Гальванические колебания. Колебания. Гармонические колебания. Уравнение гармонических колебаний. Уравнение состояния идеального газа

Гармонические колебания

Графики функций f (x ) = sin(x ) и g (x ) = cos(x ) на декартовой плоскости.

Гармоническое колебание - колебания, при которых физическая (или любая другая) величина изменяется с течением времени по синусоидальному или косинусоидальному закону. Кинематическое уравнение гармонических колебаний имеет вид

,

где х - смещение (отклонение) колеблющейся точки от положения равновесия в момент времени t; А - амплитуда колебаний, это величина, определяющая максимальное отклонение колеблющейся точки от положения равновесия; ω - циклическая частота, величина, показывающая число полных колебаний происходящих в течение 2π секунд - полная фаза колебаний, - начальная фаза колебаний.

Обобщенное гармоническое колебание в дифференциальном виде

(Любое нетривиальное решение этого дифференциального уравнения - есть гармоническое колебание с циклической частотой )

Виды колебаний

Эволюция во времени перемещения, скорости и ускорения при гармоническом движении

  • Свободные колебания совершаются под действием внутренних сил системы после того, как система была выведена из положения равновесия. Чтобы свободные колебания были гармоническими, необходимо, чтобы колебательная система была линейной (описывалась линейными уравнениями движения), и в ней отсутствовала диссипация энергии (последняя вызвала бы затухание).
  • Вынужденные колебания совершаются под воздействием внешней периодической силы. Чтобы они были гармоническими, достаточно чтобы колебательная система была линейной (описывалась линейными уравнениями движения), а внешняя сила сама менялась со временем как гармоническое колебание (то есть чтобы зависимость от времени этой силы была синусоидальной).

Применение

Гармонические колебания выделяются из всех остальных видов колебаний по следующим причинам:

См. также

Примечания

Литература

  • Физика. Элементарный учебник физики / Под ред. Г. С. Лансберга. - 3 изд. - М ., 1962. - Т. 3.
  • Хайкин С. Э. Физические основы механики. - М ., 1963.
  • А. М. Афонин. Физические основы механики. - Изд. МГТУ им. Баумана, 2006.
  • Горелик Г. С. Колебания и волны. Введение в акустику, радиофизику и оптику. - М .: Физматлит, 1959. - 572 с.

Wikimedia Foundation . 2010 .

  • Гмина Мальборк
  • Народы Африки

Смотреть что такое "Гармонические колебания" в других словарях:

    ГАРМОНИЧЕСКИЕ КОЛЕБАНИЯ Современная энциклопедия

    Гармонические колебания - ГАРМОНИЧЕСКИЕ КОЛЕБАНИЯ, периодические изменения физической величины, происходящие по закону синуса. Графически гармонические колебания изображаются кривой синусоидой. Гармонические колебания простейший вид периодических движений, характеризуется … Иллюстрированный энциклопедический словарь

    Гармонические колебания - Колебания, при которых физическая величина изменяется с течением времени по закону синуса или косинуса. Графически Г. к. изображаются кривой синусоидой или косинусоидой (см. рис.); они могут быть записаны в форме: х = Asin (ωt + φ) или х … Большая советская энциклопедия

    ГАРМОНИЧЕСКИЕ КОЛЕБАНИЯ - ГАРМОНИЧЕСКИЕ КОЛЕБАНИЯ, периодическое движение, такое как движение МАЯТНИКА, атомные колебания или колебания в электрической цепи. Тело совершает незатухающие гармонические колебания, когда оно колеблется вдоль линии, перемещаясь на одинаковое… … Научно-технический энциклопедический словарь

    ГАРМОНИЧЕСКИЕ КОЛЕБАНИЯ - колебания, при к рых физ. (или любая другая) величина изменяется с течением времени по синусоидальному закону: x=Asin(wt+j), где x значение колеблющейся величины в данный. момент времени t (для механич. Г. к., напр., смещение или скорость, для… … Физическая энциклопедия

    гармонические колебания - Механические колебания, при которых обобщенная координата и (или) обобщенная скорость изменяются пропорционально синусу с аргументом, линейно зависящим от времени. [Сборник рекомендуемых терминов. Выпуск 106. Механические колебания. Академия наук … Справочник технического переводчика

    ГАРМОНИЧЕСКИЕ КОЛЕБАНИЯ - колебания, при к рых физ. (или любая другая) величина изменяется во времени по синусоидальному закону, где х значение колеблющейся величины в момент времени t (для механич. Г. к., напр., смещение и скорость, для электрич. напряжение и сила тока) … Физическая энциклопедия

    ГАРМОНИЧЕСКИЕ КОЛЕБАНИЯ - (см.), при которых физ. величина изменяется с течением времени по закону синуса или косинуса (напр. изменения (см.) и скорости при колебании (см.) или изменения (см.) и силы тока при электрических Г. к.) … Большая политехническая энциклопедия

    ГАРМОНИЧЕСКИЕ КОЛЕБАНИЯ - характеризуются изменением колеблющейся величины x (напр., отклонения маятника от положения равновесия, напряжения в цепи переменного тока и т. д.) во времени t по закону: x = Asin (?t + ?), где А амплитуда гармонических колебаний, ? угловая… … Большой Энциклопедический словарь

    Гармонические колебания - 19. Гармонические колебания Колебания, при которых значения колеблющейся величины изменяются во времени по закону Источник … Словарь-справочник терминов нормативно-технической документации

    ГАРМОНИЧЕСКИЕ КОЛЕБАНИЯ - периодич. колебания, при к рых изменение во времени физ. величины происходит по закону синуса или косинуса (см. рис.): s = Аsin(wt+ф0), где s отклонение колеблющейся величины от её ср. (равновесного) значения, А=const амплитуда, w= const круговая … Большой энциклопедический политехнический словарь

Механическое гармоническое колебание - это прямолинейное неравномерное движение, при котором координаты колеблющегося тела (материальной точки) изменяются по закону косинуса или синуса в зависимости от времени.

Согласно этому определению, закон изменения координаты в зависимости от времени имеет вид:

Где wt - величина под знаком косинуса или синуса; w - коэффициент, физический смысл которого раскроем ниже; А - амплитуда механических гармонических колебаний.

Уравнения (4.1) являются основными кинематическими уравнениями механических гармонических колебаний.

Рассмотрим следующий пример. Возьмем ось Ох (рис. 64). Из точки 0 проведем окружность с радиусом R = А. Пусть точка М из положения 1 начинает двигаться по окружности с постоянной скоростью v (или с постоянной угловой скоростью w , v = wА ). Через некоторое время t радиус повернется на угол ф: ф=wt .

При таком движении по окружности точки М ее проекция на ось х М х будет совершать движение вдоль оси х, координата которой х будет равна х = А cos ф = = А cos wt . Таким образом, если материальная точка движется по окружности радиусом А, центр которой совпадает с началом координат, то проекция этой точки на ось х (и на ось у) будет совершать гармонические механические колебания.

Если известна величина wt, которая стоит под знаком косинуса, и амплитуда А, то можно определить и х в уравнении (4.1).

Величину wt, стоящую под знаком косинуса (или синуса), однозначно определяющую координату колеблющейся точки при заданной амплитуде, называют фазой колебания . Для точки М, движущейся по окружности, величина w означает ее угловую скорость. Каков физический смысл величины w для точки М х, совершающей механические гармонические колебания? Координаты колеблющейся точки М х одинаковы в некоторый момент времени t и (Т +1) (из определения периода Т), т. е. A cos wt = A cos w (t + Т), а это значит, что w (t + Т) - wt = 2ПИ (из свойства периодичности функции косинуса). Отсюда следует, что

Следовательно, для материальной точки, совершающей гармонические механические колебания, величину w можно интерпретировать как количество колебаний за определенный цикл времени, равный . Поэтому величину w назвали циклической (или круговой) частотой .

Если точка М начинает свое движение не из точки 1 а из точки 2, то уравнение (4,1) примет вид:

Величину ф 0 называют начальной фазой .

Скорость точки М х найдем как производную от координаты по времени:

Ускорение точки, колеблющейся по гармоническому закону, определим как производную от скорости:

Из формулы (4.4) видно, что скорость точки, совершающей гармонические колебания, изменяется тоже по закону косинуса. Но скорость по фазе опережает координату на ПИ/2 . Ускорение при гармоническом колебании изменяется по закону косинуса, но опережает координату по фазе на п . Уравнение (4.5) можно записать через координату х:

Ускорение при гармонических колебаниях пропорционально смещению с противоположным знаком. Умножим правую и левую части уравнения (4.5) на массу колеблющей материальной точки т, получим соотношения:

Согласно второму закону Ньютона, физический смысл правой части выражения (4.6) есть проекция силы F x , которая обеспечивает гармоническое механическое движение:

Величина F x пропорциональна смещению х и направлена противоположно ему. Примером такой силы является сила упругости, величина которой пропорциональна деформации и противоположно ей направлена (закон Гука).

Закономерность зависимости ускорения от смещения, вытекающую из уравнения (4.6), рассмотренную нами для механических гармонических колебаний, можно обобщить и применить при рассмотрении колебаний другой физической природы (например, изменение тока в колебательном контуре, изменение заряда, напряжения, индукции магнитного поля и т. д.). Поэтому уравнение (4.8) называют основным уравнением динамики гармонических колебаний .

Рассмотрим движение пружинного и математического маятников.

Пусть к пружине (рис. 63), расположенной горизонтально и закрепленной в точке 0, одним концом прикреплено тело массой т, которое может перемещаться вдоль оси х без трения. Коэффициент жесткости пружины пусть будет равен k. Выведем тело m внешней силой из положения равновесия и отпустим. Тогда вдоль оси х на тело будет действовать только упругая сила, которая согласно закону Гука, будет равна: F yпp = -kx.

Уравнение движения этого тела будет иметь вид:

Сравнивая уравнения (4.6) и (4.9), делаем два вывода:

Из формул (4.2) и (4.10) выводим формулу для периода колебаний груза на пружине:

Математическим маятником называется тело массой т, подвешенное на длинной нерастяжимой нити пренебрежимо малой массы. В положении равновесия на это тело будут действовать сила тяжести и сила упругости нити. Эти силы будут уравновешивать друг друга.

Если нить отклонить на угол а от положения равновесия, то на тело действуют те же силы, но они уже не уравновешивают друг друга, и тело начинает двигаться по дуге под действием составляющей силы тяжести, направленной вдоль касательной к дуге и равной mg sin a .

Уравнение движения маятника принимает вид:

Знак минус в правой части означает, что сила F x = mg sin a направлена против смещения. Гармоническое колебание будет происходить при малых углах отклонения, т. е. при условии а 2* sin a .

Заменим sin а в уравнении (4.12), получим следующее уравнение.