Как найти приближенное значение величины. Большая энциклопедия нефти и газа. Приближенные вычисленияс помощью полного дифференциала функции двух переменных

Математические выражения (формулы) сокращённого умножения (квадрат суммы и разности, куб суммы и разности, разность квадратов, сумма и разность кубов) крайне не заменимы во многих областях точных наук. Эти 7 символьных записей не заменимы при упрощении выражений, решении уравнений, при умножении многочленов, сокращении дробей , решении интегралов и многом другом. А значит будет очень полезно разобраться как они получаются, для чего они нужны, и самое главное, как их запомнить и потом применять. Потом применяя формулы сокращенного умножения на практике самым сложным будет увидеть, что есть х и что есть у. Очевидно, что никаких ограничений для a и b нет, а значит это могут быть любые числовые или буквенные выражения.

И так вот они:

Первая х 2 - у 2 = (х - у) (х+у) .Чтобы рассчитать разность квадратов двух выражений надо перемножить разности этих выражений на их суммы.

Вторая (х + у) 2 = х 2 + 2ху + у 2 . Чтобы найти квадрат суммы двух выражений нужно к квадрату первого выражения прибавить удвоенное произведение первого выражения на второе плюс квадрат второго выражения.

Третья (х - у) 2 = х 2 - 2ху + у 2 . Чтобы вычислить квадрат разности двух выражений нужно от квадрата первого выражения отнять удвоенное произведение первого выражения на второе плюс квадрат второго выражения.

Четвертая (х + у) 3 = х 3 + 3х 2 у + 3ху 2 + у 3. Чтобы вычислить куб суммы двух выражений нужно к кубу первого выражения прибавить утроенное произведение квадрата первого выражения на второе плюс утроенное произведение первого выражения на квадрат второго плюс куб второго выражения.

Пятая (х - у) 3 = х 3 - 3х 2 у + 3ху 2 - у 3 . Чтобы рассчитать куб разности двух выражений необходимо от куба первого выражения отнять утроенное произведение квадрата первого выражения на второе плюс утроенное произведение первого выражения на квадрат второго минус куб второго выражения.

Шестая х 3 + у 3 = (х + у) (х 2 - ху + у 2) Чтобы высчитать сумму кубов двух выражений нужно умножить суммы первого и второго выражения на неполный квадрат разности этих выражений.

Седьмая х 3 - у 3 = (х - у) (х 2 + ху + у 2) Чтобы произвести вычисление разности кубов двух выражений надо умножить разность первого и второго выражения на неполный квадрат суммы этих выражений.

Не сложно запомнить, что все формулы применяются для произведения расчетов и в противоположном направлении (справа налево).

О существовании этих закономерностей з нали еще около 4 тысяч лет тому назад. Их широко применяли жители древнего Вавилона и Египта. Но в те эпохи они выражались словесно или геометрически и при расчетах не использовали буквы.

Разберем доказательство квадрата суммы (а + b) 2 = a 2 +2ab +b 2 .

Первым эту математическую закономерность доказал древнегреческий учёный Евклид, работавший в Александрии в III веке до н.э., он использовал для этого геометрический способ доказательства формулы, так как буквами для обозначения чисел не пользовались и учёные древней Эллады. Ими повсеместно употреблялись не “а 2 ”, а “квадрат на отрезке а”, не “ab”, а “прямоугольник , заключенный между отрезками a и b”.

Сегодня достойна в стихах быть воспета
О свойствах корней теорема Виета.
Что лучше, скажи, постоянства такого:
Умножил ты корни – и дробь уж готова
В числителе с , в знаменателе а.
И сумма корней тоже дроби равна
Хоть с минусом дробь эта
Что за беда
В числители в , в знаменателе а .
(Из школьного фольклора)

В эпиграфе замечательная теорема Франсуа Виета приведена не совсем точно. В самом деле, мы можем записать квадратное уравнение, которое не имеет корней и записать их сумму и произведение. Например, уравнение х 2 + 2х + 12 = 0 не имеет действительных корней. Но, подойдя формально, мы можем записать их произведение (х 1 · х 2 = 12) и сумму (х 1 + х 2 = -2). Наши стихи будут соответствовать теореме с оговоркой: «если уравнение имеет корни», т.е. D ≥ 0.

Первое практическое применение этой теоремы – составление квадратного уравнения, имеющего заданные корни. Второе: она позволяет устно решать многие квадратные уравнения. На отработку этих навыков, прежде всего и обращается внимание в школьных учебниках.

Мы же здесь будем рассматривать более сложные задачи, решаемые с помощью теоремы Виета.

Пример 1.

Один из корней уравнения 5х 2 – 12х + с = 0 в три раза больше за второй. Найдите с.

Решение.

Пусть второй корень равен х 2 .

Тогда первый корень х1 = 3х 2 .

Согласно теореме Виета сумма корней равна 12/5 = 2,4.

Составим уравнение 3х 2 + х 2 = 2,4.

Отсюда х 2 = 0,6. Следовательно х 1 = 1,8.

Ответ: с = (х 1 · х 2) · а = 0,6 · 1,8 · 5 = 5,4.

Пример 2.

Известно, что х 1 и х 2 – корни уравнения х 2 – 8х + p = 0, причём 3х 1 + 4х 2 = 29. Найдите p.

Решение.

Согласно теореме Виета х 1 + х 2 = 8, а по условию 3х 1 + 4х 2 = 29.

Решив систему из этих двух уравнений найдём значение х 1 = 3, х 2 = 5.

А следовательно p = 15.

Ответ: p = 15.

Пример 3.

Не вычисляя корней уравнения 3х 2 + 8 х – 1 = 0, найдите х 1 4 + х 2 4

Решение.

Заметим, что по теореме Виета х 1 + х 2 = -8/3 и х 1 · х 2 = -1/3 и преобразуем выражение

а) х 1 4 + х 2 4 = (х 1 2 + х 2 2) 2 – 2х 1 2 х 2 2 = ((х 1 + х 2) 2 – 2х 1 х 2) 2 – 2(х 1 х 2) 2 = ((-8/3) 2 – 2 · (-1/3)) 2 – 2 · (-1/3) 2 = 4898/9

Ответ: 4898/9.

Пример 4.

При каких значениях параметра а разность наибольшего и наименьшего корней уравнения
2х 2 – (а + 1)х + (а – 1) = 0 равна их произведению.

Решение.

Это квадратное уравнение. Оно будет иметь 2 разных корня, если D > 0. Иными словами (а + 1) 2 – 8(а – 1) > 0 или (а – 3) 2 > 0. Следовательно, мы имеем 2 корня при всех а, за исключением а = 3.

Для определенности будем считать, что х 1 >х 2 и получим х 1 + х 2 = (а + 1)/2 и х 1 · х 2 = (а – 1)/2. Исходя из условия задачи х 1 – х 2 = (а – 1)/2. Все три условия должны выполняться одновременно. Рассмотрим первое и последнее уравнения как систему. Она легко решается методом алгебраического сложения.

Получаем х 1 = а/2, х 2 = 1/2. Проверим при каких а выполнится второе равенство: х 1 · х 2 = (а – 1)/2. Подставим полученные значения и будем иметь: а/4 = (а – 1)/2. Тогда, а = 2. Очевидно, что если а = 2, то все условия выполнены.

Ответ: при а = 2.

Пример 5.

Чему равно наименьшее значение а, при котором сумма корней уравнения
х 2 – 2а(х – 1) – 1 = 0 равна сумме квадратов его корней.

Решение.

Прежде всего, приведем уравнение к каноническому виду: х 2 – 2ах + 2а – 1 = 0. Оно будет иметь корни, если D/4 ≥ 0. Следовательно: а 2 – (2а – 1) ≥ 0. Или (а – 1) 2 ≥ 0. А это условие справедливо при любом а.

Применим теорему Виета: х 1 + х 2 = 2а, х 1 · х 2 = 2а – 1. Посчитаем

х 1 2 + х 2 2 = (х 1 + х 2) 2 – 2х 1 · х 2 . Или после подстановки х 1 2 + х 2 2 = (2а) 2 – 2 · (2а – 1) = 4а 2 – 4а + 2. Осталось составить равенство которое соответствует условию задачи: х 1 + х 2 = х 1 2 + х 2 2 . Получим: 2а = 4а 2 – 4а + 2. Это квадратное уравнение имеет 2 корня: а 1 = 1 и а 2 = 1/2. Наименьший из них –1/2.

Ответ: 1/2.

Пример 6.

Найти зависимость между коэффициентами уравнения ах 2 + вх + с = 0 если сумма кубов его корней равна произведению квадратов этих корней.

Решение.

Будем исходить из того, что данное уравнение имеет корни и, поэтому, к нему можно применить теорему Виета.

Тогда условие задачи запишется так: х 1 3 + х 2 3 = х 1 2 · х 2 2 . Или: (х 1 + х 2)(х 1 2 – х 1 · х 2 + х 2 2) = (х 1 х 2) 2 .

Необходимо преобразовать второй множитель. х 1 2 – х 1 · х 2 + х 2 2 = ((х 1 + х 2) 2 – 2х 1 х 2) – х 1 х 2 .

Получим (х 1 + х 2)((х 1 + х 2) 2 – 3х 1 х 2) = (х 1 х 2) 2 . Осталось заменить суммы и произведения корней через коэффициенты.

(-b/a)((b/a) 2 – 3 · c/a) = (c/a) 2 . Это выражение легко преобразуется к виду b(3ac – b 2)/a = c 2 . Соотношение найдено.

Замечание. Следует учесть, что полученное соотношение имеет смысл рассматривать лишь после того, как выполнится другое: D ≥ 0.

Пример 7.

Найдите значение переменной а, для которого сумма квадратов корней уравнения х 2 + 2ах + 3а 2 – 6а – 2 = 0 есть величина наибольшая.

Решение.

Если у этого уравнения есть корни х 1 и х 2 , то их сумма х 1 + х 2 = -2а, а произведение х 1 · х 2 = 3а 2 – 6а – 2.

Вычисляем х 1 2 + х 2 2 = (х 1 + х 2) 2 – 2х 1 · х 2 = (-2а) 2 – 2(3а 2 – 6а – 2) = -2а 2 + 12а + 4 = -2(а – 3) 2 + 22.

Теперь очевидно, что это выражение принимает наибольшее значение при а = 3.

Остается проверить, в самом ли деле у исходного квадратного уравнения существуют корни при а = 3. Проверяем подстановкой и получаем: х 2 + 6х + 7 = 0 и для него D = 36 – 28 > 0.

Следовательно, ответ: при а = 3.

Пример 8.

Уравнение 2х 2 – 7х – 3 = 0 имеет корни х 1 и х 2 . Найти утроенную сумму коэффициентов приведенного квадратного уравнения, корнями которого являются числа Х 1 = 1/х 1 и Х 2 = 1/х 2 . (*)

Решение.

Очевидно, что х 1 + х 2 = 7/2 и х 1 · х 2 = -3/2. Составим второе уравнение по его корням в виде х 2 + рх + q = 0. Для этого используем утверждение, обратное теореме Виета. Получим: р = -(Х 1 + Х 2) и q = Х 1 · Х 2 .

Выполнив подстановку в эти формулы, исходя из (*), тогда: р = -(х 1 + х 2)/(х 1 · х 2) = 7/3 и q = 1/(х 1 · х 2) = -2/3.

Искомое уравнение примет вид: х 2 + 7/3 · х – 2/3 = 0. Теперь легко посчитаем утроенную сумму его коэффициентов:

3(1 + 7/3 – 2/3) = 8. Ответ получен.

Остались вопросы? Не знаете, как использовать теорему Виета?
Чтобы получить помощь репетитора – зарегистрируйтесь .
Первый урок – бесплатно!

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

МУНИЦИПАЛЬНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

«КУРЛЕКСКАЯ СРЕДНЯЯ ОБЩЕОБРАЗОВАТЕЛЬНАЯ ШКОЛА»

Томского района
«Математика

в науке и жизни»

«Урок  семинар» по теме:

«Приближенные значения величин»
(О прикладной направленности абсолютной и относительной погрешностей)
Алгебра 7 класс

Учитель математики:

Серебренникова Вера Александровна

Курлек - 2006


«Математика в науке и жизни»
«Язык математики –

это всеобщий язык науки»
Тема: Приближенные значения величин. (Обобщающий урок - семинар)

Цель: 1. Обобщить знания учащихся по данной теме с учетом прикладной направленности (в физике, трудового обучения);

2. Умение работать в группах и принимать участие в выступлениях

Оборудование: 2 линейки с делениями в 0,1см и 1см, термометр, весы, раздаточный материал (лист, копирка, карточки)
Вступительное слово и представление участников семинара (учитель)

Рассмотрим один из важных вопросов – приближенные вычисления. Несколько слов о его важности.

При решении практических задач часто приходится иметь дело с приближенными значениями различных величин.

Напомню, в каких случаях получаются приближенные значения:


  1. при подсчете большого количества предметов;

  2. при измерениях с помощью приборов различных величин (длины, массы, температуры);

  3. при округлении чисел.
Обсудим вопрос: «Когда качество измерения, вычисления будет выше ».

Участниками семинара сегодня будут 3 группы: математики, физики и представители производства (практики).

(Представляют группы «старшие», называют свою фамилию).

Оценивать работу семинара будут гости и компетентное жюри от общественности, где есть «математики», «физики» и «практики».

Оцениваться будет работа групп и отдельных участников баллами.
План работы (на доске)

1. Выступления

2. Самостоятельная работа

3. Викторина

4. Итоги
. Выступления.


  1. Мерой оценки отклонения приближенного значения от точного
служат абсолютная и относительная погрешности. Рассмотрим их определения с точки зрения прикладной направленности.
2
Абсолютная погрешность показывает на сколько

приближенное значение отличается от точного, т.е. точность приближения.

Относительная погрешность оценивает качество измерения и

выражается в процентах.

Если х ≈ α, где х – точное значение, а α – приближенное, то абсолютная погрешность будет: │х – α │, а относительная: │х – α │∕ │α│%


Примеры:

1 . Найдем абсолютную и относительную погрешности приближенного значения, полученного в результате округления числа 0,437 до десятых.

Абсолютная погрешность: │0,437 – 0,4 │= │0,037│= 0,037

Относительная погрешность: 0,037: │0,4│= 0,037: 0,4 = 0,0925 = 9,25%


  1. Найдем по графику функции у = х 2 приближенное значение
функции при х = 1,6

Если х = 1,6, то у ≈ 2,5

Найдем по формуле у = х 2 точное значение у: у = 1,6 2 = 2,56;

Абсолютная погрешность: │2,56 – 2,5 │= │0,06│= 0,06;

Относительная погрешность: 0,06: │2,5│= 0,06: 2,5 = 0,024 = 2,4%

Если сравнить два результата относительной погрешности 9,25% и

2,4%, то во втором случае качество вычисления будет выше, результат будет точнее.
Отчего зависит точность приближенного значения?

Она зависит от многих причин. Если приближенное значение получено при измерении, то его точность зависит от прибора, с помощью которого выполнялось измерение. Никакое измерение не может быть выполнено совершенно точно. Даже сами меры заключают в себе погрешность. Изготовить совершенно точные метровые линейки, килограммовую гирю, литровую кружку чрезвычайно трудно и закон допускает при изготовлении некоторую погрешность.

Например, при изготовлении метровой линейки допускается погрешность 1мм. Само измерение тоже вводит неточность, погрешность в гирях, весах. Например на линейке, которой мы пользуемся, нанесены деления через 1мм, т.е. 0,1см, значит точность измерения этой линейкой до 0,1 (≤ 0,1). На медицинском термометре деления через 0,1 0 , значит точность до 0,1 (≤ 0,1). На весах деления нанесены через 200г, значит точность до 200 (≤ 200).

Округляя десятичную дробь до десятых точность будет до 0,1 (≤ 0,1); до сотых – точность до 0,01 (≤ 0,01).

Точнейшие в мире измерения производятся в лабораториях Института


Всегда ли можно найти абсолютную и относительную погрешности?

Не всегда можно найти абсолютную погрешность, так как неизвестно

точное значение величины, а отсюда и относительную погрешность.

В этом случае принято считать что абсолютная погрешность не превосходит цены деления шкалы прибора. Т.е. если например цена деления линейки 1мм = 0,1см, то абсолютная погрешность будет с точностью до 0,1 (≤ 0,1) и будет определена только оценка относительной погрешности (т.е. ≤ какому числу %).

Часто приходится с этим встречаться в физике при демонстрации опытов, при выполнении лабораторных работ.

Задача. Найдем относительную погрешность при измерении длины листа тетради линейками: одна – с точностью до 0,1см (деления через 0,1см); вторая - с точностью до 1см (деления через 1см).

ℓ 1 = 20,4см ℓ 2 = 20,2см


0,! : 20,4 = 0,0049 = 0,49% 1: 20,2 = 0,0495 = 4,95%

Говорят, относительная погрешность в первом случае до 0,49%(т.е ≤ 0,49%), во втором случае до 4,95% (т.е. ≤ 4,95%).

В первом случае точность измерения выше. Мы говорим не о величине

относительной погрешности, а ее оценке.

На производстве при изготовлении деталей мы пользуемся

штангенциркулем (для измерения глубины; диаметра: наружного и внутреннего).

Абсолютная погрешность при измерении этим прибором составляет точность до 0,1мм. Найдем оценку относительной погрешности при измерении штангенциркулем:

d = 9,86см = 98,6мм


0,1: │98,6│= 0,1: 98,6 = 0,001 = 0,1%
Относительная погрешность с точностью до 0,1% (т.е. ≤ 0,1%).

Если сравнить с предыдущими двумя измерениями, то получается точность измерения выше.

Из трех практических примеров можно сделать вывод: что точных значений быть не может, производя измерения в обычных условиях.

Но чтобы точнее выполнить измерение нужно взять измерительный прибор цена деления которого как можно меньше.

4
. Самостоятельная работа по вариантам, с последующей проверкой (под копирку).

Вариант 1

Вариант 2



1. Построить график функции у = х 3

1. Построить график функции у = х 2


  1. если х = 1,5, то у ≈
если х = -0,5, то у ≈

б) у = 4 при х ≈



Пользуясь графиком закончить запись:

  1. если х = 2,5, то у ≈
если х = -1,5, то у ≈

б) у = 5 при х ≈



2. Округлить число 0,356 до десятых и найти:

a) абсолютную погрешность

приближения;

б) относительную погрешность

приближения


2. Округлить число 0,188 до десятых и найти:

a) абсолютную погрешность

приближения;

б) относительную погрешность

приближения

(Жюри проверяет самостоятельные работы)


. Викторина. (За каждый правильный ответ – 1 балл)

В каких примерах значения величин точные, а в каких приближенные?


Примеры:

1. В классе 36 учеников

2. В рабочем поселке 1000 жителей

3. Железнодорожный рельс имеет длину 50 м

4. Рабочий получил в кассе 10 тысяч рублей

5. В самолете ЯК – 40 120 пассажирских мест

6. Расстояние между Москвой и Санкт – Петербургом 650 км

7. В килограмме пшеницы содержится 30000 зерен

8.Расстояние от Земли до Солнца 1,5 ∙ 10 8 км

9. Один из школьников на вопрос о том, сколько учащихся учится в школе, ответил: «1000», а другой ответил «950». Чей ответ точнее, если в школе учится 986 учащихся?

10. Буханка хлеба весит 1 кг и стоит 2500 р.

11. Тетрадь в 12 листов стоит 600 р. и имеет толщину 3 мм


v. Подведение итогов, награждение

На практике мы почти никогда не знаем точных значений величин. Никакие весы, как бы точны они ни были, не показывают вес абсолютно точно; любой термометр показывает температуру с той или иной ошибкой; никакой амперметр не может дать точных показаний тока и т. д. К тому же наш глаз не в состоянии абсолютно правильно прочитать показания измерительных приборов. Поэтому, вместо того чтобы иметь дело с истинными значениями величин, мы вынуждены оперировать с их приближенными значениями.

Тот факт, что а" есть приближенное значение числа а , записывается следующим образом:

а ≈ а" .

Если а" есть приближенное значение величины а , то разность Δ = а - а" называется погрешностью приближения *.

* Δ - греческая буква; читается: дельта. Далее встречается еще одна греческая буква ε (читается: эпсилон).

Например, если число 3,756 заменить его приближенным значением 3,7, то погрешность будет равна: Δ = 3,756 - 3,7 = 0,056. Если в качестве приближенного значения взять 3,8, то погрешность будет равна: Δ = 3,756 - 3,8 = -0,044.

На практике чаще всего пользуются не погрешностью приближения Δ , а абсолютной величиной этой погрешности |Δ |. В дальнейшем эту абсолютную величину погрешности мы будем называть просто абсолютной погрешностью . Считают, что одно приближение лучше другого, если абсолютная погрешность первого приближения меньше абсолютной погрешности второго приближения. Например, приближение 3,8 для числа 3,756 лучше, чем приближение 3,7, поскольку для первого приближения
|Δ | = | - 0,044| =0,044, а для второго |Δ | = |0,056| = 0,056.

Число а" а с точностью до ε , если абсолютная погрешность этого приближения меньше чем ε :

|а - а" | < ε .

Например, 3,6 есть приближенное значение числа 3,671 с точностью до 0,1, поскольку |3,671 - 3,6| = | 0,071| = 0,071< 0,1.

Аналогично, - 3 / 2 можно рассматривать как приближенное значение числа - 8 / 5 с точностью до 1 / 5 , поскольку

Если а" < а , то а" называется приближенным значением числа а с недостатком .

Если же а" > а , то а" называется приближенным значением числа а с избытком.

Например, 3,6 есть приближенное значение числа 3,671 с недостатком, поскольку 3,6 < 3,671, а - 3 / 2 есть приближенное значение числа - 8 / 5 c избытком, так как - 3 / 2 > - 8 / 5 .

Если мы вместо чисел а и b сложим их приближенные значения а" и b" , то результат а" + b" будет приближенным значением суммы а + b . Возникает вопрос: как оценить точность этого результата, если известна точность приближения каждого слагаемого? Решение этой и подобных ей задач основано на следующем свойстве абсолютной величины:

|а + b | < |a | + |b |.

Конец работы -

Эта тема принадлежит разделу:

Методическое пособие для выполнения практических работ по дисциплине математика часть 1

Методическое пособие для выполнения практических работ по дисциплине.. для профессий начального профессионального образования и специальностей среднего профессионального образования..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Пояснительная записка
Методическое пособие составлено в соответствии с рабочей программой по дисциплине «Математика», разработанной на основе Федерального государственного образовательного стандарта третьего поколения п

Пропорции. Проценты.
Цели урока: 1) Обобщить теоретические знания по теме «Проценты и пропорции». 2) Рассмотреть виды и алгоритмы решений задач на проценты, составление пропорций решить

Пропорция.
Пропорция (от лат. proportio - соотношение, соразмерность), 1) в математике - равенство между двумя отношениями четырёх величин а, в, с,

ПРАКТИЧЕСКАЯ РАБОТА № 2
«Уравнения и неравенства» Цели урока: 1) Обобщить теоретические знания по теме: «Уравнения и неравенства». 2) Рассмотреть алгоритмы решений заданий теме «Ур

Уравнения, содержащие переменную под знаком модуля.
Модуль числа а определяется следующим образом: П р и м е р: Решить уравнение. Р е ш е н и е. Если, то и данное уравнение примет вид. Можно записать так:

Уравнения с переменной в знаменателе.
Рассмотрим уравнения вида. (1) Решение уравнения вида (1) основано на следующем утверждении: дробь равна 0 тогда и только тогда, когда ее числитель равен 0, а знаменатель отличен от нуля.

Рациональные уравнения.
Уравнение f(x) = g(x) называется рациональным, если f(x) и g(x) -рациональные выражения. При этом если f(x) и g(x) - целые выражения, то уравнение называют целым;

Решение уравнений методом введения новой переменной.
Суть метода поясним на примере. П р и м е р: Решить уравнение. Р е ш е н и е. Положим, получим уравнение, откуда находим. Задача сводится к решению совокупности уравнений

Иррациональные уравнения.
Иррациональным называется уравнение, в котором переменная содержится под знаком корня или под знаком возведения в дробную степень. Одним из методов решения таких уравнений является метод воз

Метод интервалов
Пример:Решить неравенство. Решение. ОДЗ: откуда имеем x [-1; 5) (5; +) Решим уравнение Числитель дроби равен 0 при x = -1, это и есть корень уравнения.

Упражнения для самостоятельной работы.
3х + (20 – х) = 35,2, (х – 3) - х = 7 – 5х. (х + 2) - 11(х + 2) = 12. х = х, 3у = 96, х + х + х + 1 = 0, – 5,5n(n – 1)(n + 2,5)(n -

ПРАКТИЧЕСКАЯ РАБОТА № 4
«Функции, их свойства и графики» Цели урока: 1) Обобщить теоретические знания по теме: «Функции, свойства и графики». 2) Рассмотреть алгори

Будет грубой ошибкой, если при оформлении чертежа по небрежности допустить пересечение графика с асимптотой.
Пример 3 Построить правую ветвь гиперболы Используем поточечный метод построения, при этом, значения выгодно подбирать так, чтобы делилось нацело:

Графики обратных тригонометрических функций
Построим график арксинуса Построим график арккосинуса Построим график арктангенса Всего лишь перевернутая ветка тангенса. Перечислим основн

Математические портреты пословиц
Современная математика знает множество функций, и у каждой свой неповторимый облик, как неповторим облик каждого из миллиардов людей, живущих на Земле. Однако при всей непохожести одного человека н


Построить графики функций а)у=х2 ,у=х2+1 ,у=(х-2)2 б)у=1/х, у=1/(x-2),y=1/x -2 на одной координатной плоскости. Построить графики функций c

Натуральные числа

Свойства сложения и умножения натуральных чисел
a + b = b + a - переместительное свойство сложения (a + b) + c = a + (b +c) - сочетательное свойство сложения ab = ba

Признаки делимости натуральных чисел
Если каждое слагаемое делится на некоторое число, то и сумма делится на это число. Если в произведении хотя бы один из множителей делится на некоторое число, то и произведение делитс

Шкалы и координаты
Длины отрезков измеряют линейкой. На линейке (рис. 19) нанесены штрихи. Они разбивают линейку на равные части. Эти части называют делениями. На рисунке 19 длина ка

Рациональные числа
Цели урока: 1) Обобщить теоретические знания по теме «Натуральные числа». 2) Рассмотреть виды и алгоритмы решений задач связанных с понятием натурального числа.

Десятичные дроби. Перевод десятичной дроби в обыкновенную дробь.
Десятичная дробь - это другая форма записи дроби со знаменателем Например, . Если в разложении знаменателя дроби на простые множители содержатся только 2 и 5, то эту дробь можно записать в виде дес

Корень из 2
Допустим противное: рационален, то есть представляется в виде несократимой дроби, где - целое число, а - натуральное число. Возведём предполагаемое равенство в квадрат: . Отсюда

Абсолютная величина суммы любых двух чисел не превышает суммы их абсолютных величин.
ПОГРЕШНОСТИ Разница между точным числом x и его приближенным значением a называется погрешностью данного приближенного числа. Если известно, что | x - a | < a, то величина a называется

Базовый уровень
Пример.Вычислить. Решение: . Ответ: 2,5. Пример. Вычислить. Решение: Ответ: 15.


Существуют различные типы упражнений на тождественные преобразования выражений. Первый тип: явно указано то преобразование, которое необходимо выполнить. Например. 1

Задачи для самостоятельного решения
Отметьте номер правильного ответа: Результат упрощения выражения имеет вид 1. ; 4. ; 2. ; 5. . 3. ; Значение выражения равно 1) 4; 2) ; 3)

Задачи для самостоятельного решения
Найдите значение выражения 1. .2. . 2. . 3. . 4. . 5. .7. . 6.. при. 7.. при. 8.. при. 9. при. 1

Задачи для самостоятельного решения
Вопрос 1. Найдите логарифм 25 по основанию 5. Вопрос 2. Найдите логарифм по основанию 5. Вопрос 3.

ПРАКТИЧЕСКАЯ РАБОТА № 17
«Аксиомы стереометрии и следствия из них» Цель урока: 1) Обобщить теоретические знания

В самых разнообразных теоретических и прикладных исследованиях широко используются методы математического моделирования, которые сводят решение задач данной области исследования к решению адекватных (или приближенно адекватных) им математических задач. Необходимо довести решение этих задач до получения числового результата (вычисления различного рода величин, решения различных типов уравнений и т.п.). Целью вычислительной математики является разработка алгоритмов численного решения обширного круга математических задач. Методы должны быть разработаны так, чтобы их можно было эффективно реализовать с помощью современной вычислительной техники. Как правило, рассматриваемые задачи не допускают точного решения, поэтому речь идет о разработке алгоритмов, дающих приближенное решение. Для возможности замены неизвестного точного решения задачи приближенным необходимо, чтобы последнее было достаточно близко к точному. В связи с этим возникает необходимость оценки близости приближенного решения к точному и разработки приближенных методов построения приближенных решений, сколько угодно близких к точным.

Схематически вычислительный процесс заключается в том, чтобы для данной величины x (числовой, векторный и т.д.) вычислить значение некоторой функции A(x) . Разность между точным и приближенным значениями величины называют погрешностью . Точное вычисление значения A(x) обычно невозможно, и вынуждает заменить функцию (операцию) A ее приближенным представлением Ã , которое можно вычислить: вычисление величины A(x) , заменяется вычислением- Ã(x) A(x) - Ã(x) называют погрешностью метода . Способ оценки этой погрешности должен быть разработан вместе с разработкой метода вычисления величины Ã(x) . Из возможных методов построения приближения следует использовать тот, который при имеющихся средствах и возможностях дает наименьшую погрешность.

Значение величины x , то есть исходных данных, в реальных задачах получается или непосредственно из измерений, или в результате предыдущего этапа вычислений. В этих случаях определяется лишь приближенное значение x o величины x . Поэтому вместо величины Ã(x) может быть вычислено лишь приближенное ее значение Ã(x o) . Возникающую при этом погрешность A(x) - Ã(x o) называют неустранимой . В результате неизбежных в ходе вычислений округлений, вместо величины Ã(x o) вычисляется ее «округленное» значение , что приводит к появлению погрешности округления Ã(x o) - . Полная погрешность вычислиниия оказывается равной A(x) - .

Представим полную погрешность в виде

A(x) - = [A(x) - ] + [ - Ã(x o) ] +

+ [Ã(x o) - ] (1)

Последнее равенство показывает, что полная погрешность вычисления равна сумме погрешности метода, неустранимой погрешности и погрешности округления. Первые две составляющие погрешности можно оценить до начала вычислений. Погрешность округления оценивается лишь в ходе вычислений.

Рассмотрим следующие задачи:

а) характеристика точности приближенных чисел

б) оценка точности результата при известной точности исходных данных (оценка неустранимой погрешности)

в) определение необходимой точности исходных данных для обеспечения заданной точности результата

г) согласование точности исходных данных и вычислений с возможностями имеющихся вычислительных средств.

4 Погрешности измерений

4.1 Истинные и действительные значения физических величин. Погрешность измерения. Причины возникновения погрешностей измерений

При анализе измерений следует четко разграничивать два понятия: истинные значения физических величин и их эмпирические проявления - результаты измерений.

Истинные значения физических величин - это значения, идеальным образом отражающие свойства данного объекта как в количественном, так и в качественном отношении. Они не зависят от средств измерений и являются той абсолютной истиной, к которой стремятся при измерениях.

Напротив, результаты измерений являются продуктами познания. Представляя собой приближенные оценки значений величин, найденные в результате измерений, они зависят от метода измерений, от средств измерений и других факторов.

Погрешностью измерения называется разница между результатом измерения х и истинным значением Q измеряемой величины:

Δ= x – Q (4.1)

Но поскольку истинное значение Q измеряемой величины неизвестно, то для определения погрешности измерения в формулу (4.1) вместо истинного значения подставляют так называемое действительное значение.

Под действительным значением измеряемой величины понимается ее значение, найденное экспериментально и настолько приближающееся к истинному, что для данной цели оно может быть использовано вместо него.

Причинами возникновения погрешностей являются: несовершенство методов измерений, средств измерений и органов чувств наблюдателя. В отдельную группу следует объединить причины, связанные с влиянием условий проведения измерений. Последние проявляются двояко. С одной стороны, все физические величины, играющие какую-либо роль при проведении измерений, в той или иной степени зависят друг от друга. Поэтому с изменением внешних условий изменяются истинные значения измеряемых величин. С другой стороны, условия проведения измерений влияют и на характеристики средств измерений и физиологические свойства органов чувств наблюдателя и через их посредство становятся источником погрешностей измерений.

4.2 Классификация погрешностей измерений в зависимости от характера их изменения

Описанные причины возникновения погрешностей являются совокупностью большого числа факторов, под влиянием которых складывается суммарная погрешность измерения. Их можно объединить в две основные группы.

К первой группе можно отнести факторы, проявляющиеся нерегулярно и неожиданно исчезающие или проявляющиеся с интенсивностью, которую трудно предвидеть. К ним относятся, например, малые флуктуации влияющих величин (температуры, давления окружающей среды и т.п.). Доля, или составляющая, суммарной погрешности измерения, возникающая под действием факторов этой группы, определяет случайную погрешность измерения.

Таким образом, случайная погрешность измерения - составляющая погрешности измерения, изменяющаяся случайным образом при повторных измерениях одной и той же величины.

При создании средств измерений и организации процесса измерения в целом интенсивность проявления факторов, определяющих случайную погрешность измерения, удается свести к общему уровню, так что все они влияют более или менее одинаково на формирование случайной погрешности. Однако некоторые из них, например, внезапное падение напряжения в сети электропитания, могут проявиться неожиданно сильно, в результате чего погрешность примет размеры, явно выходящие за границы, обусловленные ходом измерительного эксперимента. Такие погрешности в составе случайной погрешности называются грубыми . К ним тесно примыкают промахи - погрешности, зависящие от наблюдателя и связанные с неправильным обращением со средствами измерений, неверным отсчетом показаний или ошибками при записи результатов.

Ко второй группе можно отнести факторы, постоянные или закономерно изменяющиеся в процессе измерительного эксперимента, например, плавные изменения влияющих величин. Составляющая суммарной погрешности изме­рения, возникающая под действием факторов этой группы, определяет система­тическую погрешность измерения.

Таким образом, систематическая погрешность измерения - составляющая погрешности измерения, остающаяся постоянной или закономерно изменяющаяся при повторных измерениях одной и той же величины.

В процессе измерения описанные составляющие погрешности проявляются одновременно, и суммарную погрешность можно представить в виде суммы

, (4.2)

где - случайная,a Δ s - систематическая погрешности.

Для получения результатов, минимально отличающихся от истинных значений величин, проводят многократные наблюдения за измеряемой величиной с последующей обработкой опытных данных. Поэтому большое значение имеет изучение погрешности как функции номера наблюдения, т.е. времени A (t). Тогда отдельные значения погрешностей можно будет трактовать как набор значений этой функции:

Δ 1 = Δ(t 1), Δ 2 = Δ(t 2),..., Δ n = Δ(t n).

В общем случае погрешность является случайной функцией времени, которая отличается от классических функций математического анализа тем, что нельзя сказать, какое значение она примет в момент времени t i . Можно указать лишь вероятности появления ее значений в том или ином интервале. В серии экспериментов, состоящих из ряда многократных наблюдений, мы получаем одну реализацию этой функции. При повторении серии при тех же значениях величин, характеризующих факторы второй группы, неизбежно получаем новую реализацию, отличающуюся от первой. Реализации отличаются друг от друга из-за влияния факторов первой группы, а факторы второй группы, одинаково проявляющиеся при получении каждой реализации, придают им некоторые общие черты (рисунок 4.1).

Погрешность измерений, соответствующая каждому моменту времени t i , на­зывается сечением случайной функции Δ(t). В каждом сечении можно найти среднее значение погрешности Δ s (t i), относительно которого группируются погрешности в различных реализациях. Если через полученные таким образом точки Δ s (t i) провести плавную кривую, то она будет характеризовать общую тенденцию изменения погрешности во времени. Нетрудно заметить, что средние значения Δ s (tj) определяются действием факторов второй группы и представляют собой систематическую погрешность измерения в момент времени t i , а отклонения Δ j (t j) от среднего значения в сечении t i , соответствующие j-й реализации, дают значение случайной погрешности. Таким образом, имеет место равенство

(4.3)

Рисунок 4.1

Предположим, что Δ s (t i) = 0, т.е. систематические погрешности тем или иным способом исключены из результатов наблюдений, и будем рассматривать только случайные погрешности, средние значения которых равны нулю в каждом сечении. Предположим, что случайные погрешности в различных сечениях не зависят друг от друга, т.е. знание случайной погрешности в одном сечении не дает нам никакой дополнительной информации о значении, принимаемом этой реализацией в любом сечении, и что все теоретико-вероятностные особенности случайных погрешностей, являющихся значениями одной реализации во всех сечениях, совпадают между собой. Тогда случайную погрешность можно рассматривать как случайную величину, а ее значения при каждом из многократных наблюдений одной и той же физической величины – как результаты независимых наблюдений над ней.

В таких условиях случайная погрешность измерений определяется как разность между исправленным результатом измерения Х И (результатом, не содержащем систематическую погрешность) и истинным значением Q измеряемой величины:

Δ = X И –Q 4.4)

причем исправленным будет результат измерений, из которого будут исключены систематические погрешности.

Подобные данные получают обычно при поверке средств измерений путем измерения заранее известных величин. При проведении же измерений целью является оценка истинного значения измеряемой величины, которое до опыта неизвестно. Результат измерения включает в себя помимо истинного значения еще и случайную погрешность, следовательно, сам является случайной величиной. В этих условиях фактическое значение случайной погрешности, полученное при поверке, еще не характеризует точности измерений, поэтому неясно, какое же значение принять за окончательный результат измерения и как охарактеризовать его точность.

Ответ на эти вопросы можно получить, используя при обработке результатов наблюдений методы математической статистики, имеющие дело именно со случайными величинами.

4.3 Классификация погрешностей измерений в зависимости от причин их возникновения

В зависимости от причин возникновения различают следующие группы погрешностей: методические, инструментальные, внешние и субъективные.

Во многих методах измерений можно обнаружить методическую погрешность ,являющуюся следствием тех или иных допущений и упрощений, применения эмпирических формул и функциональных зависимостей. В некоторых случаях влияние таких допущений оказывается незначительным, т.е. намного меньше, чем допускаемые погрешности измерений; в других случаях оно превышает эти погрешности.

Примером методических погрешностей являются погрешности метода измерений электрического сопротивления при помощи амперметра и вольтметра (рисунок 4.2). Если сопротивление R x определять по формуле закона Ома R x =U v /I a , где U v - падение напряжения, измеренное вольтметром V; I а - сила тока, измеренная амперметром А, то в обоих случаях будут допущены методические погрешности измерений.

На рисунке 4.2,а сила тока I а, измеренная амперметром, будет больше силы тока в сопротивлении R x на значение силы тока I v в вольтметре, включаемом параллельно сопротивлению. Сопротивление R x , вычисленное с помощью приведенной формулы, окажется меньше действительного. На рисунке 4.2,6 напряжение, измеренное вольтметром V, окажется больше падения напряжения U r в сопротивлении R x на значение U a (падение напряжения на сопротивлении амперметра А). Сопротивление, вычисленное по формуле закона Ома, окажется больше сопротивления R x на значение R a (сопротивление амперметра). Поправки в обоих случаях можно легко вычислить, если знать сопротивление вольтметра и амперметра. Поправки можно не вносить в том случае, если они значительно меньше допускаемой погрешности измерения сопротивления R x , например, если в первом случае сопротивление вольтметра значительно б

ОльшеR x , а во втором случае R a значительно меньше R x .

Рисунок 4.2

Другим примером появления методической погрешности является измерение объема тел, форма которых принимается геометрически правильной, путем измерения размеров в одном или в недостаточном числе мест, например, измерение объема помещения путем измерения длины, ширины и высоты только в трех направлениях. Для точного определения объема следовало бы определить длину и ширину помещения по каждой стене, вверху и внизу, измерить высоту по углам и в середине и, наконец, углы между стенами. Этот пример иллюстрирует возможность появления существенной методической погрешности при не­обоснованном упрощении метода.

Как правило, методическая погрешность является систематической погрешностью.

Инструментальная погрешность - это составляющая погрешности из-за несовершенства средств измерений. Классическим примером такой погрешно­сти является погрешность измерительного прибора, вызванная неточной гра­дуировкой его шкалы. Очень важно четко разграничивать погрешности измере­ний и инструментальные погрешности. Несовершенство средств измерений яв­ляется лишь одним из источников погрешности измерения и определяет только одну из ее составляющих − инструментальную погрешность. В свою очередь инструментальная погрешность является суммарной, составляющие которой − погрешности функциональных узлов − могут быть как систематическими, так и случайными.

Внешняя погрешность - составляющая погрешности измерения, вызывае­мая отклонением одной или нескольких влияющих величин от нормальных значений или выходом их за пределы нормальной области (например, влияние температуры, внешних электрических и магнитных полей, механических воздействий и т.п.). Как правило, внешние погрешности определяются дополнительными погрешностями применяемых средств измерений и являются систематическими. Однако при нестабильности влияющих величин они могут стать случайными.

Субъективная (личная) погрешность обусловлена индивидуальными особенностями экспериментатора и может быть как систематической, так и случайной. При применении современных цифровых средств измерений субъективной погрешностью можно пренебречь. Однако при отсчете показаний стрелочных приборов такие погрешности могут быть и значительными из-за неправильного отсчета десятых долей деления шкалы, асимметрии, возникающей при установке штриха посередине между двумя рисками, и т.п. Например, погрешности, которые делает экспериментатор при оценивании десятых долей деления шкалы прибора, могут достигать 0,1 деления. Эти погрешности проявляются в том, что для разных десятых долей деления разным экспериментаторам свойственны различные частоты оценок, причем каждый экспериментатор сохраняет присущее ему распределение в течение длительного времени. Так, один экспериментатор чаще, чем следует, относит показания к линиям, обра­зующим края деления, и к значению 0,5 деления. Другой - к значениям 0,4 и 0,6 деления. Третий предпочитает значения 0,2 и 0,8 деления и т.д. В целом, имея в виду случайного экспериментатора, распределение погрешностей отсчитывания десятых долей деления можно считать равномерным с границами ±0,1 деления.

4.4 Формы представления погрешности измерения. Точность измерений

Погрешность измерения может быть представлена в форме абсолютной погрешности, выражаемой в единицах измеряемой величины и определяемой по формуле (4.1), или относительной погрешности, определяемой как отношение абсолютной погрешности к истинному значению измеряемой величины:

δ = Δ/Q. (4.5)

В случае выражения случайной погрешности в процентах, отношение Δ/Q умножается на 100 %. Кроме того, в формуле (4.5) допускается вместо истинного значения Q использовать результат измерения х.

Широко применяется также понятие точность измерений − характеристика, отражающая близость их результатов к истинному значению измеряемой величины. Другими словами, высокая точность соответствует малым погрешностям измерений. Поэтому количественно точность измерений можно оценить величиной, обратной модулю относительной погрешности

3.2. Округление

Одним из источников получения приближенных чисел является о кругление. Округляют как точные, так и приближенные числа.

Округлением данного числа до некоторого его разряда называют замену его новым числом, которое получается из данного путемотбрасывания всех его цифр, записанныхправее цифры этого разряда, или путем замены его нулями. Этинули обычноподчеркивают или пишут их меньшими . Для обеспечения наибольшей близости округленного числа к округляемому следует пользоваться такимиправилами :

чтобы округлить число до единицы определенного разряда, надо отбросить все цифры, стоящие после цифры этого разряда, а в целом числе заменить их нулями. При этом учитывают следующее:

1 ) если первая (слева) из отбрасываемых цифрменее 5 , то последнюю оставленную цифру не изменяют (округление снедостатком );

2 ) если первая отбрасываемая цифрабольше 5 или равна 5 , то последнюю оставленную цифру увеличивают на единицу (округление сизбытком ).*

Например :

Округлить :Ответы:

а ) до десятых 12,34; 12,34 ≈ 12,3;

б ) до сотых 3,2465; 1038,785; 3,2465 ≈ 3,25; 1038,785 ≈ 1038,79;

в ) до тысячных 3,4335; 3,4335 ≈ 3,434;

г ) до тысяч 12 375, 320 729. 12 375 ≈ 12000 ; 320 729 ≈ 321 000.

(* Несколько лет назад в случае отбрасывания одной лишь цифры 5 пользовались«правилом четной цифры»: последнюю цифру оставляли без изменения, если она четная, и увеличивали на единицу, если нечетная. Теперь «правила четной цифры»не придерживаются: если отбрасывают одну цифру5 , то к последней оставленной цифре добавляют единицу не зависимо от того, четная она или нечетная).

3.3. Абсолютная и относительная погрешность приближенного значения величин

Абсолютное значение разности между приближенным и точным (истинным) значением величины называетсяабсолютной погрешностью приближенного значения.Например , если точное число1,214 округлить до десятых, то получим приближенное число1,2 . В данном случае абсолютная погрешность приближенного числа составит1,214 – 1,2 = 0,014 .

Но в большинстве случаев точное значение рассматриваемой величины неизвестно, а только приближенное. Тогда и абсолютная погрешность неизвестна. В этих случаях указывают границу , которую она не превышает. Это число называютграничной абсолютной погрешностью. Говорят, что точное значение числа равно его приближенному значению с погрешностью меньшей, чем граничная погрешность.Например , число23,71 есть приближенное значение числа23,7125 с точностью до0,01 , так как абсолютная погрешность приближения равна0,0025 и меньше0,01 . Здесь граничная абсолютная погрешность равна0,01 .*

(* Абсолютная погрешность бывает и положительной и отрицательной.Например ,1,68 ≈ 1,7 . Абсолютная погрешность равна1,68 – 1,7 ≈ - 0,02 .Граничная погрешность всегда положительна).

Граничную абсолютную погрешность приближенного числа «а » обозначают символомΔ а . Запись

Х ≈ а (Δа)

следует понимать так: точное значение величины х находится в промежутке между числамиа а и а –Δ а, которые называют соответственнонижней иверхней границей х и обозначаютН Гх иВ Гх .

Например , еслих ≈ 2,3 ( 0,1), то2,2 < х < 2,4 .

Наоборот, если 7,3 < х < 7,4 , тох ≈ 7,35 ( 0,05).

Абсолютная или граничная абсолютная погрешность не характеризуют качество выполненного измерения. Одна и та же абсолютная погрешность может считаться значительной и незначительной в зависимости от числа, которым выражается измеряемая величина.

Например , если измеряем расстояние между двумя городами с точностью до одного километра, то такая точность вполне достаточна для этого измерения, в то же время при измерении расстояния между двумя домами одной улицы такая точность будет недопустимой.

Следовательно, точность приближенного значения величины зависит не только от величины абсолютной погрешности, но и от значения измеряемой величины. Поэтому мерой точности служит относительная погрешность.

Относительной погрешностью называется отношение абсолютной погрешности к величине приближенного числа. Отношение граничной абсолютной погрешности к приближенному числу называютграничной относительной погрешностью ; обозначают её так:Δ а/а . Относительную и граничную относительную погрешности принято выражатьв процентах .

Например , если измерения показали, что расстояние между двумя пунктами больше12,3 км , но меньше12,7 км , то заприближенное значение его принимаютсреднее арифметическое этих двух чисел, т.е. ихполусумму , тогдаграничная абсолютная погрешность равнаполуразности этих чисел. В данном случаех ≈ 12,5 ( 0,2). Здесь граничнаяабсолютная погрешность равна0,2 км , а граничнаяотносительная:

Абсолютная и относительная погрешности

Абсолютной погрешностью измерения называется величина, определяемая разницей между результатом измерения x и истинным значением измеряемой величины x 0:

Δx = |x x 0 |.

Величина δ, равная отношению абсолютной погрешности измерения к результату измерения, называется относительной погрешностью:

Пример 2.1. Приближённым значением числа π является 3.14. Тогда погрешность его равна 0.00159… . Абсолютную погрешность можно считать равной 0.0016, а относительную погрешность равной 0.0016 / 3.14 = 0.00051 = 0.051 %.

Значащие цифры. Если абсолютная погрешность величины a не превышает одной единицы разряда последней цифры числа a, то говорят, что у числа все знаки верные. Приближённые числа следует записывать, сохраняя только верные знаки. Если, например, абсолютная погрешность числа 52 400 равна 100, то это число должно быть записано, например, в виде 524 · 10 2 или 0.524 · 10 5. Оценить погрешность приближённого числа можно, указав, сколько верных значащих цифр оно содержит. При подсчёте значащих цифр не считаются нули с левой стороны числа.

Например, число 0.0283 имеет три верных значащих цифры, а 2.5400 – пять верных значащих цифр.

Правила округления чисел . Если приближённое число содержит лишние (или неверные) знаки, то его следует округлить. При округлении возникает дополнительная погрешность, не превышающая половины единицы разряда последней значащей цифры (d ) округлённого числа. При округлении сохраняются только верные знаки; лишние знаки отбрасываются, причём если первая отбрасываемая цифра больше или равна d /2, то последняя сохраняемая цифра увеличивается на единицу.

Лишние цифры в целых числах заменяются нулями, а в десятичных дробях отбрасываются (как и лишние нули). Например, если погрешность измерения 0.001 мм, то результат 1.07005 округляется до 1.070. Если первая из изменяемых нулями и отбра­сываемых цифр меньше 5, остающиеся цифры не изменяются. Например, число 148 935 с точностью измерения 50 имеет округление 148 900. Если первая из заменяемых нулями или отбрасываемых цифр равна 5, а за ней не следует никаких цифр или идут нули, то округление производится до ближайшего чётного числа. Например, число 123.50 округляется до 124. Если первая из заменяемых нулями или отбрасываемых цифр больше 5 или равна 5, но за ней следует значащая цифра, то последняя остающаяся цифра увеличивается на единицу. Например, число 6783.6 округляется до 6784.

Пример 2.2. При округлении числа 1284 до 1300 абсолютная погрешность составляет 1300 – 1284 = 16, а при округлении до 1280 абсолютная погрешность составляет 1280 – 1284 = 4.

Пример 2.3. При округлении числа 197 до 200 абсолютная погрешность составляет 200 – 197 = 3. Относительная погрешность равна 3/197 ≈ 0.01523 или приближённо 3/200 ≈ 1.5 %.

Пример 2.4. Продавец взвешивает арбуз на чашечных весах. В наборе гирь наименьшая – 50 г. Взвешивание дало 3600 г. Это число – приближённое. Точный вес арбуза неизвестен. Но абсолютная погрешность не превышает 50 г. Относительная погрешность не превышает 50/3600 = 1.4 %.

Погрешности решения задачи на PC

В качестве основных источников погрешности обычно рассматривают три вида ошибок. Это так называемые ошибки усечения, ошибки округления и ошибки распространения. Например, при использовании итерационных методов поиска корней нелинейных уравнений результаты являются приближёнными в отличие от прямых методов, дающих точное решение.

Ошибки усечения

Этот вид ошибок связан с погрешностью, заложенной в самой задаче. Он может быть обусловлен неточностью определения исходных данных. Например, если в условии задачи заданы какие-либо размеры, то на практике для реальных объектов эти размеры известны всегда с некоторой точностью. То же самое касается любых других физических параметров. Сюда же можно отнести неточность расчётных формул и входящих в них числовых коэффициентов.

Ошибки распространения

Данный вид ошибок связан с применением того или иного способа решения задачи. В ходе вычислений неизбежно происходит накопление или, иначе говоря, распространение ошибки. Помимо того, что сами исходные данные не являются точными, новая погрешность возникает при их перемножении, сложении и т. п. Накопление ошибки зависит от характера и количества арифметических действий, используемых в расчёте.

Ошибки округления

Это тип ошибок связан с тем, что истинное значение числа не всегда точно сохраняется компьютером. При сохранении вещественного числа в памяти компьютера оно записывается в виде мантиссы и порядка примерно так же, как отображается число на калькуляторе.