Решение квадратных уравнений с параметром графическим способом. Графический метод решения уравнений с параметрами. Задача для самостоятельного решения


1. Определение личностной мотивации учащихся. Для продолжения образования, для саморазвития и интеллектуального роста необходимо прилежно и осознанно учиться и заботиться о своем здоровье. 2. Выход на понятие «параметр». Параметр – величина, характеризующая основные свойства изменения системы или явления. (толковый словарь)


В уравнениях (неравенствах) коэффициенты при неизвестных или свободные члены заданные не конкретными числовыми значениями, а обозначенные буквами называются параметрами. Пример: Решить задачу с параметром – это значит, для каждого значения параметра найти значения x, удовлетворяющие условию этой задачи.


Х у х у a > 0 a 0, (2 корня) 0 a 0, (2 корня)"> 0 a 0, (2 корня)"> 0 a 0, (2 корня)" title="х у х у a > 0 a 0, (2 корня)"> title="х у х у a > 0 a 0, (2 корня)">






Х ууууу хох




2. при уравнение примет вид, и имеет корень х =0. 3. при находим корни уравнения по формуле Ответ: при корней нет; при один корень х =0. при два корня 1. левая часть уравнения неотрицательна при любом значении неизвестной х,. при решений нет. х у 0 у = а «СМОТРИ!» 1 способ (аналитический) 2 способ (графический)




У При каких значениях параметра а уравнение имеет одно решение? Запишем уравнение в виде: х Построим графики функций: Ответ: а =3 и подвижную прямую у = а. а


При каких значениях параметра а уравнение не имеет решений? х у Построим график По рисунку видим при и прямую у = а. решений нет. а Ответ:


(Графический способ решения задач с параметром) Задачу с параметром можно рассматривать как функцию f (x; a) =0 1. Строим графический образ 2. Пересекаем полученный график прямыми параллельными оси абсцисс 3. «Считываем» нужную информацию Схема решения: !!!


3 Ответ: 1 корень " title="Указать количество корней уравнения f(x)= а при всех значениях параметра а. 1 35-2 1 х а -5 3 1 корень, а3 Ответ: 1 корень " class="link_thumb"> 15 Указать количество корней уравнения f(x)= а при всех значениях параметра а х а корень, а3 Ответ: 1 корень при a 3 2 корня при а=-5, а=3 3 корня при 1 3 Ответ: 1 корень "> 3 Ответ: 1 корень при a 3 2 корня при а=-5, а=3 3 корня при 1 3 Ответ: 1 корень " title="Указать количество корней уравнения f(x)= а при всех значениях параметра а. 1 35-2 1 х а -5 3 1 корень, а3 Ответ: 1 корень "> title="Указать количество корней уравнения f(x)= а при всех значениях параметра а. 1 35-2 1 х а -5 3 1 корень, а3 Ответ: 1 корень ">


Х у у При каких значениях параметра а уравнение имеет два корня? х у х


1)При а = 3, вершина прямого угла; Найти сумму целых значений параметра а при которых уравнение имеет три корня. Исходное уравнение равносильно совокупности В ыражая параметр а, получаем: Из рисунка видно, что уравнение имеет три корня в 3 случаях х а а 1 = 3 а 2 = ? а 3 = ? Тогда а = = 5. Ответ. 8. 2) При x 4, а 2 = 5 а 3 а 3 4, а 2 = 5 а 3 а 3">



ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ

ИНСТИТУТ РАЗВИТИЯ ОБРАЗОВАНИЯ

«Графические методы решения уравнений и неравенств с параметрами»

Выполнил

учитель математики

МОУ СОШ №62

Липецк 2008

ВВЕДЕНИЕ.................................................................................................... 3

х ;у ) 4

1.1. Параллельный перенос........................................................................... 5

1.2. Поворот................................................................................................... 9

1.3. Гомотетия. Сжатие к прямой................................................................ 13

1.4. Две прямые на плоскости..................................................................... 15

2. ГРАФИЧЕСКИЕ ПРИЕМЫ. КООРДИНАТНАЯ ПЛОСКОСТЬ (х ;а ) 17

ЗАКЛЮЧЕНИЕ........................................................................................... 20

БИБЛИОГРАФИЧЕСКИЙ СПИСОК........................................................ 22

ВВЕДЕНИЕ

Проблемы, возникающие у школьников при решении нестандартных уравнений и неравенств, вызваны как относительной сложностью этих задач, так и тем, что в школе, как правило, основное внимание уделяется решению стандартных задач.

Многие школьники воспринимают параметр как «обычное» число. Действительно, в некоторых задачах параметр можно считать посто­янной величиной, но эта постоянная величина принимает неизвестные значения! Поэтому необходимо рассматривать задачу при всех возмож­ных значениях этой постоянной величины. В других задачах бывает удобно искусственно объявить параметром одну из неизвестных.

Иные школьники относятся к параметру как к неизвестной величине и, не смущаясь, могут выразить в ответе параметр через переменную х.

На выпускных и вступительных экзаменах встречаются, в осно­вном, два типа задач с параметрами. Вы сразу отличите их по формулировке. Первый: «Для каждого значения параметра найти все решения некоторого уравнения или неравенства». Второй: «Найти все значения параметра, при каждом из которых для данного уравнения или неравенства выполняются некоторые условия». Соответственно и ответы в задачах этих двух типов различаются по существу. В ответе к задаче первого типа перечисляются все возможные значения параметра и для каждого из этих значений записываются решения уравнения. В ответе к задаче второго типа указываются все значения параметра, при которых выполняются условия, указанные в задаче.

Решением уравнения с параметром для данного фиксированного зна­чения параметра называется такое значение неизвестной, при подста­новке которого в уравнение, последнее обращается в верное числовое ра­венство. Аналогично определяется решение неравенства с параметром. Решить уравнение (неравенство) с параметром - это значит для каждого допустимого значения параметра найти множество всех решений данного уравнения (не­равенства).

1. ГРАФИЧЕСКИЕ ПРИЕМЫ. КООРДИНАТНАЯ ПЛОСКОСТЬ (х ;у )

Наряду с основными аналитическими при­емами и методами решений задач с параметрами существуют способы обраще­ния к наглядно-графическим интерпретациям.

В зависимости от того какая роль параметру отводится в задаче (неравноправная или равноправная с переменной), можно соответственно выделить два основных графических приема: первый – построение графического образа на коорди­натной плоскости ; у), второй – на ; а).

На плоскости (х; у) функция у = f ; а) задает семейство кривых, зависящих от параметра а. Понятно, что каждое семейство f обладает определенными свойствами. Нас же в первую очередь будет интересовать, с помощью какого преобра­зования плоскости (параллельный перенос, поворот и т. д.) можно перейти от одной кривой семейства к какой-либо другой. Каждому из таких преобразований будет посвящен отдельный пункт. Как нам кажется, подобная классификация облегчает решающему поиск необходимого графического образа. Отметим, что при таком подходе идейная часть решения не зависит от того, какая фигура (прямая, окружность, парабола и т. п.) будет являться членом семейства кривых.

Разумеется, не всегда графический образ семейства у = f ; а) описывается простым преобразованием. Поэтому в подобных ситуациях полезно сосредоточить внимание не на том, как связаны кривые одного семейства, а на самих кривых. Иными словами можно выделить еще один тип задач, в которых идея решения прежде всего основана на свойствах конкретных геометрических фигур, а не семейства в целом. Какие же фигуры (точнее семейства этих фигур) нас будут интересовать в первую очередь? Это прямые и параболы. Такой выбор обусловлен особым (основным) положением линейной и квадратичной функций в школьной математике.

Говоря о графических методах, невозможно обойти одну проблему, «рожденную» практикой конкурсного экзамена. Мы имеем в виду вопрос о строгости, а следовательно, о законности решения, основанного на графических соображениях. Несомнен­но, с формальной точки зрения результат, снятый с «картинки», не подкрепленный аналитически, получен нестрого. Однако кем, когда и где определен уровень строгости, которого следует придерживаться старшекласснику? По нашему мнению, требования к уровню математической строгости для школьника должны определяться здравым смыслом. Мы понимаем степень субъек­тивности такой точки зрения. Более того, графический метод – всего лишь одно из средств наглядности. А наглядность может быть обманчивой..gif" width="232" height="28"> имеет единственное решение.

Решение. Для удобства обоз­начим lg b = а. Запишем урав­нение, равносильное исходному: https://pandia.ru/text/78/074/images/image004_56.gif" width="125" height="92">

Строим график функции с областью определе­ния и (рис. 1). Полученный график семейство прямых у = а должно пересекать только в одной точке. Из рисунка видно, что это требование выполняется лишь при а > 2, т. е. lg b > 2, b > 100.

Ответ. https://pandia.ru/text/78/074/images/image010_28.gif" width="15 height=16" height="16"> определить число решений уравнения .

Решение . Построим график функции 102" height="37" style="vertical-align:top">



Рассмотрим . Это прямая параллельна оси ОХ.

Ответ ..gif" width="41" height="20">, то 3 решения;

если , то 2 решения;

если , 4 решения.

Перейдем к новой серии задач..gif" width="107" height="27 src=">.

Решение. Построим прямую у = х +1 (рис. 3)..gif" width="92" height="57">

иметь одно решение, что равносильно для уравнения (х +1)2 = х + а иметь один корень..gif" width="44 height=47" height="47"> исходное неравенство решений не имеет. Заметим, что тот, кто знаком с произ­водной, может получить этот результат иначе.

Далее, смещая «полупараболу» влево, зафиксируем послед­ний момент, когда графики у = х + 1 и имеют две общие точки (положение III). Такое расположение обеспечива­ется требованием а = 1.

Ясно, что при отрезок [х 1; х 2], где х 1 и х 2 – абсциссы точек пересечения графиков, будет решением исходно­го неравенства..gif" width="68 height=47" height="47">, то

Когда «полупарабола» и прямая пересекаются только в одной точке (это соответствует случаю а > 1), то решением будет отрезок [-а ; х 2"], где х 2" – больший из корней х 1 и х 2 (положение IV).

Пример 4 ..gif" width="85" height="29 src=">.gif" width="75" height="20 src=">. Отсюда получаем .

Рассмотрим функции и . Среди них лишь одна задает семейство кривых. Теперь мы видим, что произведенная замена приносит несомненную пользу. Парал­лельно отметим, что в предыдущей задаче аналогичной заменой можно заставить двигаться не «полупараболу», а прямую. Обратимся к рис. 4. Очевидно, если абсцисса вершины «полупараболы» больше единицы, т. е. –3а > 1, , то уравнение корней не имеет..gif" width="89" height="29"> и име­ют разный характер моно­тонности.

Ответ. Если то уравнение имеет один корень; если https://pandia.ru/text/78/074/images/image039_10.gif" width="141" height="81 src=">

имеет решения.

Решение. Ясно, что прямые семейства https://pandia.ru/text/78/074/images/image041_12.gif" width="61" height="52">..jpg" width="259" height="155">

Значение k1 найдем, подставив в первое уравнение системы пару (0;0). Отсюда k 1 =-1/4. Значение k 2 получим, потребовав от системы

https://pandia.ru/text/78/074/images/image045_12.gif" width="151" height="47"> при k > 0 иметь один корень. Отсюда k2 = 1/4.

Ответ. .

Сделаем одно замечание. В некоторых примерах этого пункта нам придется решать стандартную задачу: для прямой семейства находить ее угловой коэффициент, соответствующий моменту касания с кривой. Покажем, как это сделать в общем виде при помощи производной.

Если (х0 ; y 0) = центр поворота, то координаты 1; у 1) точки касания с кривой у = f (х) можно найти, решив систему

Искомый угловой коэффициент k равен .

Пример 6 . При каких значениях параметра уравнение имеет единственное решение?

Решение ..gif" width="160" height="29 src=">..gif" width="237" height="33">, дуга АВ.

Все лучи проходящие между ОА и ОВ пересекают дугу АВ в одной точке, также в одной точке пересекают дугу АВ ОВ и ОМ (касательная)..gif" width="16" height="48 src=">. Угловой коэффициент касательной равен . Легко находится из системы

Итак, прямые семейства https://pandia.ru/text/78/074/images/image059_7.gif" width="139" height="52">.

Ответ . .

Пример 7 ..gif" width="160" height="25 src="> имеет решение?

Решение ..gif" width="61" height="24 src="> и убывает на . Точка - является точкой максимума.

Функция же - это семейство прямых, проходящих через точку https://pandia.ru/text/78/074/images/image062_7.gif" width="153" height="28"> является дуга АВ. Прямые , которые будут находиться между прямыми ОА и ОВ, удовлетворяют условию задачи..gif" width="17" height="47 src=">.

Ответ ..gif" width="15" height="20">решений нет.

1.3. Гомотетия. Сжатие к прямой.

Пример 8. Сколько решений имеет система

https://pandia.ru/text/78/074/images/image073_1.gif" width="41" height="20 src="> система решений не имеет. При фиксированном а > 0 графиком первого уравнения является квадрат с вершинами (а ; 0), (0;-а ), (-a ;0), (0;а). Таким образом, членами семейства являются гомотетичные квадраты (центр гомотетии – точка О(0; 0)).

Обратимся к рис. 8..gif" width="80" height="25"> каж­дая сторона квадрата име­ет две общие точки с ок­ружностью, а значит, сис­тема будет иметь восемь решений. При окружность окажется вписанной в квадрат, т. е. решений станет опять четыре. Очевидно при система решений не имеет.

Ответ. Если а < 1 или https://pandia.ru/text/78/074/images/image077_1.gif" width="56" height="25 src=">, то решений четыре; если , то решений восемь.

Пример 9 . Найти все значения параметра , при каждом из которых уравнение https://pandia.ru/text/78/074/images/image081_0.gif" width="181" height="29 src=">. Рассмотрим функцию ..jpg" width="195" height="162">

Число корней будет соответствовать числу 8 тогда, когда радиус полуокружности будет больше и меньше , то есть . Заметим, что есть .

Ответ . или .

1.4. Две прямые на плоскости

По существу, в основе идеи решения задач настоящего пункта лежит вопрос об исследовании взаимного расположения двух прямых: и . Несложно показать решение этой задачи в общем виде. Мы же обратимся непосредственно к конкретным характерным примерам, что, на наш взгляд, не нанесет ущерба общей стороне вопроса.

Пример 10. При каких a и b система

https://pandia.ru/text/78/074/images/image094_0.gif" width="160" height="25 src=">..gif" width="67" height="24 src=">, т..gif" width="116" height="55">

Неравенство системы задает полуплоскость с границей у = – 1 (рис. 10). Легко сооб­разить, что полученная система имеет решение, если прямая ах + by = 5 пересекает границу полуплоскости или, будучи па­раллельной ей, лежит в полупло­скости у 2х + 1 < 0.

Начнем со случая b = 0. Тогда, казалось бы, урав­нение ах + by = 5 задает верти­кальную прямую, которая оче­видно пересекает прямую у = 2х – 1. Однако это утверж­дение справедливо лишь при ..gif" width="43" height="20 src="> система имеет решения..gif" width="99" height="48">. В этом случае условие пересечения прямых достигается при , т. е. ..gif" width="52" height="48">.gif" width="41" height="20"> и , или и , или и https://pandia.ru/text/78/074/images/image109_0.gif" width="69" height="24 src=">.

− В координатной плоскости xOa строим график функции .

− Рассмотрим прямые и выделим те промежутки оси Oa, на которых эти прямые удовлетворяют следующим условиям: a) не пересекает график функции https://pandia.ru/text/78/074/images/image109_0.gif" width="69" height="24"> в одной точке, в) в двух точках, г) в трех точках и так далее.

− Если поставлена задача найти значения x, то выражаем x через a для каждого из найденных промежутков значения a в отдельности.

Взгляд на параметр как на равноправную переменную находит свое отражение в графических методах..jpg" width="242" height="182">

Ответ. а = 0 или а = 1.

ЗАКЛЮЧЕНИЕ

Мы надеемся, что разобранные задачи достаточно убедитель­но демонстрируют эффективность предложенных методов. Одна­ко, к сожалению, сфера применения этих методов ограничена трудностями, с которыми можно столкнуться при построении графического образа. А так ли это плохо? По-видимому, нет. Ведь при таком подходе в большой степени теряется главная дидактическая ценность задач с параметрами как модели миниатюрного исследования. Впрочем, приведенные соображения адресованы учителям, а для абитуриентов вполне приемлема формула: цель оправдывает средства. Более того возьмем на себя смелость сказать, что в немалом числе вузов составители конкурсных задач с параметрами идут по пути от картинки к условию.

В этих задачах обсуждались те возможности решения задач с пара­метром, которые открываются нам при изображении на листе бумаге графиков функций, входящих в левую и правую части уравнений или неравенств. В связи с тем, что параметр может принимать произ­вольные значения, один или оба из изображаемых графиков движутся определенным образом на плоскости. Можно говорить о том, что получается целое семейство графиков, соответствующих различным значениям параметра.

Решительно подчеркнем две детали.

Во-первых, речь не идет о «графическом» решении. Все значения, координаты, корни вычисляются строго, аналитически, как решения соответствующих уравнений, систем. Это же относится к случаям касания или пересечения графиков. Они определяются не на глазок, а с помощью дискриминантов, производных и других доступных Вам инструментов. Картинка лишь дает путь решения.

Во-вторых, даже если Вы не найдете никакого пути решения задачи, связанного изображенными графиками, Ваше представление о задаче значительно расширится, Вы получите информацию для самопроверки и шансы на успех значительно возрастут. Точно представляя себе, что происходит в задаче при различных значениях параметра, Вы, возможно, найдет правильный алгоритм решения.

Поэтому эти слова завершим настоятельным предло­жением: если в хоть мало-мальски сложной задаче встречаются функции, графики которых Вы рисовать умеете, обязательно сделайте это, не пожалеете.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

1. Черкасов, : Справочник для старшеклассников и поступающих в вузы [Текст] / , . – М.: АСТ-ПРЕСС, 2001. – 576 с.

2. Горштейн, с параметрами [Текст]: 3-е издание, дополненное и переработанное / , . – М.: Илекса, Харьков: Гимназия, 1999. – 336 с.

Для каждого значения параметра a a решите неравенство | 2 x + a | ≤ x + 2 |2x+a| \leq x+2 .

Сначала решим вспомогательную задачу. Рассмотрим данное неравенство как неравенство с двумя переменными x x и a a и изобразим на координатной плоскости x O a xOa все точки, координаты которых удовлетворяют неравенству.

Если 2 x + a ≥ 0 2x+a \geq 0 (т. е. на прямой a = - 2 x a=-2x и выше), то получаем 2 x + a ≤ x + 2 ⇔ a ≤ 2 - x 2x+a \leq x+2 \Leftrightarrow a \leq 2-x .

Множество изображено на рис. 11.

Теперь решим с помощью этого чертежа исходную задачу. Если мы фиксируем a a , то получаем горизонтальную прямую a = const a = \textrm{const} . Чтобы определить значения x x ,надо найти абсциссы точек пересечения этой прямой с множеством решения неравенства. Например, если a = 8 a=8 , то неравенство не имеет решений (прямая не пересекает множество); если a = 1 a=1 , то решениями являются все x x из отрезка [ - 1 ; 1 ] [-1;1] и т. д. Итак, возможны три варианта.

1) Если $$a>4$$, то решений нет.

2) Если a = 4 a=4 , то x = - 2 x=-2 .

ОТВЕТ

при $$a

при a = 4 a=4 - x = - 2 x=-2 ;

при $$a>4$$ - решений нет.

Найдите все значения параметра a a , при которых неравенство $$3-|x-a| > x^2$$ а) имеет хотя бы одно решение; б) имеет хотя бы одно положительное решение.

Перепишем неравенство в виде $$3-x^2 > |x-a}$$. Построим графики левой и правой частей на плоскости x O y xOy . График левой части - это парабола с ветвями вниз с вершиной в точке (0 ; 3) (0;3) . График пересекает ось абсцисс в точках (± 3 ; 0) (\pm \sqrt{3};0) . График правой части - это угол с вершиной на оси абсцисс, стороны которого направлены вверх под углом 45 ° 45^{\circ} к осям координат. Абсцисса вершины - точка x = a x=a .

а) Для того, чтобы неравенство имело хотя бы одно решение, необходимо и достаточно, чтобы хотя бы в одной точке парабола оказалась выше графика y = | x - a | y=|x-a| . Это выполнено, если вершина уголка лежит между точками A A и B B оси абсцисс (см. рис. 12 - точки A A и B B не включаются). Таким образом, надо определить, при каком положении вершины одна из ветвей уголка касается параболы.

Рассмотрим случай, когда вершина уголка находится в точке A A . Тогда правая ветвь уголка касается параболы. Её угловой коэффициент равен единице. Значит, производная функции y = 3 - x 2 y = 3-x^2 в точке касания равна 1 1 , т. е. - 2 x = 1 -2x=1 , откуда x = - 1 2 x = -\frac{1}{2} . Тогда ордината точки касания равна y = 3 - (1 2) 2 = 11 4 y = 3 - (\frac{1}{2})^2 = \frac{11}{4} . Уравнение прямой, имеющей угловой коэффициент k = 1 k=1 и проходящей через точку с координатами (- 1 2 ; 11 4) (-\frac{1}{2}; \frac{11}{4}) , следующее * {\!}^* : y - 11 4 = 1 · (x + 1 2) y - \frac{11}{4} = 1 \cdot (x+ \frac{1}{2}) , откуда y = x + 13 4 y = x + \frac{13}{4} .

Это уравнение правой ветви уголка. Абсцисса точки пересечения с осью x x равна - 13 4 -\frac{13}{4} , т. е. точка A A имеет координаты A (- 13 4 ; 0) A(-\frac{13}{4}; 0) . Из соображений симметрии точка B B , имеет координаты: B (13 4 ; 0) B(\frac{13}{4}; 0) .

Отсюда получаем, что a ∈ (- 13 4 ; 13 4) a\in (-\frac{13}{4}; \frac{13}{4}) .

б) Неравенство имеет положительные решения, если вершина уголка находится между точками F F и B B (см. рис. 13). Найти положение точки F F несложно: если вершина уголка находится в точке F F , то его правая ветвь (прямая, задаваемая уравнением y = x - a y = x-a проходит через точку (0 ; 3) (0;3) . Отсюда находим, что a = - 3 a=-3 и точка F F имеет координаты (- 3 ; 0) (-3;0) . Следовательно, a ∈ (- 3 ; 13 4) a \in (-3; \frac{13}{4}) .

ОТВЕТ

а) a ∈ (- 13 4 ; 13 4) ,       a\in (-\frac{13}{4}; \frac{13}{4}),\:\:\: б) a ∈ (- 3 ; 13 4) a \in (-3; \frac{13}{4}) .

* {\!}^* Полезные формулы:

­ - \-- прямая, проходящая через точку (x 0 ; y 0) (x_0;y_0) и имеющая угловой коэффициент k k , задаётся уравнением y - y 0 = k (x - x 0) y-y_0=k(x-x_0) ;

­ - \-- угловой коэффициент прямой, проходящей через точки (x 0 ; y 0) (x_0;y_0) и (x 1 ; y 1) (x_1;y_1) , где x 0 ≠ x 1 x_0 \neq x_1 , вычисляется по формуле k = y 1 - y 0 x 1 - x 0 k = \dfrac{y_1-y_0}{x_1-x_0} .

Замечание. Если надо найти значение параметра, при котором касаются прямая y = k x + l y=kx+l и парабола y = a x 2 + b x + c y = ax^2+bx+c , то можно записать условие, что уравнение k x + l = a x 2 + b x + c kx+l = ax^2+bx+c имеет ровно одно решение.Тогда другой способ найти значения параметра a a , при котором вершина уголка находится в точке А А, следующий: уравнение x - a = 3 - x 2 x-a = 3-x^2 имеет ровно одно решение ⇔ D = 1 + 4 (a + 3) = 0 ⇔ a = - 13 4 \Leftrightarrow D = 1 + 4(a+3) = 0 \Leftrightarrow a = -\dfrac{13}{4} .

Обратите внимание, что таким образом нельзя записать условие касания прямой с произвольным графиком. Например, прямая y = 3 x - 2 y = 3x - 2 касается кубической параболы y = x 3 y=x^3 в точке (1 ; 1) (1;1) и пересекает её в точке (- 2 ; - 8) (-2;-8) , т. е. уравнение x 3 = 3 x + 2 x^3 = 3x+2 имеет два решения.

Найдите все значения параметра a a , при каждом из которых уравнение (a + 1 - | x + 2 |) (x 2 + 4 x + 1 - a) = 0 (a+1-|x+2|)(x^2+4x+1-a) = 0 имеет а) ровно два различных корня; б) ровно три различных корня.

Поступим так же, как и в примере 25. Изобразим множество решений этого уравнения на плоскости x O a xOa . Оно равносильно совокупности двух уравнений:

1) a = | x + 2 | - 1 a = |x+2| -1 - это угол с ветвями вверх и вершиной в точке (- 2 ; - 1) (-2;-1) .

2) a = x 2 + 4 x + 1 a = x^2 + 4x + 1 - это парабола с ветвями вверх и вершиной в точке (- 2 ; - 3) (-2;-3) . См. рис. 14.

Находим точки пересечения двух графиков. Правая ветвь угла задаётся уравнением y = x + 1 y=x+1 . Решая уравнение

x + 1 = x 2 + 4 x + 1 x+1 = x^2+4x+1

находим, что x = 0 x=0 или x = - 3 x=-3 . Подходит только значение x = 0 x=0 (т. к. для правой ветви x + 2 ≥ 0 x+2 \geq 0). Тогда a = 1 a=1 . Аналогично находим координаты второй точки пересечения - (- 4 ; 1) (-4;1) .

Возвращаемся к исходной задаче. Уравнение имеет ровно два решения при тех a a , при которых горизонтальная прямая a = const a=\textrm{const} пересекает множество решений уравнения в двух точках. По графику видим, что это выполняется при a ∈ (- 3 ; - 1) ∪ { 1 } a\in (-3;-1)\bigcup\{1\} . Ровно три решения будут в случае трёх точек пересечения, что возможно только при a = - 1 a=-1 .

ОТВЕТ

а) a ∈ (- 3 ; - 1) ∪ { 1 } ;       a\in (-3;-1)\bigcup\{1\};\:\:\: б) a = - 1 a=-1 .

$$\begin{cases} x^2-x-a \leq 0,\\ x^2+2x-6a \leq 0 \end{cases} $$

имеет ровно одно решение.

Изобразим решения системы неравенств на плоскости x O a xOa . Перепишем систему в виде $$ \begin{cases} a \leq -x^2+x,\\ a \geq \dfrac{x^2+6x}{6} .\end{cases} $$

Первому неравенству удовлетворяют точки, лежащие на параболе a = - x 2 + x a = -x^2+x и ниже неё, а второму - точки, лежащие на параболе a = x 2 + 6 x 6 a = \dfrac{x^2+6x}{6} и выше неё. Находим координаты вершин парабол и точек их пересечения, а затем строим график. Вершина первой параболы - (1 2 ; 1 4) (\dfrac{1}{2};\dfrac{1}{4}) , второй параболы - (- 1 ; - 1 6) (-1; -\dfrac{1}{6}) , точки пересечения - (0 ; 0) (0;0) и (4 7 ; 12 49) (\dfrac{4}{7}; \dfrac{12}{49}) . Множество точек, удовлетворяющих системе, изображено на рис. 15. Видно, что горизонтальная прямая a = const a=\textrm{const} имеет с этим множеством ровно одну общую точку (а значит, система имеет ровно одно решение) в случаях a = 0 a=0 и a = 1 4 a=\dfrac{1}{4} .

ОТВЕТ

A = 0 ,   a = 1 4 a=0,\: a=\dfrac{1}{4}

Найдите наименьшее значение параметра a a , при каждом из которых система

$$\begin{cases} x^2+y^2 + 3a^2 = 2y + 2\sqrt{3}ax,\\ \sqrt{3}|x|-y=4 \end{cases} $$

имеет единственное решение.

Преобразуем первое уравнение, выделяя полные квадраты :

(x 2 - 2 3 a x + 3 a 2) + (y 2 - 2 y + 1) = 1 ⇔ (x - a 3) 2 + (y - 1) 2 = 1 .       18 (x^2- 2\sqrt{3}ax+3a^2)+(y^2-2y+1)=1 \Leftrightarrow (x-a\sqrt{3})^2+(y-1)^2=1. \:\:\:\left(18\right)

В отличие от предыдущих задач здесь лучше изобразить чертёж на плоскости x O y xOy (чертёж в плоскости “переменная - параметр” обычно используется для задач с одной переменной и одним параметром - в результате получается множество на плоскости. В данной задаче мы имеем дело с двумя переменными и параметром. Изобразить множество точек (x ; y ; a) (x;y;a) в трёхмерном пространстве - это трудная задача; к тому же, такой чертёж вряд ли получится наглядным). Уравнение (18) задаёт окружность с центром (a 3 ; 1) (a\sqrt{3};1) радиуса 1. Центр этой окружности в зависимости от значения a a может находиться в любой точке прямой y = 1 y=1 .

Второе уравнение системы y = 3 | x | - 4 y = \sqrt{3}|x|-4 задаёт угол со сторонами вверх под углом 60 ° 60^{\circ} к оси абсцисс(угловой коэффициент прямой - это тангенс угла наклона tg 60 ° = 3 \textrm{tg}{60^{\circ}} = \sqrt{3}), с вершиной в точке (0 ; - 4) (0;-4) .

Данная система уравнений имеет ровно одно решение, если окружность касается одной из ветвей уголка. Это возможно в четырёх случаях (рис. 16): центр окружности может находиться в одной из точек A A , B B , C C , D D . Поскольку нам надо найти наименьшее значение параметра a a , нас интересует абсцисса точки D D . Рассмотрим прямоугольный треугольник D H M DHM . Расстояние от точки D D до прямой H M HM равно радиусу окружности, поэтому D H = 1 DH=1 . Значит, D M = D H sin 60 ° = 2 3 DM=\dfrac{DH}{\textrm{sin}{60^{\circ}}} = \dfrac{2}{\sqrt{3}} . Координаты точки M M находятся как координаты точки пересечения двух прямых y = 1 y=1 и y = - 3 x - 4 y=-\sqrt{3}x-4 (левая сторона угла).

Получаем M (- 5 3) M(-\dfrac{5}{\sqrt{3}}) . Тогда абсцисса точки D D равна - 5 3 - 2 3 = - 7 3 -\dfrac{5}{\sqrt{3}}-\dfrac{2}{\sqrt{3}}=-\dfrac{7}{\sqrt{3}} .

Поскольку абсцисса центра окружности равна a 3 a\sqrt{3} , отсюда следует, что a = - 7 3 a=-\dfrac{7}{3} .

ОТВЕТ

A = - 7 3 a=-\dfrac{7}{3}

Найдите все значения параметра a a , при каждом из которых система

$$\begin{cases} |4x+3y| \leq 12a,\\ x^2+y^2 \leq 14ax +6ay -57a^2+16a+64 \end{cases} $$

имеет ровно одно решение.

Изобразим множества решений каждого из неравенств на плоскости x O y xOy .

Во втором неравенстве выделим полные квадраты:

x 2 - 14 a x + 49 + y 2 - 6 a y + 9 a 2 ≤ a 2 + 16 a + 64 ⇔ (x - 7 a) 2 + (y - 3 a) 2 ≤ (a + 8) 2         (19) x^2-14ax+49 + y^2-6ay + 9a^2 \leq a^2 + 16a + 64 \Leftrightarrow (x-7a)^2+(y-3a)^2 \leq (a+8)^2 \:\:\:\: (19)

При a + 8 = 0 a+8=0 (a = - 8 a=-8) неравенство (19) задаёт точку с координатами (7 a ; 3 a) (7a;3a) , т. е. (- 56 ; - 24) (-56;-24) . При всех остальных значениях a a (19) задаёт круг с центром в точке (7 a ; 3 a) (7a;3a) радиуса | a + 8 | |a+8| .

Рассмотрим первое неравенство.
1) При отрицательных a a оно не имеет решений. Значит, не имеет решений и система.

2) Если a = 0 a=0 , то получаем прямую 4 x + 3 y = 0 4x+3y=0 . Из второго неравенства при этом получается круг с центром (0 ; 0) (0; 0) радиуса 8. Очевидно, выходит более одного решения.

3) Если $$a>0$$, то данное неравенство равносильно двойному неравенству - 12 a ≤ 4 x + 3 y ≤ 12 a -12a \leq 4x+3y \leq 12a . Оно задаёт полосу между двумя прямыми y = ± 4 a - 4 x 3 y=\pm 4a -\dfrac{4x}{3} , каждая из которых параллельна прямой 4 x + 3 y = 0 4x+3y=0 (рис. 17).

Поскольку мы рассматриваем $$a>0$$, центр круга расположен в первой четверти на прямой y = 3 x 7 y = \dfrac{3x}{7} . Действительно, координаты центра - это x = 7 a x=7a , y = 3 a y=3a ; выражая a a и приравнивая, получаем x 7 = y 3 \dfrac{x}{7}=\dfrac{y}{3} , откуда y = 3 x 7 y = \dfrac{3x}{7} . Для того, чтобы система имела ровно одно решение, необходимо и достаточно, чтобы круг касался прямой a 2 a_2 . Это происходит, когда радиус окружности равен расстоянию от центра окружности до прямой a 2 a_2 . По формуле расстояния от точки до прямой * {\!}^{*} получаем, что расстояние от точки (7 a ; 3 a) (7a;3a) до прямой 4 x + 3 y - 12 a = 0 4x+3y-12a=0 равно | 4 · 7 a + 3 · 3 a - 12 a | 4 2 + 3 2 = 5 a \dfrac{|4\cdot 7a + 3\cdot 3a -12a|}{\sqrt{4^2+3^2}} = 5\left|a\right| . Приравнивая к радиусу круга, получаем 5 a = | a + 8 | 5{a} = |a+8| . Так как $$a>0$$, опускаем модули и находим, что a = 2 a=2 .

ОТВЕТ

A = 2 a=2

* {\!}^{*} Пусть даны точка M (x 0 ; y 0) M (x_0;y_0) и прямая l l , заданная уравнением a x + b y + c = 0 ax+by+c=0 . Тогда расстояние от точки M M до прямой l l определяется формулой ρ = | a x 0 + b x 0 + c | a 2 + b 2 \rho = \dfrac{|ax_0+bx_0+c|}{\sqrt{a^2+b^2}} .

При каких значениях параметра a a система

$$\begin{cases} |x|+|y|=1,\\ |x+a|+|y+a|=1 \end{cases}$$ не имеет решений?

Первое уравнение системы задаёт на плоскости x O y xOy квадрат A B C D ABCD (чтобы его построить, рассмотрим x ≥ 0 x\geq 0 и y ≥ 0 y\geq 0 . Тогда уравнение принимает вид x + y = 1 x+y=1 . Получаем отрезок - часть прямой x + y = 1 x+y=1 , лежащую в первой четверти. Далее отражаем этот отрезок относительно оси O x Ox , а затем полученное множество отражаем относительно оси O y Oy)(см. рис. 18). Второе уравнение задаёт квадрат P Q R S PQRS , равный квадрату A B C D ABCD , но с центром в точке (- a ; - a) (-a;-a) . На рис. 18 для примера изображён этот квадрат для a = - 2 a=-2 . Система не имеет решений, если эти два квадрата не пересекаются.

Несложно видеть, что если отрезки P Q PQ и B C BC совпадают, то центр второго квадрата находится в точке (1 ; 1) (1;1) . Нам подойдут те значения a a , при которых центр расположен “выше” и “правее”, т. е. $$a1$$.

ОТВЕТ

A ∈ (- ∞ ; - 1) ∪ (1 ; + ∞) a\in (-\infty;-1)\bigcup(1;+\infty) .

Найдите все значения параметра b b , при которых система

$$\begin{cases} y=|b-x^2|,\\ y=a(x-b) \end{cases} $$

имеет хотя бы одно решение при любом значении a a .

Рассмотрим несколько случаев.

1) Если $$b2) Если b = 0 b=0 , то система принимает вид $$\begin{cases} y=x^2,\\ y=ax .\end{cases} $$

При любом a a пара чисел (0 ; 0) (0;0) является решением этой системы, следовательно, b = 0 b=0 подходит.

3) Зафиксируем некоторое $$b>0$$. Первому уравнению удовлетворяет множество точек, полученное из параболы y = x 2 - b y=x^2-b отражением части этой параболы относительно оси O x Ox (см. рис. 19а, б). Второе уравнение задаёт семейство прямых(подставляя различные значения a a , можно получить всевозможные прямые, проходящие через точку (b ; 0) (b;0) , кроме вертикальной), проходящих через точку (b ; 0) (b;0) . Если точка (b ; 0) (b;0) лежит на отрезке [ - b ; b ] [-\sqrt{b};\sqrt{b}] . оси абсцисс, то прямая пересекает график первой функции при любом угловом коэффициенте (рис. 19а). Иначе (рис. 19б) в любом случае найдётся прямая, не пересекающая данный график. Решая неравенство - b ≤ b ≤ b -\sqrt{b}\leq b \leq \sqrt{b} и учитывая, что $$b>0$$, получаем, что b ∈ (0 ; 1 ] b \in (0;1] .

Объединяем результаты: $$b \in $$.

ОТВЕТ

$$b \in $$

Найдите все значения a a , при каждом из которых функция f (x) = x 2 - | x - a 2 | - 3 x f(x) = x^2-|x-a^2|-3x имеет хотя бы одну точку максимума.

Раскрывая модуль, получаем, что

$$f(x) = \begin{cases} x^2-4x+a^2, \:\:\: x\geq a^2 ,\\ x^2-2x-a^2, \:\:\: x\leq a^2 . \end{cases} $$

На каждом из двух промежутков графиком функции y = f (x) y=f(x) является парабола с ветвями вверх.

Поскольку параболы с ветвями вверх не могут иметь точек максимума, единственная возможность заключается в том, что точкой максимума является граничная точка этих промежутков - точка x = a 2 x=a^2 . В этой точке будет максимум, если вершина параболы y = x 2 - 4 x + a 2 y=x^2-4x+a^2 попадёт на промежуток $$x>a^2$$, а вершина параболы y = x 2 - 2 x - a 2 y=x^2-2x-a^2 - на промежуток $$x\lt a^2$$ (см. рис. 20). Это условие задается неравенствами и $$2 \gt a^2$$ и $$1 \lt a^2$$, решая которые, находим что a ∈ (- 2 ; 1) ∪ (1 ; 2) a\in (-\sqrt{2};1)\bigcup(1;\sqrt{2}) .

ОТВЕТ

A ∈ (- 2 ; 1) ∪ (1 ; 2) a\in (-\sqrt{2};1)\bigcup(1;\sqrt{2})

Найдите все значения a a , при каждом из которых общие решения неравенств

y + 2 x ≥ a y+2x \geq a и y - x ≥ 2 a                 (20) y-x \geq 2a \:\:\:\:\:\:\:\: (20)

являются решениями неравенства

$$2y-x>a+3 \:\:\:\:\:\:\:\:\: (21)$$

Чтобы сориентироваться в ситуации, иногда бывает полезным рассмотреть какое-нибудь одно значение параметра. Сделаем чертёж, например, для a = 0 a=0 . Неравенствам (20)(фактически мы имеем дело с системой неравенств (20)) удовлетворяют точки угла B A C BAC (см. рис. 21) - точки, каждая из которых лежит выше обеих прямых y = - 2 x y=-2x и y = x y=x (или на этих прямых). Неравенству (21) удовлетворяют точки, лежащие выше прямой y = 1 2 x + 3 2 y = \dfrac{1}{2}x + \dfrac{3}{2} . Видно, что при a = 0 a=0 условие задачи не выполняется.

Что изменится, если мы возьмём другое значение параметра a a ? Каждая из прямых переместится и перейдёт в параллельную самой себе прямую, так как угловые коэффициенты прямых не зависят от a a . Чтобы выполнялось условие задачи, нужно, чтобы весь угол B A C BAC лежал выше прямой l l . Так как угловые коэффициенты прямых A B AB и A C AC по модулю больше углового коэффициента прямой l l , необходимо и достаточно, чтобы вершина угла лежала выше прямой l l .

Решая систему уравнений

$$\begin{cases} y+2x=a,\\ y-x=2a, \end{cases}$$

находим координаты точки A (- a 3 ; 5 a 3) A(-\dfrac{a}{3};\dfrac{5a}{3}) . Они должны удовлетворять неравенству (21), поэтому $$\dfrac{10a}{3}+\dfrac{a}{3} > a+3$$, откуда $$a>\dfrac{9}{8}$$.

ОТВЕТ

$$a>\dfrac{9}{8}$$

К задачам с параметром можно отнести, например, поиск решения линейных и квадратных уравнений в общем виде, исследование уравнения на количество имеющихся корней в зависимости от значения параметра.

Не приводя подробных определений, в качестве примеров рассмотрим следующие уравнения:

у = kx, где x, y – переменные, k – параметр;

у = kx + b, где x, y – переменные, k и b – параметр;

аx 2 + bх + с = 0, где x – переменные, а, b и с – параметр.

Решить уравнение (неравенство, систему) с параметром это значит, как правило, решить бесконечное множество уравнений (неравенств, систем).

Задачи с параметром можно условно разделить на два типа:

а) в условии сказано: решить уравнение (неравенство, систему) – это значит, для всех значений параметра найти все решения. Если хотя бы один случай остался неисследованным, признать такое решение удовлетворительным нельзя.

б) требуется указать возможные значения параметра, при которых уравнение (неравенство, система) обладает определенными свойствами. Например, имеет одно решение, не имеет решений, имеет решения, принадлежащие промежутку и т. д. В таких заданиях необходимо четко указать, при каком значении параметра требуемое условие выполняется.

Параметр, являясь неизвестным фиксированным числом, имеет как бы особую двойственность. В первую очередь, необходимо учитывать, что предполагаемая известность говорит о том, что параметр необходимо воспринимать как число. Во вторую очередь, свобода обращения с параметром ограничивается его неизвестностью. Так, например, операции деления на выражение, в котором присутствует параметр или извлечения корня четной степени из подобного выражения требуют предварительных исследований. Поэтому необходима аккуратность в обращении с параметром.

Например, чтобы сравнить два числа -6а и 3а, необходимо рассмотреть три случая:

1) -6a будет больше 3a, если а отрицательное число;

2) -6а = 3а в случае, когда а = 0;

3) -6а будет меньше, чем 3а, если а – число положительное 0.

Решение и будет являться ответом.

Пусть дано уравнение kx = b. Это уравнение – краткая запись бесконечного множества уравнений с одной переменной.

При решении таких уравнений могут быть случаи:

1. Пусть k – любое действительное число не равное нулю и b – любое число изR, тогда x = b/k.

2. Пусть k = 0 и b ≠ 0, исходное уравнение примет вид 0 · x = b. Очевидно, что у такого уравнения решений нет.

3. Пусть k и b числа, равные нулю, тогда имеем равенство 0 · x = 0. Его решение – любое действительное число.

Алгоритм решения такого типа уравнений:

1. Определить «контрольные» значения параметра.

2. Решить исходное уравнение относительно х при тех значениях параметра, которые были определены в первом пункте.

3. Решить исходное уравнение относительно х при значениях параметра, отличающихся от выбранных в первом пункте.

4. Записать ответ можно в следующем виде:

1) при … (значения параметра), уравнение имеет корни …;

2) при … (значения параметра), в уравнении корней нет.

Пример 1.

Решить уравнение с параметром |6 – x| = a.

Решение.

Легко видеть, что здесь a ≥ 0.

По правилу модуля 6 – x = ±a, выразим х:

Ответ: х = 6 ± a, где a ≥ 0.

Пример 2.

Решить уравнение a(х – 1) + 2(х – 1) = 0 относительно переменной х.

Решение.

Раскроем скобки: aх – а + 2х – 2 = 0

Запишем уравнение в стандартном виде: х(а + 2) = а + 2.

В случае, если выражение а + 2 не нуль, т. е. если а ≠ -2, имеем решение х = (а + 2) / (а + 2), т.е. х = 1.

В случае, если а + 2 равно нулю, т.е. а = -2, то имеем верное равенство 0 · x = 0, поэтому х – любое действительное число.

Ответ: х = 1 при а ≠ -2 и х € R при а = -2.

Пример 3.

Решить уравнение x/a + 1 = а + х относительно переменной х.

Решение.

Если а = 0, то преобразуем уравнение к виду а + х = а 2 + ах или (а – 1)х = -а(а – 1). Последнее уравнение при а = 1 имеет вид 0 · x = 0, следовательно, х – любое число.

Если а ≠ 1, то последнее уравнение примет вид х = -а.

Данное решение можно проиллюстрировать на координатной прямой (рис. 1)

Ответ: нет решений при а = 0; х – любое число при а = 1; х = -а при а ≠ 0 и а ≠ 1.

Графический метод

Рассмотрим еще один способ решения уравнений с параметром – графический. Этот метод применяется достаточно часто.

Пример 4.

Сколько корней в зависимости от параметра a имеет уравнение ||x| – 2| = a?

Решение.

Для решения графическим методом строим графики функций y = ||x| – 2| и y = a (рис. 2) .

На чертеже наглядно видны возможные случаи расположения прямой y = a и количество корней в каждом из них.

Ответ: корней у уравнения не будет, если а < 0; два корня будет в случае, если a > 2 и а = 0; три корня уравнение будет иметь в случае а = 2; четыре корня – при 0 < a < 2.

Пример 5.

При каком а уравнение 2|x| + |x – 1| = a имеет единственный корень?

Решение.

Изобразим графики функций y = 2|x| + |x – 1| и y = a. Для y = 2|x| + |x – 1|, раскрыв модули методом промежутков, получим:

{-3x + 1, при x < 0,

y = {x + 1, при 0 ≤ x ≤ 1,

{3x – 1, при x > 1.

На рисунке 3 хорошо видно, что единственный корень уравнение будет иметь только при а = 1.

Ответ: а = 1.

Пример 6.

Определить число решений уравнения |x + 1| + |x + 2| = a в зависимости от параметра а?

Решение.

График функции y = |x + 1| + |x + 2| будет представлять собой ломаную. Ее вершины будут располагаться в точках (-2; 1) и (-1; 1) (рисунок 4) .

Ответ: если параметр a будет меньше единицы, то корней у уравнения не будет; если а = 1, то решение уравнения является бесконечное множество чисел из отрезка [-2; -1]; если значения параметра а будут больше одного, то уравнение будет иметь два корня.

Остались вопросы? Не знаете, как решать уравнения с параметром?
Чтобы получить помощь репетитора – зарегистрируйтесь .
Первый урок – бесплатно!

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.