнитель­ной турбулентности.


Ночью температура у поверхности земли более низкая, поэтому турбулентность уменьшается. Это явление служит одной из причин лучшего распространения звука ночью по сравне­нию с дневным временем. Рассеивание отработавших газов, наобо­рот, уменьшается.

Способность земной поверхности поглощать или излучать теп­лоту влияет на вертикальное распределение температуры в призем­ном слое атмосферы и приводит к температурной инверсии (откло­нению от адиабатности). Повышение температуры воздуха с высотой приводит к тому, что вредные выбросы не могут подни­маться выше определенного потолка. В инверсионных условиях ос­лабляется турбулентный обмен, ухудшаются условия рассеивания вредных выбросов в приземном слое атмосферы. Для приземной ин­версии особое значение имеет повторяемость высот верхней границы, для приподнятой инверсии – повторяемость нижней границы.

Сочетание природных факторов, определяющих возможный уровень загрязнения атмосферы, характеризуется:

· метеорологиче­ским и климатическим потенциалом загрязнения атмосферы;

· высотой слоя перемешивания;

· повторяемостью приземных и приподнятых инверсий, их мощностью, интенсивностью;

· повторяе­мостью застоев воздуха, штилевых слоев до различных высот.

Падение концентраций вредных веществ в атмосфере происхо­дит не только вследствие разбавления выбросов воздухом, но и из-за постепенного самоочищения атмосферы. В процессе самоочище­ния атмосферы происхо­дит:

1) седиментация, т.е. выпадение выбросов с низкой реакционной способностью (твердых час­тиц, аэрозолей) под дей­ствием силы тяжести;

1) нейтрализация и связывание газообразных выбросов в открытой атмосфере под действием солнечной радиации или компонентами биоты.

Определенный потенциал самовосстановления свойств окружающей среды, в том числе и очищения атмосферы, связан с поглощением водными поверхностями до 50 % природных и техноген-ных выбросов СО 2 . В водоемах растворяются и другие газообраз-ные загрязнители воздуха. То же происходит на поверхности зеле-ных насаждений: 1 га городских зеленых насаждений поглощает в течение часа такое же количество СО 2 , которое выдыхают 200 чело-век.

Химические элементы и соединения, содержащиеся в атмосфере, поглощают часть соединений серы, азота, углерода. Гнилостные бактерии, содержащиеся в почве, разлагают органические остатки, возвращая CO 2 в атмосферу. На рис. 5.2 приведена схема загрязне-ния среды канцерогенными полициклическими ароматическими уг-леводородами (ПАУ), содержащимися в выбросах транспортных средств, объектов транспортной инфраструктуры, и ее очищения от этих веществ в компонентах окружающей среды.

Загрязнение атмосферного воздуха- любое изменение его состава и свойств, которое оказывает негативное воздействие на здоровье человека и животных, состояние растений и экосистем. Загрязнение атмосферного воздуха одна из самых значительных проблем современности

Главные загрязнители (поллютанты) атмосферного воздуха, образующиеся в процессе производственной и иной деятельности человека - диоксид серы, оксиды азота, оксид углерода и твердые частицы . На их долю приходится около 98% в общем объеме выбросов вредных веществ. Помимо главных загрязнителей в атмосфере городов и поселков наблюдается еще более 70 наименований вредных веществ, среди которых -формальдегид, фтористый водород, соединения свинца, аммиак, фенол, бензол, сероуглерод и др . Однако именно концентрации главных загрязнителей (диоксид серы и др.) наиболее часто превышают допустимые уровни.

выброс в атмосферу четырех главных загрязнителей (поллютантов) атмосферы- выбросы в атмосферу диоксида серы, оксидов азота, оксида углерода и углеводородов . Кроме указанных главных загрязнителей в атмосферу попадает много других очень опасных токсичных веществ:свинец, ртуть, кадмий и другие тяжелые металлы (источники выброса: автомобили, плавильные заводы и др.);углеводороды (CnHm), среди них наиболее опасен бенз(а)пирен, обладающий канцерогенным действием (выхлопные газы, топка котлов и др.), альдегиды, и в первую очередьформальдегид, сероводород, токсичные летучие растворители (бензины, спирты, эфиры) и др.

Наиболее опасное загрязнение атмосферы - радиоактивное. В настоящее время оно обусловлено в основном глобально распределенными долгоживущими радиоактивными изотопами - продуктами испытания ядерного оружия, проводившихся в атмосфере и под землей. Приземный слой атмосферы загрязняют также выбросы в атмосферу радиоактивных веществ с действующих АЭС в процессе их нормальной эксплуатации и другие источники.

Еще одной формой загрязнения атмосферы является локальное избыточное поступление тепла от антропогенных источников. Признаком теплового (термического) загрязнения атмосферы служат так называемые термические зоны, например, «остров тепла» в городах, потепление водоемов и.т. п.

13. Экологические последствия глобального загрязнения атмосферы.

Парниковый эффект – подъем температуры на поверхности планеты в результате тепловой энергии, которая появляется в атмосфере из-за нагревания газов. Основные газы, которые ведут к парниковому эффекту на Земле – это водяные пары и углекислый газ.

Явление парникового эффекта позволяет поддерживать на поверхности Земли температуру, при которой возможно возникновение и развитие жизни. Если бы парниковый эффект отсутствовал, средняя температура поверхности земного шара была бы значительно ниже, чем она есть сейчас. Однако при повышении концентрации парниковых газов увеличивается непроницаемость атмосферы для инфракрасных лучей, что приводит к повышению температуры Земли.

Озоновый слой.

В 20 - 50 километрах над поверхностью Земли в атмосфере находится слой озона. Озон - это особая форма кислорода. Большинство молекул кислорода воздуха состоит из двух атомов. Молекула же озона состоит из трех атомов кислорода. Озон образуется под действием солнечного света. При столкновении фотонов ультрафиолетового света с молекулами кислорода от них отщепляется атом кислорода, который, присоединившись к другой моле куле 02, образует Оз (озон). Озоновый слой атмосферы очень тонок. Если всем имеющимся в наличии озоном атмосферы равномерно покрыть участок площадью в 45 квадратных километров, то получится слой толщиной в 0,3 сантиметра. Немного озона проникает с потоками воздуха в нижние слои атмосферы. Когда лучи света реагируют с веществами, содержащимися в выхлопных газах и промышленных дымах, тоже образуется озон.

Кислотные дожди - это следствие загрязнения воздуха. Дым, образующийся при сжигании угля, нефти и бензина, содержит газы - двуокись серы и двуокись азота. Эти газы попадают в атмосферу, где растворяются в капельках воды, образуя слабые растворы кислот, которые затем выпадают на землю с дождем. Кислотные дожди вызывают гибель рыбы и наносят ущерб лесам в Северной Америке и Европе. Они также портят посевы сельскохозяйственных культур и даже воду, которую мы пьем.

Растениям, животным и зданиям кислотные дожди наносят вред. Воздействие их особенно ощутимо вблизи городов и промышленных зон. Ветер переносит облака с капельками воды, в которых растворены кислоты, на большие расстояния, поэтому кислотные дожди могут выпадать за тысячи километров от того места, где первоначально зародились. Например, большинство кислотных дождей, выпадающих в Канаде, вызвано дымом заводов и электростанций США. Последствия кислотных дождей вполне понятны, однако механизма их возникновения в точности никто не знает.

14 вопрос Изложенные принципы формирования и анализа различных форрм экологического риска окружающей среды для здоровья населения воплощаются в нескольких взаимоувязанных этапах : 1. Идентификация риска по отдельным видам промышленных и агропроизводственных нагрузок с выделением в их структуре химических и физических факторов по уровню экологической безопасности и токсичности. 2. Оценка реального и потенциального воздействия токсических веществ на человека по отдельным территориям, с учетом комплекса загрязняющих веществ и природных факторов. Особое значение придается сложившейся плотности сельского населения и численности городских поселений. 3. Выявление количественных закономерностей реакции человеческой популяции (разных возрастных когорт) на определенный уровень воздействия. 4. Экологический риск рассматривается в качестве одной из важнейших компонент специальных модулей геоинформационной системы. В таких модулях формируются проблемные медико-экологические ситуации. Блоки ГИС включают информацию о существующих, планируемых и предполагаемых изменениях в структуре территориально- производственных комплексов. Информамционная база такого содержания необходима для выполнения соответствующего моделирования. 5. Характеристика риска совокупного воздействия природных и антропогенных факторов на здоровье населения. 6. Выявление пространственных сочетаний природных и антропогенных факторов, что может способствовать более детальному их прогнозированию и анализу возможной динамики локальных и площадных комбинаций риска на региональном уровне. 7. Дифференциация территорий по уровням и формам экологического риска и выделение медико-экологических районов по региональным уровням антропогенного риска. При оценке антропогенного рискка учитывается комплекс приоритетных токсикантов и других антропогенных факторов.

15вопрос СМОГ Смог (англ. smog, от smoke - дым и fog - туман), сильное загрязнение воздуха в больших городах и промышленных центрах. Смог бывает следующих типов: Влажный смог лондонского типа - сочетание тумана с примесью дыма и газовых отходов производства. Ледяной смог аляскинского типа - смог, образующийся при низких температурах из пара отопительных систем и бытовых газовых выбросов. Радиационный туман - туман, который появляется в результате радиационного охлаждения земной поверхности и массы влажного приземного воздуха до точки росы. Обычно радиационный туман возникает ночью в условиях антициклона при безоблачной погоде и легком бризе. Часто радиационный туман возникает в условиях температурной инверсии, препятствующей подъему воздушной массы. В промышленных районах может возникнуть крайняя форма радиационного тумана - смог. Сухой смог лос-анджелесского типа - смог, возникающий в результате фото- химических реакций, которые происходят в газовых выбросах под действием солнечной радиации; устойчивая синеватая дымка из едких газов без тумана. Фотохимический смог - смог, основной причиной возникновения которого считаются автомобильные выхлопы. Автомобильные выхлопные газы и загрязняющие выбросы предприятий в условиях инверсии температуры вступают в химическую реакцию с солнечным излучением, образуя озон. Фотохимический смог может вызвать поражение дыхательных путей, рвоту, раздражение слизистой оболочки глаз и общую вялость. В ряде случаев в фотохимическом смоге могут присутствовать соединения азота, которые повышают вероятность возникновения раковых заболеваний. Фотохимический смог ПОДРОБНО: Фотохимический туман представляет собой многокомпонентную смесь газов и аэрозольных частиц первичного и вторичного происхождения. В состав основных компонентов смога входят озон, оксиды азота и серы, многочисленные органические соединения перекисной природы, называемые в совокупности фотооксидантами. Фотохимический смог возникает в результате фотохимических реакций при определенных условиях: наличии в атмосфере высокой концентрации оксидов азота, углеводородов и других загрязнителей, интенсивной солнечной радиации и безветрие или очень слабого обмена воздуха в приземном слое при мощной и в течение не менее суток повышенной инверсии. Устойчивая безветренная погода, обычно сопровождающаяся инверсиями, необходима для создания высокой концентрации реагирующих веществ. Такие условия создаются чаще в июне - сентябре и реже зимой. При продолжительной ясной погоде солнечная радиация вызывает расщепление молекул диоксида азота с образованием оксида азота и атомарного кислорода. Атомарный кислород с молекулярным кислородом дают озон. Казалось бы, последний, окисляя оксид азота, должен снова превращаться в молекулярный кислород, а оксид азота - в диоксид. Но этого не происходит. Оксид азота вступает в реакции с олефинами выхлопных газов, которые при этом расщепляются по двойной связи и образуют осколки молекул, и избыток озона. В результате продолжающейся диссоциации новые массы диоксида азота расщепляются и дают дополнительные количества озона. Возникает циклическая реакция, в результате которой в атмосфере постепенно накапливается озон. Этот процесс в ночное время прекращается. В свою очередь озон вступает в реакцию с олефинами. В атмосфере концентрируются различные перекиси, которые в сумме и образуют характерные для фотохимического тумана оксиданты. Последние являются источником так называемых свободных радикалов, отличающихся особой реакционной способностью. Такие смоги - нередкое явление над Лондоном, Парижем, Лос - Анжелесом, Нью - Йорком и другими городами Европы и Америки. По своему физиологическому воздействию на организм человека они крайне опасны для дыхательной и кровеносной систем и часто бывают причиной преждевременной смерти городских жителей с ослабленным здоровьем. Смог наблюдается обычно при слабой турбулентности (завихрение воздушных потоков) воздуха, и следовательно, при устойчивом распределении температуры воздуха по высоте, особенно при инверсиях температуры, при слабом ветре или штиле. Инверсии температуры в атмосфере, повышение температуры воздуха с высотой вместо обычного для тропосферы её убывания. Инверсия температуры встречаются и у земной поверхности (приземные инверсии температуры.), и в свободной атмосфере. Приземные инверсия температуры чаще всего образуются в безветренные ночи (зимой иногда и днём) в результате интенсивного излучения тепла земной поверхностью, что приводит к охлаждению как её самой, так и прилегающего слоя воздуха. Толщина приземных инверсия температуры составляет десятки - сотни метров. Увеличение температуры в инверсионном слое колеблется от десятых долей градусов до 15-20 °С и более. Наиболее мощны зимние приземные инверсия температуры в Восточной Сибири и в Антарктиде. В тропосфере, выше приземного слоя, инверсия температуры чаще образуются в антициклона

16вопрос В атмосферном воздухе измерялись концентрации веществ, определяемые приоритетным списком вредных примесей, установленным согласно "Временных рекомендаций для составления приоритетного списка вредных примесей, подлежащих контролю в атмосфере", Ленинград, 1983 г. Измерялись концентрации 19 загрязняющих веществ: основных (взвешенные вещества, диоксид серы, оксида углерод, диоксид азота), и специфических (формальдегид, фтористые соединения, бенз(а)пирен, металлы, ртуть).

17 вопрос В Казахстане - 7 крупных рек, длина каждой из которых превышает 1000 км. В их числе: река Урал (её верхнее течение располагается на территории России), впадающая в Каспийское море; Сырдарья (её верхнее течение располагается на территории Киргизии, Узбекистана и Таджикистана) - в Аральское море; Иртыш (его верховья в Китае; на территории Казахстана имеет крупные притоки Тобол и Ишим) пересекает республику, и уже на территории России впадает в Обь, текущую в Северный Ледовитый океан; река Или (её верховья располагаются на территории Китая) впадает в озеро Балхаш. В Казахстане много больших и малых озёр. Самые большие среди них - Каспийское море, Аральское море, Балхаш, Алаколь, Зайсан, Тенгиз. К Казахстану относится большая часть северного и половина восточного побережья Каспийского моря. Длина берега Каспийского моря в Казахстане 2340 км. В Казахстане имеется 13 водохранилищ общей площадью 8816 км² и общим объёмом воды 87,326 км³. Страны мира обеспечены водными ресурсами крайне неравномерно. Наиболее обеспечены водными ресурсами следующие страны: Бразилия (8 233 км3), Россия (4 508 км3), США (3 051 км3), Канада (2 902 км3), Индонезия (2 838 км3), Китай (2 830 км3), Колумбия (2 132 км3), Перу (1 913 км3), Индия (1 880 км3), Конго (1 283 км3), Венесуэла (1 233 км3), Бангладеш (1 211 км3), Бирма (1 046 км3).

Степень загрязнения атмосферного воздуха сильно колеблется во времени и пространстве. В одной и той же точке территории в короткие промежутки времени могут появляться относительно высокие концентрации при относительно низких средних уровнях. Чем длительнее время усреднения, тем ниже концентрация. Для гигиенической оценки степени загрязнения атмосферного воздуха имеют значение как средние уровни, определяющие длительное резорбтивное действие загрязнений, так и относительно кратковременные пиковые концентрации, с которыми связано появление запахов, раздражающего действия на слизистые оболочки дыхательных путей и глаза. В связи с этим для гигиенической оценки степени загрязнения воздуха недостаточно знать только концентрацию, а надо установить, за какое время усреднения эта концентрация получена. В нашей стране для характеристики степени загрязнения атмосферы приняты максимальные разовые концентрации, т.е. достоверные максимальные концентрации, появляющиеся в конкретной точке территории за 20-30 минутный период, и среднесуточные, т.е. средняя концентрация за 24ч. Таким образом, характеризуя степень загрязнения атмосферного воздуха, мы используем максимальные разовые или среднесуточные концентрации, что позволяет вести оперативный контроль за загрязнением атмосферного воздуха

Степень загрязнения атмосферного воздуха зависит от множества различных факторов и условий:

1.количества выбросов вредных веществ (различают мощные, крупные, мелкие производства

К мощным источникам загрязнения относятся производства типа металлургических и химических заводов, заводов строительных материалов, тепловые электростанции. Большое количество мелких источников может значительно загрязнять воздух. Чем больше величина выброса в единицу времени, тем больше при прочих равных условиях загрязняющих веществ поступает в воздушный поток и, следовательно, создается в нем более высокая концентрация загрязнений. Прямо пропорциональной зависимости между величиной выброса и концентрацией нет, так как на уровень концентрации загрязнителя оказывают влияние и другие факторы, степень влияния которых в разных случаях бывает различной.

Величина выброса является главным фактором, определяющим уровень приземной концентрации. В связи с этим при гигиенической оценке источников загрязнения атмосферы санитарного врача должна интересовать количественная характеристика каждого компонента выброса. Выражается выброс в единицах на единицу времени (кг/сут, г/с, т/год) или других единицах, например кг/т продукции, мг/м 3 промышленного выброса. В этом случае необходим пересчет на единицу времени с учетом количества получаемой продукции за час, сутки и т.д. или максимальный объем отходящих газов за конкретный временной интервал.

Загрязняющие вещества поступают в атмосферу как организованный или неорганизованный выброс. К организованным выбросам относятся хвостовые газы, абгазы,газы аспирационных и вентиляционных систем. Хвостовые газы образуются в конечной стадии производственного процесса и характеризуются, как правило, сравнительно высокими концентрациями и значительной абсолютной массой загрязняющих веществ. В атмосферу выброс поступает через трубу. Типичным примером хвостовых газов являются дымовые газы котельных и электростанций.

Абгазы образуются в промежуточных стадиях производственного процесса и удаляются специальными абгазовыми линиями. Так как назначение этих технологических линий состоит в выравнивании давления в различных замкнутых аппаратах, сбросе газов при нарушениях технологического процесса и необходимости быстро освободить аппаратуру, абгазы характеризуются периодичностью выброса, небольшим объемом при относительно высоких концентрациях загрязняющих веществ. Особенно много выбрасывается абгазов на предприятиях химической, нефтехимической и нефтеперерабатывающей промышленности.

Газы аспирационных систем образуются в результате работы местной вентиляции из различных укрытий (кожухи, камеры, зонты) и характеризуются относительно высокими концентрациями. Вентиляционные системы часто удаляют воздух из цехов через аэрационные фонари. Вентиляционные выбросы характеризуются огромными объемами и малыми концентрациями загрязняющих веществ, что затрудняет их очистку. В то же время общая масса загрязняющих веществ, поступающих в атмосферу, может быть достаточно большой.

Неорганизованный выброс образуется за счет внецехового оборудования и сооружений и при выполнении наружных работ. К ним относятся погрузочно-разгрузочные работы пылящих и испаряющихся сырьевых материалов и готовой продукции, открытое хранение пылящих материалов и готовой продукции, открытое хранение пылящих материалов и испаряющихся жидкостей, градирни, шламохранилища, отвалы отходов, открытые каналы сточных вод, неплотности стыков и сальников наружных технологических линий и т.д. Особенность таких выбросов состоит в том, что они плохо поддаются количественному учету. В то же время практика подтверждает высокие уровни загрязнения атмосферного воздуха территорий, прилегающих к предприятиям, характеризующимся наличием неорганизованных выбросов.

Классифицировать выбросы на организованные и неорганизованные необходимо и потому, что первые в полном объеме должны учитываться при прогнозировании загрязнения атмосферного воздуха, а санитарный врач как в порядке предупредительного, так и текущего санитарного надзора обязан уметь проверить полноту учета выбросов в расчете. Имеются предпосылки и для учета неорганизованных выбросов в ближайшем будущем.

Для качественной и количественной характеристики выбросов используются прямые и косвенные методы. Прямые методы основаны на измерении концентрации загрязнителя в организованных выбросах и расчета на этой основе массы загрязнителя за единицу времени. В основу косвенных методов положен материальный баланс, учитывающий необходимые сырьевые и образующиеся продукты.

Прямые методы определения выброса используются, как правило, на предприятиях с превалирующим значением организованных выбросов. Эти определения производятся специализированной организацией или лабораторией предприятия. Косвенные методы лучше использовать на предприятиях, характеризующихся и неорганизованными выбросами. Материальный баланс является частью технологического регламента. Прямые и косвенные методы определения выбросов должны использоваться предприятием для инвентаризации источников загрязнения атмосферы.

П.Их химического состава (различают по составу выбросов 5 класса производства по опасности).

Большое влияние на величину выброса оказывает эффективность работы очистных сооружений. Так, снижение эффективности с 98 до 96:, т.е. всего на 2%, увеличивает выброс в 2 раза. В связи с этим при оценке источников загрязнения атмосферы санитарный врач должен знать как проектный, так и реальный коэффициенты очистки и для оценки использовать последний.

Ш.высоты, на которой осуществляются выбросы (низкие, средней высоты, высокие). Под низкими источниками выброса считают те производства, которые осуществляют выбросы из труб, высота которых ниже 50м и под высокими – выше 50м. Нагретыми, называют выбросы, у которых температура газовоздушной смеси выше 50 0 С, при более низкой температуре выбросы считаются холодным.

Чем выше от поверхности земли осуществляется выброс загрязняющих веществ, тем при прочих равных условиях ниже их концентрация в приземном слое. Снижение концентрации с повышением высоты выброса связано с двумя закономерностями распределения загрязнений в факеле: снижением концентрации вследствие увеличения поперечного сечения факела и удалением от его осевой линии, несущей основную массу загрязнений, от которой они распространяются к периферии факела. Имеют значение и более высокие скорости ветра над устьем высокой трубы,так как ослабляется тормозящее влияние поверхности земли. Высокая труба не только снижает уровень приземной концентрации, но и удаляет начало зоны задымления. Вместе с тем следует учитывать, что высокая труба увеличивает радиус задымления, хотя и при более низких концентрациях. Зона максимального загрязнения, хотя и при более низких концентрациях. Зона максимального загрязнения находится в пределах расстояния, равного 10-40 высотам трубы при нагретых высоких выбросах и 5-20 высотам – при холодных и низких. В связи со строительством высоких труб (180-320 м) дальность влияния отдельных источников может составлять 10 км и более. Для высоких источников при отсутствии неорганизованных выбросов имеется зоны переброса, так как точка касания факелом поверхности земли тем дальше, чем выше труба.

1У. Климатогеографических условий, определяющих перенос, рассеивание и превращение выбрасываемых веществ:

2.условий переноса и распространения выбросов в атмосфере (температурной инверсии, барометрического давления в атмосфере и т.д.)

3.интенсивности солнечной радиации, определяющей фотохимические превращения примесей и возникновение вторичных продуктов загрязнения воздуха

4.количества и продолжительности атмосферных осадков, приводящих к вымыванию примесей из атмосферы, а так же от степени влажности воздуха.

При одном и том же абсолютном выбросе степень загрязнения атмосферного воздуха может меняться в зависимости от метеорологических факторов, так как рассеивание выбросов происходит под влиянием турбулентности, т.е. перемешивания различных слое воздуха. Турбулентность связана с притоком тепла, излучаемого солнцем и достигающим земной поверхности, и имеет свои закономерности переноса воздушных масс в зависимости от широты и времени года. Среди метеорологических факторов заслуживают особого рассмотрения направление и скорость ветра, температурная стратификация атмосферы и влажность воздуха.

Вследствие непрерывного изменения направления ветра наблюдательная точка то попадает в факел выброса источника загрязнения, расположенного вблизи этой точки, то выходит из него. Поэтому уровень загрязнения меняется с изменением направления ветра. Эта зависимость имеет важное значение для санитарной практики при решении вопросов размещения промышленных предприятий в плане города и выделении промышленной зоны.

На этой закономерности «поведения» промышленных выбросов в приземном слое атмосферы основаны санитарные требования к функциональному зонированию территории населенных мест с размещением промышленных предприятий подветренно от селитебной территории, т.е. чтобы господствующее направление ветра было с селитебной территории на промышленное предприятие.

Особое значение эта зависимость приобретает в практической деятельности санитарной службы крупных промышленных центров при решении вопроса о ведущих источниках загрязнения. Очень показательна для анализа санитарной ситуации диаграмма, построенная по принципу розы ветров и названная поэтому «роза задымления» (В.А.Рязанов).

Для построения розы задымления необходимо располагать результатами систематических наблюдений за загрязнением атмосферного воздуха не менее чем за год. Все данные разбиваются на группы в соответствии с направлением ветра в период отбора проб. Для каждого направления ветра подсчитываются средние концентрации, по которым в произвольном масштабе строится график. Выступающие вершины графика указывают на основной источник загрязнения воздуха данной территории. Для каждого загрязнителя строится отдельный график. Как пример построения розы задымления приведены в табл.2 и на рис. 1. На основании результатов систематических наблюдений одного из промышленных центров страны. Концентрация загрязнителей в период штилей составляла 0,14 мг/м 3

Таблица 2

Зависимость концентрации сернистого газа от направления ветра

Румб Концентрация,мг/м 3 Румб Концентрация,мг/м 3
С 0,11 Ею 0,06
СВ 0,19 ЮЗ 0,06
В 0,26 З 0,09
ЮВ 0,12 СЗ 0,09

Рис.1 «Роза задымления»

Вершина указывает направление ведущего источника (С-В)

Из приведенных данных видно, что основной источник загрязнения воздуха сернистым газом находится к востоку от изученной территории. На том же принципе основана методика определения фоновых концентраций, но с учетом скорости ветра и по 4 градациям стран света. Определение фоновых концентраций с учетом направления ветра помогает объективно решать вопросы о размещении промышленных предприятий в плане города, т.е. не размещать их в направлениях, ветры которых приносят наивысшие уровни загрязнения.

Если бы концентрации загрязнений зависели только от величины выброса и направления ветра, то они не изменялись бы при неизменном выбросе и направлении ветра. Однако основное значение имеет процесс разбавления выброса атмосферным воздухом, в котором большую роль играет скорость ветра. Чем выше скорость ветра, тем интенсивнее перемешивание выброса с атмосферным воздухом и тем ниже при прочих равных условиях, концентрация загрязнений. Высокие концентрации обнаруживаются в период штиля.

Скорость ветра способствует переносу и рассеиванию примесей, так как с усилением ветра в районе высоких источников возрастает интенсивность перемешивания воздушных слоев. При слабом ветре в районе высоких источников выброса концентрации у земли уменьшаются за счет увеличения подъема факела и уноса примеси вверх.

При сильном ветре подъем примеси уменьшается, но происходит возрастание скорости переноса примеси на значительные расстояния. Максимальные концентрации примеси наблюдаются при некоторой скорости, кот орая называется опасной и зависит от параметров выброса. Для мощных источников выброса с большим перегревом дымовых газов, относительно окружающего воздуха, она составляет 5-7 м/с. Для источников со сравнительно малым объемом выбросов и низкой температурой газов она близка к 1-2 м/с.

Неустойчивость направления ветра способствует усилению рассеивания по горизонтали и концентрации примесей у земли уменьшаются.

Санитарный врач должен использовать эту закономерность. При решении вопросов отвода участка под строительство промышленного предприятия, рассмотрении материалов по реконструкции существующего предприятия важно учитывать как направление, так и скорость ветра, в частности чтобы «опасная» скорость ветра для рассматриваемого источника не совпадала с часто встречающейся в направлении от источника на селитебную территорию.Важно учитывать эту закономерность и при организации лабораторного контроля.

Рассеивающая способность атмосферы зависит от вертикального распределения температуры и скорости ветра. Например, чаще всего неустойчивое состояние атмосферы наблюдается летом в дневное время. При таких условиях у земной поверхности отмечаются большие концентрации

Большое влияние на разбавление промышленных выбросов оказывает т е м п е р а т у р н а я с т р а т и ф и к а ц и я а т м о с ф е р ы. Способность поверхности земли поглощать или излучать тепло влияет на вертикальное распределение температуры в приземном слое атмосферы. В обычных условиях с подъемом вверх температура падает. Этот процесс рассматривается как адиабатический, т.е. протекающий без притока или отдачи тепла: поднимающийся поток воздуха будет охлаждаться за счет увеличения объема вследствие уменьшения давления и, наоборот, опускающийся поток будет нагреваться благодаря увеличению давления. Изменение температуры, выраженное в градусах на каждые 100 м подъема вверх, называется температурным градиентом. При адиабатическом процессе температурный градиент составляет примерно 1 0С.

Бывают периоды, когда с увеличением высоты температура падает быстрее, чем на 1 0 С на 100 м, в результате чего теплые массы воздуха от нагретой солнцем поверхности земли поднимаются на большую высоту, что сопровождается быстрым опусканием холодных потоков воздуха. Такое состояние, относящееся к сверхдиабатическому градиенту температуры, называют конвективным. Оно характеризуется сильным перемешиванием воздуха.

В реальных условиях температура воздуха с высотой не всегда падает и вышележащие слои воздуха могут иметь более высокую температуру, чем нижележащие, т.е. возможно извращение температурного градиента.

Состояние атмосферы с извращенным температурным градиентом носит название температурной инверсии. В периоды инверсий ослабляется турбулентный обмен,в связи в чем ухудшаются условия рассеивания промышленных выбросов, что может приводить к накоплению вредных веществ в приземном слое атмосферы.

Различают приземные и приподнятые инверсии. Приземные инверсии характеризуются извращением температурного градиента у поверхности земли, а приподнятые – появлением более теплого слоя воздуха на каком-либо расстоянии от поверхности земли.

В случае приподнятой инверсии приземные концентрации зависят от высоты источника загрязнения по отношению к их нижней границе. Если источник располагается ниже слоя приподнятой инверсии, то основная часть примеси концентрируется вблизи поверхности земли.

В слое инверсии практически становятся невозможны вертикальные токи воздуха, так как снижается коэффициент турбулентной диффузии, в результате чего выброс под слоем инверсии не может подниматься вверх и распределяется в приземном слое. Поэтому температурные инверсии, как правило, сопровождаются значительным увеличением концентрации загрязнений в приземном слое. Как известно, массовые отравления населения в долине Маас, а также в Доноре м Лондоне наблюдались в период устойчивой температурной инверсии, продолжавшейся несколько суток. Чем длительнее инверсия, тем выше концентрации атмосферных загрязнений, потому что накопление атмосферных выбросов происходит в ограниченном, как бы замкнутом, пространстве атмосферы.

Большое значение имеет не только длительность, но и высота инверсии. Естественно, что низкие приземные (до 15-20м) и очень приподнятые (выше 600м) инверсии могут не оказывать существенного влияния на уровень концентраций: первые – вследствие того, что высота выброса некоторых источников загрязнения может находиться над слоем инверсии и она не будет препятствовать их рассеиванию, а вторые – потому, что при очень приподнятых инверсиях слой атмосферы под ними оказывается достаточным, чтобы разбавить промышленные выбросы.

Таким образом, вертикальный температурный градиент является важнейшим фактором, определяющим интенсивность процессов перемешивания загрязнений с атмосферным воздухом и имеющим большое практическое значение. Например, если в каком-то районы часты приземные инверсии в слое 150-200 м, то строительство труб высотой 120-150м не имеет смысла, так как-это не окажет влияния на снижение концентраций в периоды инверсий. Целесообразно строительство трубы выше 200 м. Если часты приподнятые инверсии на высоте 300-400 м, то строительство трубы даже высотой 250 м не будет способствовать снижению концентраций в период инверсии.

Накопление вредных выбросов в приземном слое в период приземных инверсий будет происходить при низких выбросах. Особенно возрастают концентрации загрязнений в случае расположения приподнятых инверсий непосредственно над источником выброса, т.е. устьем трубы. Санитарный врач должен знать особенности температурной стратификации атмосферы обслуживаемой территории, чтобы учитывать их при решении вопросов предупредительного и текущего надзора в гигиене атмосферного воздуха.

В связи с изменениями температурно-радиационного режима воздуха городской территории над городом более вероятно образование инверсий по сравнению с окрестными территориями. В холодный период года наблюдаются более частые и длительные инверсии. Температурный градиент изменяется не только по сезонам, но и на протяжении суток. Вследствие охлаждения поверхности земли лучеиспусканием нередко образуются ночные инверсии, чему благоприятствуют ясное небо и сухой воздух. Ночные инверсии могут возникать и в летнее время, достигая максимума в ранние утренние часы.

Нередко инверсии образуются в долинах между возвышенностями. Спускающийся в них холодный воздух подтекает под более теплый воздух долины и образуется «озеро» холода. В таких условиях решение вопроса о размещении промышленных предприятий оказывается особенно трудным.

Наиболее высокие концентрации атмосферных загрязнений наблюдаются при низких температурах в период зимних инверсий.

Определенное значение для распределения загрязнений в приземном слое атмосферы имеет влажность воздуха. Для большинства загрязнителей имеется прямая зависимость, т.е. с ростом влажности возрастают их концентрации. Исключение составляют лишь соединения, способные гидролизоваться. Особенно высокие концентрации атмосферных загрязнений отмечаются в периоды туманов. Связь уровня загрязнения и влажности объясняется тем, что в городской атмосфере имеется значительное количество гигроскопических частиц, конденсация влаги на которых начинается при относительной влажности меньше 100%. В связи с утяжелением частиц за счет конденсации влаги они опускаются и концентрируются в более узком слое приземной атмосферы. Газообразные загрязнения, растворяясь в конденсате частиц, также накапливаются в нижних слоях атмосферы.

Таким образом, при одном и том же выбросе уровень приземной концентрации загрязнителей может существенно меняться в зависимости от метеорологических условий.

Существенное влияние на рассеивание выбросов оказывает сам город, изменяющий температурно-радиационный, влажностный и ветровой режимы. С одной стороны, город представляет «остров тепла», в результате чего возникают местные конвективные восходящие и нисходящие потоки, с другой- в условиях города чаще возникают туманы (часто за счет загрязнения его), что ухудшает рассеивание загрязнений. Направление и скорость ветра деформируются за счет изменения подстилающей поверхности и экранирующего влияния высоких зданий. В таких условиях непригодны расчеты, созданные для равнинной местности, и используются специальные методы расчета с учетом аэродинамической тени, создаваемой зданиями.

На рассеивание примесей в условиях города существенно влияет планировка улиц, их ширина, направление, высота зданий, наличие зеленых массивов и водных объектов.

Поэтому даже при постоянных промышленных и транспортных выбросах в результате влияния метеорологических условий уровни загрязнения воздуха могут различаться в несколько раз.

Определенную роль в освобождении атмосферы от загрязнений играет зеленая растительность вследствие как механической сорбции на поверхности, так и химического связывания некоторых соединений.

У1.На распространение примеси влияет рельеф местности . На наветренных склонах при ветре образуются восходящие движения воздуха, а подветренных склонах – нисходящие. Над водоемами летом образуются нисходящие потоки движения воздушных масс. В нисходящих потоках приземные концентрации увеличиваются, при восходящих потоках- уменьшаются. В некоторых формах рельефа, например в котлованах , воздух застаивается, что приводит к накоплению токсинов от низких источников выбросов. В холмистой местности максимумы приземной концентрации примеси обычно больше, чем при отсутствии неровностей рельефа.

Влияние неровностей местности на уровень приземной концентрации связано с изменением характера движения воздуха, что приводит к изменению поля концентраций. В низинах наблюдаются явления застоя воздуха, что повышает опасность накопления загрязнений. При высоте отметок 50-100 м с углом наклона 5-6 0 отличие максимальных концентраций может достигать 50% при относительно невысоких трубах. Влияние рельефа уменьшается с повышением высоты выброса. Большое значение имеет расположение источника на подветренном или наветренном склоне. Увеличение концентрации может наблюдаться и при расположении источника выброса на возвышенности, но вблизи подветренного склона, где снижаются скорости ветра и возникают нисходящие течения.

Влияние неровностей местности на характер движения воздуха настолько сложно, что требует иногда моделирования условий с целью определения характера распространения промышленных выбросов. В настоящее время имеются предложения по введению коэффициентов, учитывающих влияние рельефа на рассеивание выбросов.

УП. От времени года (зимой больше, чем летом, т.к. включены отопительные системы, а при их эксплуатации увеличивается загрязнение выбросами и на нижних слоях воздуха больше накапливаются загрязнители, т.к. конвекция воздуха замедляется).

УШ. От времени суток (максимальное загрязнение наблюдается днем, т.к. работа всех производств и транспортных средств приходится на дневное время).


©2015-2019 сайт
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-08-20

Введение

Атмосфера представляет собой среду, в которой происходит распространение атмосферных загрязнителей от их источника; при этом влияние каждого данного источника определяется продолжительностью времени, частотой выпуска загрязнений и той концентрацией, воздействию.которой подвергается какой-либо объект. С другой стороны, метеорологические условия играют лишь незначительную роль в уменьшении или устранении загрязнения воздуха, поскольку, во-первых, они не изменяют абсолютную массу выброса, во-вторых, в настоящее время мы еще не умеем воздействовать на основные протекающие в атмосфере процессы, определяющие степень рассеивания загрязняющих веществ. Проблема атмосферных загрязнений может решаться по трем направлениям: а) путем устранения образования отходов; б) путем установки оборудования для улавливания отходов на месте их образования; в) путем улучшения рассеивания выбросов в атмосфере.

Если допустить, что наилучшим способом устранения атмосферных загрязнений является контроль источников их образования, то практическая задача сводится к тому, чтобы привести расходы по снижению степени загрязнения в соответствие с объемом работ, уменьшающих до приемлемого уровня количество отходов. Величина требуемого для этого уменьшения абсолютной массы выброса загрязнений данным источником, зависит непосредственно от метеорологических условий и их изменения во времени и пространстве над данным районом.

Основные параметры, определяющие распространение и рассеивание загрязняющих веществ в атмосфере, могут быть описаны качественно и полуколичественно. Такие данные позволяют сопоставить различные географические пункты или определить возможную частоту условий, при которых будет происходить быстрая или замедленная диффузия в атмосфере. Наиболее характерным свойством атмосферы является ее непрерывная изменчивость: температура, ветер и осадки широко варьируют в зависимости от широты местности, времени года и топографических условий. Эти условия хорошо изучены и довольно подробно представлены в литературе.

В меньшей мере изучены и описаны в литературе другие важные метеорологические параметры, влияющие на концентрацию атмосферных загрязнений, а именно турбулентная структура ветра, низкие уровни температуры воздуха и градиенты ветра. Эти параметры широко изменяются во времени и пространстве и представляют собой на деле почти единственные метеорологические факторы, которые человек может изменить существенным образом и то лишь локально.

Загрязнение атмосферного воздуха населенных мест рассматривают обычно как результат индустриализации, однако оно включает не только вещества, выделяющиеся в процессе промышленного производства, но и естественные загрязнения, возникающие в результате вулканических извержений (Wexler, 1951), пылевых бурь (Warn, 1953), океанских прибоев (Holzworth, 1957), лесных пожаров (Wexler, 1950), спорообразования растений (Hewson, 1953) и т. д. Оценка физиологического воздействия природных загрязнений атмосферы часто может быть более легкой, чем оценка влияния сложного загрязнения промышленными отходами. Характер природных загрязнений, а часто и их источники, как правило, лучше изучены.

Для того чтобы оценить роль атмосферы в качестве рассеивающей среды, необходимо рассмотреть физические процессы, способствующие рассеиванию различных веществ в атмосфере, а также значение таких неметеорологических факторов, как топография и география местности.

Воздушные течения

Основным параметром, определяющим распространение атмосферных загрязнителей, является ветер, его скорость и направление, которые в свою очередь взаимосвязаны с вертикальным и горизонтальным градиентами температуры воздуха в больших и малых масштабах. Основная закономерность заключается в том что чем больше скорость ветра, тем больше турбулентность и тем быстрее и полнее происходит рассеивание загрязнений с атмосфере. Taк как вертикальный и горизонтальный градиенты температуры зимой увеличиваются, то и скорость, ветра обычно возрастает. Это особенно характерно для умеренных и полярных широт и менее отчетливо проявляется в тропиках, где сезонные колебания невелики. Однако иногда и в зимнее время, особенно в глубине крупных континентов, могут возникать продолжительные периоды слабого движения воздуха или полного штиля. Изучение частоты длительных периодов слабого движения воздуха на североамериканском континенте к востоку от Скалистых гор показало, что такие ситуации возникают наиболее часто поздней весной и ранней осенью. На значительной части европейского континента слабые ветры наблюдаются поздней осенью и ранней зимой (Jalu, 1965). Кроме сезонных колебаний, на многих территориях отмечаются дневные изменения в движении воздуха, которые могут быть даже более заметными. На большинстве континентальных территорий в ночные часы обычно наблюдается устойчивое слабое движение воздуха. В результате ухудшения условий для вертикального распространения атмосферных загрязнений последние рассеиваются медленно и могут концентрироваться в относительно малых объемах воздуха. Содействующий этому слабый, изменчивый ветер может привести даже к обратному распространению загрязнений по направлению к их источнику. В противоположность этому в дневное время ветры характеризуются большей турбулентностью и скоростью; вертикальные токи усиливаются, поэтому в ясный солнечный день происходит максимальное рассеивание загрязняющих веществ.

Местные ветры могут заметно отличаться от общего потока воздуха, характерного для данной области. Разница температур суши и воды вдоль побережья континентов или крупных озер является достаточной для возникновения местных движений воздуха с моря на сушу днем и с суши на море ночью (Pierson, I960); Schmidt, 1957). В умеренных широтах такие закономерности движения морского бриза хорошо заметны лишь летом, в другие времена года они маскируются общими ветрами. Однако в тропических и субтропических районах они могут являться характерными чертами погоды и наблюдаться почти с часовой регулярностью изо дня в день.

Помимо закономерностей движения морского бриза в приморских районах, очень важными факторами являются также топография местности, расположение на ней источников загрязнений или объектов их воздействия. Следует отметить, однако, что замкнутость пространства не является необходимым условием для создания чрезвычайного уровня атмосферных загрязнении, если в этом пространстве имеется достаточно интенсивный источник загрязнения. Лучшим доказательством этого являются эпизодически наблюдающиеся токсические туманы (smog) в Лондоне, где топографические условия не играют почти, или совершенно никакой роли. Однако, за исключением Лондона, все крупные воздушные катастрофы, вызванные загрязнением атмосферы, о которых мы знаем, возникали там, где движение воздуха значительно ограничивалось рельефом местности, так что движение воздуха происходило лишь в одном направлении или в пределах относительно малой территории (Firket, 1936; US Public Health Service, 1949), движение.воздуха в узких долинах характеризуется тем, что днем нагретые солнцем воздушные потоки направляются по склонам долины вверх, тогда как непосредственно перед или после захода солнца воздушные потоки опрокидываются и стекают по склонам долины.вниз (Defant, 1951). Поэтому в условиях долины атмосферные загрязнения могут подвергаться длительному застою на небольшом пространстве (Hewson a. Gill, 1944). Кроме того, поскольку склоны долин защищают их от влияния общей циркуляции воздуха, ветер здесь отличается меньшей скоростью по сравнению с равнинными территориями. B некоторых районах такие местные восходящие и нисходящие потоки воздуха в долинах могут происходить почти ежедневно, в других они наблюдаются лишь как исключительное явление. Существование местных воздушных течений и их изменения во времени являются одной из основных причин, обусловливающих необходимость детального исследования местности для исчерпывающей характеристики закономерностей загрязнения атмосферы (Holland, 1953). Обычная сеть метеорологических станций не в состоянии обнаружить эти небольшие воздушные течения.

Кроме изменений движения воздуха во времени и по горизонтали, обычно наблюдаются значительные различия в его движении и.по вертикали. Неровности земной поверхности, как естественные, так и созданные человеком, образуют препятствия, обусловливающие механические завихрения, уменьшающиеся с увеличением высоты. Кроме того, в результате нагревания земли солнцем образуются термические завихрения, максимальные у земной поверхности и убывающие с высотой, что приводит к уменьшению порывистости ветра по вертикали и последовательному снижению скорости рассеивания загрязнений с увеличением высоты (Magi 11, Holder) a. Ackley, 1956),

Турбулентность, или вихревое движение, представляет собой механизм, обеспечивающий эффективную диффузию в атмосфере. Поэтому изучение спектра распространения энергии в вихрях, проводящееся значительно более интенсивно в настоящее время (Panofsky a. McCormick, 1954; Van Dcr Hovcn, 1957), теснейшим образом связано с проблемой рассеивания атмосферных загрязнений. Общая турбулентность состоит в основном из двух компонентов - механической и термической турбулентности. Механическая турбулентность возникает при движении ветра над аэродинамически шероховатой поверхностью земли и пропорциональна степени этой шероховатости и скорости ветра. Термическая турбулентность возникает в результате нагревания земли солнцем и зависит от широты местности, величины излучающей поверхности, и стабильности атмосферы. Она достигает максимума в ясные летние дни и снижается до минимума в течение длинных зимних ночей. Обычно влияние солнечной радиации на тепловую турбулентность измеряется не непосредственно, а путем измерения вертикального градиента температуры. Если вертикальный градиент температуры нижних слоев атмосферы превышает адиабатическую скорость падения температуры, то возрастает вертикальное движение воздуха более заметным становится рассеивание загрязнений, особенно по вертикали. С другой стороны, в стабильных атмосферных условиях, когда различные слои атмосферы имеют одинаковую температуру или когда температурный градиент с увеличением высоты становится положительным, необходимо затратить значительную энергию для увеличения вертикального движения. Даже при эквивалентных скоростях ветра стабильные атмосферные условия обычно приводят к концентрации загрязнений в относительно ограниченных слоях воздуха.

Типичный дневной цикл изменения температурного градиента над открытой местностью в безоблачный день начинается с образования неустойчивой скорости падения температуры, усиливающейся днем благодаря интенсивному тепловому излучению солнца, что приводит к возникновению сильной турбулентности. Непосредственно перед или вскоре после захода солнца приземный слой воздуха быстро охлаждается и возникает устойчивая скорость падения температуры (повышение температуры c высотой). В течение ночи интенсивность и глубина этой инверсии возрастают, достигая максимума между полуночью и тем временем суток, когда земная поверхность имеет минимальную температуру. В течение этого периода атмосферные загрязнения эффективно задерживаются внутри слоя инверсии или ниже его благодаря слабому или полном отсутствию рассеивания загрязнений по вертикали. Следует отметить, что в условиях застоя загрязнители, сбрасываемые у поверхности земли, не распространяются в верхние слои воздуха и, наоборот, выбросы из высоких труб в этих условиях большей частью не проникают е ближайшие к земле слои воздуха (Church, 1949). С наступлением дня земля начинает нагреваться и инверсия постепенно ликвидируется. Это может привести к "фумигации" (Hewson a. Gill. 1944) благодаря тому, что загрязнения, попавшие в течение ночи в верхние слои воздуха, начинают быстро перемешиваться и устремляются вниз, поэтому в ранние предполуденные часы, предшествующие полному развитию турбулентности, заканчивающей дневной цикл и обеспечивающей мощное перемешивание, часто возникают высокие концентрации атмосферных загрязнений. Этот цикл может быть нарушен или изменен при наличии облаков или осадков, препятствующих интенсивной конвекции в дневные часы, но могущих также препятствовать и возникновению сильной инверсии в ночное время.

Установлено, что в городских районах, где чаще всего наблюдается загрязнение атмосферного воздуха, типичный для открытых территорий режим падения температуры подвергается изменениям, особенно в ночное время (Duckworth a. Sandberg, 1954). Промышленные процессы, повышенное выделение тепла в городских районах и неровности поверхности, создаваемые зданиями, способствуют термической и механической турбулентности, усиливающей перемешивание воздушных масс и препятствующей образованию поверхностной инверсии. Благодаря этому основание инверсии, которое в условиях открытой местности располагалось бы на уровне земли, находится здесь над слоем интенсивного перемешивания обычно толщиной около 30-150 м. Эти условия могут свести на нет преимущества выброса загрязнений через высокие трубы, поскольку выпускаемые отходы будут концентрироваться в относительно ограниченном пространстве.

При анализе воздушных течений в большинстве случаев для удобства допускается, что ветер сохраняет постоянное направление и скорость на обширной территории в течение значительного периода. В действительности это не так, и при детальном анализе движения воздуха необходимо учитывать эти отклонения. Там где движение ветра вследствие различия градиента атмосферного давления или топографии местности меняется от места к месту или со временем, крайне важно производить анализы метеорологических траекторий при изучении влияния выпускаемых загрязнений или установлении возможного источника их (Nciburgcr, 1956). Вычисление детальных траекторий требует множества точных измерений ветра, однако и вычисление приблизительных траекторий, для чего часто бывает достаточно лишь немногих наблюдений над движением ветра, также может принести пользу.

При краткосрочных исследованиях атмосферных загрязнений, локализованных на небольших территориях, обычные метеорологические данные являются недостаточными. В значительной мере это объясняется затруднениями, возникающими вследствие использования приборов, обладающих различными характеристиками, неодинакового местоположения приборов, различных способов отбора проб и различных периодов наблюдения.

Диффузионные процессы в атмосфере

Мы не будем пытаться перечислять здесь разнообразные теоретические предпосылки к проблеме диффузии в атмосфере или рабочие формулы, которые разработаны в этой области. Исчерпывающие данные по этим вопросам приводятся в литературе (Bat-chelor a. Davies, 3956; iMagill, Bolden a. Ackley, 3956; Sutton, 1053; US Atomic Energy Commision a. US Wacther Bureau, 1955). Кроме того, специальная группа Всемирной метеорологической организации периодически представляет обзоры этой проблемы. Поскольку проблема "Понимается лишь в общих чертах и формулировки имеют приблизительную точность, математические сложности, возникающие при изучении изменений ветра и тепловой структуры нижних слоев атмосферы, еще далеко не преодолены для всего разнообразия метеорологических условий. Точно так же в настоящее время мы располагаем лишь отрывочными сведениями относительно турбулентности, распределения ее энергии в трех измерениях, изменений во времени и пространстве. Несмотря на недостаточное понимание турбулентных процессов, рабочие формулы позволяют вычислить концентрации выбросов из отдельных источников, которые удовлетворительно согласуются с данными инструментальных замеров, если не считать высотных труб в условиях инверсии. Соответствующее применение этих формул дало возможность сделать полезные практические выводы об уровне загрязнений атмосферного воздуха из единичного источника. Очень немногие попытки (Frenkel, 1956; Lettau, 1931) сводились к использованию аналитических методов для расчета концентрации атмосферных загрязнений, выбрасываемых из множественных источников, как это имеет место в крупных городах. Такой подход обладает значительными преимуществами, но он требует выполнения очень сложных расчетов, а также разработки эмпирических приемов для учета топографических и зональных параметров. Несмотря на эти затруднения, точность методов аналитического расчета, по-видимому, в настоящее время соответствует точности наших знаний о распределении источников загрязнений, их мощности и колебаний во времени. Поэтому для получения полезных практических выводов эта точность достаточна. Периодическое выполнение аналитических расчетов этого типа позволило бы определять возможность повторения периодов высоких концентраций атмосферных загрязнений, определять их "хронический" уровень, оценивать роль (различных источников при разных метеорологических условиях и подвести математическую базу под различные меры снижения загрязнения воздуха (зонирование, размещение промышленных предприятий, ограничение выбросов и др.).