Диаграмма энтальпии. Как пользоваться hs-диаграммой. Как пользоваться is-диаграммой

ВОДЯНОЙ ПАР. ДИАГРАММА H,S ВОДЯНОГО ПАРА. ИССЛЕДОВАНИЕ ПАРОВЫХ ПРОЦЕССОВ ПО ДИАГРАММЕ H,s

Вода и. водяной пар широко применяются в энергетике, в отоплении, вентиляции, горячем водоснабжении.

Водяной пар - реальный газ. Он может быть влажным, сухим насыщенным и перегретым. Уравнения состояния реальных тазов сложны, поэтому в теплотехнических расчетах предпочитают использовать таблицы и диаграммы. Особое значение для технических расчетов процессов с водяным паром имеет h,s -диаграмма водяного пара.

В диаграмме h,S нанесена (рис. 5.1) верхняя пограничная кривая (степень сухости пара X=1) соответствующая сухому насыщенному пару. Выше этой кривой располагается область перегретого пара.

Рисунок 5.1 Диаграмма h,S водяного пара

Ниже влажного насыщенного пара. В область влажного насыщенного пара нанесены кривые сухости (X=0,95; Х=0,90; X=0.85 и т.д.)

В координатных, осях h,S (рис.5.1) нанесены кривые простейших процессов р=сonst (изобары); v= сonst (изохоры); t =сonst (и термы); любая вертикальная линия (рис.5.2.) изображает адиабатный процесс (S=const).

В области влажного насыщенного пара изотермы (t =сonst)совпадают с кривыми изобары (р=сonst), так как парообразование происходит при постоянном давлении и при постоянной температуре. На верхней пограничной кривой направление изотермы меняется и в пограничной кривой направление изотермы меняется, и области перегретого пара изотермы отклоняются вправо, и не совпадают с изобарами.

Практически применяется часть диаграммы h,S , когда X 0,5 , которая заключена в рамку. Эта часть диаграммы приведена в прило­жении и на рис.5.2.

Состояние перегретого пара на диаграмме h,S определяется двумя параметрами (р 1 и t 1 или р 1 и v 1), а влажного насыщенного па­ра - одним параметром и степенью сухости пара Х. По 2 заданным па­раметрам р 1 и t 1 в области перегретого пара находим точку I (рис. 5.2.), соответствующую заданному состоянию водяного пара. Для этого состояния из диаграммы можно найти все другие параметры (h 1 ,s 1 ,v 1).

Значение внутренней анергии подсчитывается по формуле

Зная вид термодинамического процесса, двигаются по нему до пе­ресечения с заданным конечным параметром и находят на диаграмме конечное состояние пара..Определив параметры коночного состояния, можно рассчитывать показатели процесса (работу, теплоту, изменение параметров)

Изменение внутренней энергии и работу в любом процессе подсчи­тывают по формулам

Рассмотрим основные задачи, решаемые по h,S диаграмме.

Изохорный процесс (v= const)

Количество теплоты, участвующая в процессе, определяется по формуле 5.2,. для определения изменения внутренней энергии.

Работа изохорного процесса равна нулю.

Изобарный процесс (р=сonst), количество теплоты, участвующая в процессе определяется по формуле

Изменение внутренней энергии по формуле 5.2 или по формуле 5.3

Изотермный процесс (t =сonst).

Теплоту и работу процесса находят по формуле:

5.6

Адиабатный процесс . На рис. 5.2. представлен адиабатный процесс, протекающий без теплообмена с внешней среда. В адиабатном процессе энтропия не изменяется и очень часто этот процесс называется изоэнтропным.

При проведении технико-экономических расчётов для подбора оборудования в теплоэнергетике и других отраслях, и моделирования тепловых процессов, необходимы надёжные проверенные данные о теплофизических свойствах воды и водяного пара в широкой области давлений и температур.

Ещё в 1904 году немецкий теплофизик Рихард Молье разработал специальную диаграмму для упрощения и облегчения решений практических задач по теплотехнике, в которой в координатах энтальпии (h) и энтропии (s) графически отображаются сведения из таблиц состояний. s-диаграммы чаще всего содержат в себе данные о свойствах воды в жидком и газообразном состояниях, так как они представляют наибольший интерес с точки зрения теплотехники.

$h-s$ диаграмма воды и водяного пара.

Водяной пар для промышленных целей получают в парогенераторах (паровых котлах) различного типа, общим для которых является то, что процесс получения пара является изобарным. Температура кипения воды и образующегося из нее пара является при этом постоянной, она зависит только от давления парогенератора и называется температурой насыщения $t_н$.

Пар, температура которого равна температуре насыщения, называется насыщенным (пар находится в термодинамическом равновесии с кипящей жидкостью). Насыщенный пар, не содержащий примеси жидкости, называют сухим насыщенным паром . Смесь сухого насыщенного пара и кипящей жидкости называется влажным насыщенным паром . Массовая доля сухого насыщенного пара в этой смеси называется степенью сухости и обозначается x. Для сухого насыщенного пара $x=1$, для кипящей жидкости $x=0$, для влажного насыщенного пара $0

Под теплотой парообразования $r$ понимают количество теплоты, необходимое для превращения 1 кг кипящей жидкости при постоянном давлении (следовательно, и при постоянной температуре) в сухой насыщенный пар.

Параметры кипящей жидкости – удельный объем, энтальпия, энтропия – обозначаются, соответственно, $v"$, $h"$, $s"$, а параметры сухого насыщенного пара – $v""$, $h""$, $s""$. Параметры влажного насыщенного пара обычно обозначают $v_x$, $h_x$ и $s_x$ и определяют по следующим формулам как для смеси кипящей воды и сухого пара:

$$v_x=v""·x+v"·(1–x),$$ $$h_x=h""·x+h"·(1–x),$$ $$s_x=s""·x+s"·(1–x).$$

Параметры перегретого пара обозначают без каких-либо штрихов и индексов, т.е. $v$, $h$ и $s$.

Поскольку водяной пар получают в изобарном процессе, то количество теплоты, подводимой к рабочему телу, можно подсчитать как разность энтальпий в конце и начале процесса. Это очень удобно, т.к. позволяет обойтись без теплоемкости, которая в данном случае (реальный газ) зависит не только от температуры, но и от давления.

Теплота парообразования, учитывая сказанное, равна:

$$r=h""–h".$$

На рисунке представлена диаграмма $h-s$ водяного пара. На этой диаграмме показаны нижняя пограничная кривая ($х=0$) или линия кипящей жидкости и верхняя пограничная кривая ($х=1$) или линия сухого насыщенного пара. Пограничные кривые соединяются в критической точке $К$, обозначающей критическое состояние воды, когда нет различия между кипящей жидкостью и сухим паром. Пограничные линии делят диаграммы на области капельной жидкости (воды), влажного насыщенного пара и перегретого пара. В области влажного пара изобары и изотермы совпадают.


Изолинии на $h-s$ диаграмме воды и водяного пара.

С развитием современной электронно-вычислительной техники и появлением доступных компьютеров и приложений, большое распространение получили hs-диаграммы в электронном виде.

Например симулятор диаграмм HS, TS, PS, PT, PV для воды и водяного пара с расчетом теплофизических свойств по формуляру IAPWS-IF97 и дополнений к нему.

В зависимости от положения курсора (управление мышью и стрелками клавы) выводятся p, T, h, s, v, x выбранной точки. Возможен также ручной ввод данных и перемещения для режимов: p-const, T-const, h-const, s-const, v-const, x-const. В симуляторе присутствует возможность построения и просмотра термодинамических графиков с сохранением в файл. Изменение масштаба - с помощью ползунка или колесика мыши. Данная программа является самым наглядным и удобным способом нахождения термодинамических параметров воды и водяного пара, к тому же она бесплатная.

Создание

При проведении технико-экономических расчётов для подбора оборудования в теплоэнергетике и других отраслях, и моделирования тепловых процессов, необходимы надёжные проверенные данные о теплофизических свойствах воды и водяного пара в широкой области давлений и температур .

Многолетнее международное сотрудничество в области исследования свойств воды и водяного пара, позволило разработать и внедрить международные нормативные материалы, содержащие уравнения для описания различных свойств, в специальные таблицы. На основании этих уравнений, соответствующих требованиям Международной системы уравнений для научного и общего применения (The IFC Formulation for Scientific and Generale Use), были составлены и опубликованы подробные таблицы теплофизических свойств воды и водяного пара, которые широко применяются в практике инженерных теплотехнических расчётов. Данные, полученные путём расчёта по международным уравнениям, были приняты и в СССР , и получили определение таблиц термодинамических свойств воды и водяного пара. В них также включили данные по динамической вязкости.


Wikimedia Foundation . 2010 .

Смотреть что такое "H, s-диаграмма" в других словарях:

    Для системы Fe H2O … Википедия

    Диаграмма Исикавы т. н. диаграмма «рыбьей кости» (англ. Fishbone Diagram) или «причинно следственная» диаграмма (англ. Cause and Effect Diagram), а также как диаграмма «анализа корневых причин». Один из семи основных… … Википедия

    Диаграмма Герцшпрунга Рассела (варианты транслитерации: диаграмма Герцшпрунга Рессела, Расселла, или просто диаграмма Г Р или диаграмма цвет звездная величина) показывает зависимость между абсолютной звёздной величиной,… … Википедия

    Диаграмма Герцшпрунга Рассела (варианты транслитерации: диаграмма Герцшпрунга Рессела, Расселла, или просто диаграмма Г Р или диаграмма цвет звёздная величина) показывает зависимость между абсолютной звёздной величиной,… … Википедия

    Диаграмма Герцшпрунга Рассела (варианты транслитерации: диаграмма Герцшпрунга Рессела, Расселла, или просто диаграмма Г Р или диаграмма цвет звездная величина) показывает зависимость между абсолютной звёздной величиной, светимостью,… … Википедия

    Диаграмма Герцшпрунга Рассела (варианты транслитерации: диаграмма Герцшпрунга Рессела, Расселла, или просто диаграмма Г Р или диаграмма цвет звездная величина) показывает зависимость между абсолютной звёздной величиной, светимостью,… … Википедия

    Диаграмма Герцшпрунга Рассела (варианты транслитерации: диаграмма Герцшпрунга Рессела, Расселла, или просто диаграмма Г Р или диаграмма цвет звездная величина) показывает зависимость между абсолютной звёздной величиной, светимостью,… … Википедия

    Диаграмма Герцшпрунга Рассела (варианты транслитерации: диаграмма Герцшпрунга Рессела, Расселла, или просто диаграмма Г Р или диаграмма цвет звездная величина) показывает зависимость между абсолютной звёздной величиной, светимостью,… … Википедия

    Диаграмма Герцшпрунга Рассела (варианты транслитерации: диаграмма Герцшпрунга Рессела, Расселла, или просто диаграмма Г Р или диаграмма цвет звездная величина) показывает зависимость между абсолютной звёздной величиной, светимостью,… … Википедия

    Диаграмма Герцшпрунга Рассела (варианты транслитерации: диаграмма Герцшпрунга Рессела, Расселла, или просто диаграмма Г Р или диаграмма цвет звездная величина) показывает зависимость между абсолютной звёздной величиной, светимостью,… … Википедия

Размер: 3070х3995 пикселей

Форматы: .PDF, .JPG

Диаграмма цветная — степени сухости, температура, давление и объем выделены разными цветами, что делает работу с диаграммой очень удобной.

Большой размер позволит распечатать диаграмму на формате А3 и больше.

is-диаграмма применяется для практических расчетов процессов водяного пара. На ней теплота и энтальпия измеряются линейными отрезками.

is-диаграмма обладает рядом важных свойств: по ней можно быстро определить параметры пара и разность энтальпий в виде отрезков, наглядно изобразить адиабатный процесс, и решать другие задачи.

Так же вы можете использовать очень удобную и наглядную .

Описание is-диаграммы

На is-диаграмме изображены термодинамические процессы:

  • Изобарный процесс (p = const) — фиолетовые линии (изобары),
  • Изотермический процесс (t = const) — зеленые линии (изотермы),
  • Изохорный процесс (v = const) — красные линии (изохоры).

Степень сухости и паросодержание (х ) — розовые линии. Жирная розовая линия — степень сухости х =1. Все что ниже этой линии — зона влажного пара.

Ось «Х» — энтропия , ось «Y» — энтальпия .

Семейство изобар в области насыщения представляет собой пучок расходящихся прямых, начинающихся на нижней и оканчивающихся на верхней пограничной кривой. Чем больше давление, тем выше лежит соответствующая изобара. Переход изобар из области влажного насыщенного в область перегретого пара происходит без перелома на верхней пограничной кривой.

В i, s-диаграмме водяного пара наносятся также линии постоянного паросодержания (x = const) и линии постоянного удельного объема (v = const). Изохоры идут несколько круче, чем изобары.

Состояние перегретого пара обычно определяется в технике давлением p и температурой t . Точка, изображающая это состояние, находится на пересечении соответствующей изобары и изотермы. Состояние влажного насыщенного пара определяется давлением p и паросодержанием x .

Точка, изображающее это состояние, определяется пересечением изобары и линии x = const.

Как пользоваться is-диаграммой

Для описания воспользуемся небольшой задачей. Возьмем с потолка условие.

Пусть начальные параметры пара будут: давление пара р = 120 бар, температура пара t = 550°С. Пар адиабатно расширяется в турбине до температуры, например, 400 °С.

Для примера этого будет достаточно.

Адиабатный процесс на is-диаграмме — это вертикальная линия (горизонтальная линия — дросселирование ). Это для справки.

Итак, начальное давление и температура у нас есть. Найдем эту точку на is-диаграмме:

Нам нужна изобара , соответствующая давлению 120 бар и изотерма , соответствующая температуре 550 °С . На их пересечении и будет точка, соответствующая начальным параметрам пара в нашей задаче.

Найдя эту точку, мы уже можем определить в ней энтальпию и энтропию. Опустив на оси проекции найденной точки, узнаем значения энтальпии (ось «Y») и энтропии (ось «Х»).

i = ~3480 кДж/кг, S = 6,65 кДж/(кг К)

Далее нам нужно узнать параметры пара после адиабатного расширения. Мы знаем, что по поставленным нами условиям, пар расширился и его температура в точке 2 = 400 °С. Я уже упоминал, что на is-диаграмме адиабатный процесс изображается в виде вертикальной линии. Проведем эту линию из точки 1 (начальные параметры) до пересечения с изотермой 400 °С .

Получена точка 2 . Через эту точку проходит изобара. Она соответствует давлению 50 бар . Энтропия у нас не изменилась, так как процесс адиабатный, а вот энтальпия стала равна i = 3200 кДж/кг.

Вот и все. Дальше остаются только расчеты: определение изменения внутренней энергии (Δu ), работы (l, l’ ) и т. д. Все это считается по формулам (формулы можете найти в статье ), а значения и график процесса расширения пара у вас уже есть.

Здравствуйте! Определять параметры и функции состояния по формулам зачастую бывает затруднительно вследствие сложной зависимости теплоемкости водяного пара и теплоты парообразования от температуры и давления. Поэтому для водяного пара, на основании экспериментальных исследований составлены таблицы, отражающие зависимости важнейших параметров водяного пара. Пользуясь ими, к примеру, по известному давлению сухого насыщенного пара можно определить все остальные параметры.

Так как состояние сухого насыщенного пара однозначно определяется его давлением р или температурой насыщения Тн, то таблицы составляются по давлению или температуре. По одному из этих параметров из таблиц можно определить другие величины, характеризующие состояние сухого насыщенного пара. В таблицах перегретого пара приводятся его параметры и функции состояния в зависимости от температуры и давления пара.

Расчет процессов изменения состояния пара упрощается при переходе к графическому методу, основанному на использовании диаграмм состояния. В этом случае не требуется проводить большой объем вычислений и расчет сводится к определению параметров с помощью диаграмм. Графическим методом легко определить не только начальные и конечные параметры пара в процессе, но и все промежуточные параметры состояния, что существенно упрощает инженерные расчеты.

Преимуществом графического метода является возможность сравнительно просто проследить связь между различными величинами, это делает его незаменимым при теоретическом анализе различных процессов в тепловых двигателях. С помощью диаграммы, как и по таблицам, можно определить параметры и функции состояния водяного пара, в том числе и влажного насыщенного пара.

Наибольшее распространение получили Ts- и is-диаграммы состояния водяного пара. Так как с помощью Ts-диаграммы легко определить количество теплоты в процессе, то она и применяется в основном для теоретического анализа экономичности тепловых двигателей. При расчетах различных процессов изменения состояния используется главным образом is- диаграмма водяного пара.

На рис. 1 в координатах Ts изображен процесс парообразования при р = const (процесс abcd). Кривая аКс является пограничной кривой, а точка К - критической точкой. Начало отсчета энтропии соответствует ее значению при 273 К. Площадь под кривой процесса на is-диаграмме соответствует количеству теплоты.

Следовательно, площадь под изобарой ab эквивалентна энтальпии воды i" при температуре парообразования Tн. На изобарном участке bс, совпадающем с изотермой, происходит процесс парообразования, и площадь под прямой bс соответствует теплоте парообразования г. В изобарном процессе перегрева cd температура пара повышается до значения Т, и к пару подводится количество теплоты срm (Т-Тн). Линии постоянной степени сухости х=const, как и на всех диаграммах, сходятся в критической точке К.

На рис. 2 показаны различные процессы изменения состояния водяного пара на is-диаграмме. Область диаграммы, расположенная левее пограничной кривой еК, соответствует состоя-нию жидкости. Пограничная кривая пара Kf делит диаграмму на две области. Выше этой кривой расположена область перегретого пара, а ниже - область влажного пара. На пограничной кривой Kf пар является сухим насыщенным (х=1). Изобарный процесс изображен линией abc, изотермический - abd (в области влажного пара изотерма и изобара совпадают), изохорный - υ=const и адиабатный - gh. Кроме того, на этом рисунке показаны линии постоянной степени сухости х = const. В таблицах и на диаграммах не приводятся значения внутренней энергии газа, которую можно определить из соотношения u = i-pυ.

На рис. 3 приведена is-диаграмма водяного пара. При графическом расчете процессов по любым двум известным величинам (р, υ, Т; х, i, s) находят на диаграмме точку, соответствующую начальному состоянию пара, и все неизвестные параметры. Конечное состояние пара можно определить также по двум известным параметрам состояния. Если задан только один конечный параметр состояния, то необходимо знать еще характер процесса. В этом случае точку, характеризующую конечное состояние, находят на пересечении заданной кривой процесса и соответствующей изопараметрической кривой, например изобары.

Пример. Определить количество теплоты, сообщаемой 1 кг пара в пароперегревателе котельного агрегата. Начальные параметры пара p1 = 5 МПа и x1=0,95. Известно также, что после адиабатного расширения пара в турбине х2 = 0,87, а конечное давление пара р2=0,01 МПа.

Решение. Так как в пароперегревателе к пару подводится теплота при постоянном давлении, то количество ее равно разности начальной энтальпии i1 и энтальпии i2 пара после пароперегревателя: q=i2-i1. По начальным параметрам пара p1 и x1 на is-диаграмме находим точку А (рис. 3), которой соответствует значение энтальпии i1=2720 кДж/кг. Точку В, соответствующую состоянию пара на выходе из пароперегревателя, находим на пересечении изобары p1=5 МПа и адиабаты ВС, которая проходит через точку С. Положение точки С определяется параметрами пара р2 и x2. Энтальпия пара в точке В i2 = 3600 кДж/кг.
Количество подведенной к 1 кг пара теплоты равно q = 3600—2720=880 кДж/кг. Рассмотренный пример показывает, что is-диаграмма значительно упрощает расчеты процессов для водяного пара. Исп.литература: 1) Теплотехника и теплотехническое оборудование предприятий промышленности строительных материалов и изделий, Н.М. Никифорова, Москва, «Высшая школа», 1981. 2) Теплотехника, Бондарев В.А., Процкий А.Е., Гринкевич Р.Н. Минск, изд. 2-е,"Вышейшая школа", 1976.