Берилловая кислота. Бериллий: это что, и где его используют? Химические свойства бериллия и его важнейших химических соединений

Бериллий является химическим элементом с символом Be и атомным номером 4. Это относительно редкий элемент во Вселенной, обычно встречающийся как продукт расщепления больших атомных ядер, столкнувшихся с космическими лучами. В сердцевинах звезд бериллий истощается, поскольку он слит и создает большие элементы. Это двухвалентный элемент, который встречается естественным образом только в сочетании с другими элементами в минералах. Известные драгоценные камни, содержащие бериллий, включают берилл (аквамарин, изумруд) и хризоберил. В качестве свободного элемента, бериллий представляет собой прочный, легкий и хрупкий щелочноземельный металл стального цвета. Бериллий улучшает многие физические свойства других веществ при добавлении в качестве легирующего элемента в алюминий, медь (особенно сплав бериллиевой меди), железо и никель . Бериллий не образует оксидов до тех пор, пока он не достигнет очень высоких температур. Инструменты из бериллиевых медных сплавов сильны и тверды и не создают искр при ударе о поверхность стали. В структурных применениях, сочетание высокой изгибной жесткости, термической стабильности, теплопроводности и низкой плотности (в 1,85 раза больше, чем у воды), делает бериллиевый металл желательным аэрокосмическим материалом для компонентов летательных аппаратов, ракет, космических аппаратов и спутников. Из-за низкой плотности и атомной массы, бериллий относительно прозрачен для рентгеновских лучей и других форм ионизирующего излучения; поэтому он является наиболее распространенным материалом остекления для рентгеновского оборудования и компонентов детекторов частиц. Высокая теплопроводность оксида бериллия и бериллия привели к их использованию в приборах для регулирования температуры. Коммерческое использование бериллия требует наличия надлежащего оборудования для контроля пыли и промышленного контроля в любое время из-за токсичности ингаляционной пыли, содержащей бериллий, которая может вызвать хроническое опасное для жизни аллергическое заболевание у некоторых людей, называемое бериллиозом.

Характеристики

Физические свойства

Бериллий является твердым металлом стального цвета, который является хрупким при комнатной температуре и имеет плотноупакованную гексагональную кристаллическую структуру. Он имеет исключительную жесткость (модуль Юнга 287 ГПа) и достаточно высокую температуру плавления. Модуль эластичности бериллия примерно на 50% больше, чем у стали. Сочетание этого модуля и относительно низкой плотности приводит к необычайно высокой скорости звука в бериллии – около 12,9 км / с при комнатных условиях. Другими значимыми свойствами бериллия являются высокая удельная теплоемкость (1925 Дж · кг-1 · К-1) и теплопроводность (216 Вт · м-1 · К-1), которые делают бериллий металлом с лучшими характеристиками теплоотдачи на единицу массы. В сочетании с относительно низким коэффициентом линейного теплового расширения (11,4 × 10-6 К-1), эти характеристики приводят к уникальной устойчивости бериллия в условиях тепловой нагрузки .

Ядерные свойства

Естественно встречающийся бериллий, за исключением небольшого загрязнения космогенными радиоизотопами, представляет собой изотопически чистый бериллий-9, который имеет ядерный спин 3/2. Бериллий имеет большое сечение рассеяния для нейтронов с высокой энергией, около 6 амбар для энергий выше примерно 10 кэВ. Поэтому он работает как нейтронный отражатель и замедлитель нейтронов, эффективно замедляя нейтроны до диапазона тепловой энергии ниже 0,03 эВ, где полное сечение, по меньшей мере, на порядок ниже – точное значение сильно зависит от чистоты и размера кристаллитов в материале. Единственный изначальный изотоп бериллия 9Be также подвергается (n, 2n) нейтронной реакции с энергиями нейтронов более 1,9 МэВ, производя 8Be, который почти сразу разрывается на две альфа-частицы. Таким образом, для нейтронов с высокой энергией, бериллий является нейтронным множителем, который высвобождает больше нейтронов, чем поглощает. Эта ядерная реакция:

    94Be + N → 2 (42He) + 2n

Нейтроны высвобождаются, когда ядра бериллия поражаются энергичными альфа-частицами, производящими ядерную реакцию

    94Be + 42He → 126C + N

где 42He является альфа-частицей и 126C является ядром углерода-12. Бериллий также высвобождает нейтроны при бомбардировке гамма-лучами. Таким образом, природный бериллий, бомбардируемый альфа-или гамма из подходящего радиоизотопа, является ключевым компонентом большинства источников нейтронов ядерной реакции с радиоактивным изотопом для лабораторного производства свободных нейтронов. Небольшое количество трития высвобождается, когда ядра 94Be поглощают нейтроны с низкой энергией в трехступенчатой ядерной реакции

    94Be + N → 42He + 62He, 62He → 63Li + Β-, 63Li + N → 42He + 31H

Обратите внимание, что 62He имеет период полураспада всего 0,8 секунды, β- представляет собой электрон и 63Li имеет высокое сечение поглощения нейтронов. Тритий представляет собой радиоизотоп, вызывающий озабоченность в плане отходов ядерных реакторов . В качестве металла, бериллий прозрачен для большинства длин волн рентгеновских лучей и гамма-лучей, что делает его полезным для выходных окон рентгеновских трубок и других подобных устройств.

Изотопы и нуклеосинтез

В звездах создаются как стабильные, так и неустойчивые изотопы бериллия, но радиоизотопы недолговечны. Считается, что большая часть стабильного бериллия во Вселенной была первоначально создана в межзвездной среде, когда космические лучи индуцировали деление в более тяжелых элементах, обнаруженных в межзвездном газе и пыли . Изначальный бериллий содержит только один стабильный изотоп, 9Be, и поэтому бериллий является моноизотопическим элементом. Радиоактивный космогенный 10Be образуется в атмосфере Земли путем расщепления кислорода космическими лучами. 10Be накапливается на поверхности почвы, где его относительно длительный период полураспада (1,36 млн. лет) позволяет этому элементу длительно пребывать в этом состоянии перед распадом на бор-10. Таким образом, 10Be и его дочерние продукты используются для изучения естественной эрозии почв, почвообразования и развития латеритных почв, а также для измерения изменений солнечной активности и возраста ледяных ядер . Производство 10Be обратно пропорционально солнечной активности, поскольку увеличение солнечного ветра в периоды высокой солнечной активности уменьшает поток галактических космических лучей, достигающих Земли. Ядерные взрывы также образуют 10Be путем реакции быстрых нейтронов с 13C в двуокиси углерода в воздухе. Это один из показателей прошлой активности на объектах ядерного оружия. Изотоп 7Be (период полураспада 53 дня) также космогенен и показывает атмосферное обилие, связанное с солнечными пятнами, подобно 10Be. 8Be имеет очень короткий период полураспада, около 7 × 10-17 с, что способствует его значительной космологической роли, поскольку элементы, более тяжелые, чем бериллий, не могли быть получены путем ядерного синтеза в Большом взрыве. Это связано с отсутствием достаточного времени в течение фазы нуклеосинтеза Большого взрыва для получения углерода путем слияния ядер 4He и очень низких концентраций доступного бериллия-8. Британский астроном сэр Фред Хойл впервые показал, что энергетические уровни 8Be и 12C позволяют получать углерод путем так называемого процесса тройной альфа в звездах, содержащих гелий, где доступно больше времени нуклеосинтеза. Этот процесс позволяет производить углерод в звездах, но не в Большом взрыве. Таким образом, углерод, созданный звездами (основа углеродной жизни), является компонентом в элементах газа и пыли, выброшенных звездами асимптотической ветви гигантов и сверхновых (см. также нуклеосинтез Большого взрыва), а также создание всех других элементов с атомными номерами больше, чем у углерода. 2s-электроны бериллия могут способствовать химическому связыванию. Поэтому, когда 7Be распадается при захвате L-электронов, это делается путем взятия электронов из их атомных орбиталей, которые могут участвовать в склеивании. Это приводит к тому, что его скорость затухания зависит в измеряемой степени от ее химического окружения – редкое явление при распаде ядер. Самый короткоживущий из известных изотопов бериллия – 13Be, который распадается за счет нейтронного излучения. Он имеет период полураспада 2,7 × 10-21 с. 6Be также очень короткоживущий с периодом полураспада 5,0 × 10-21 с. Известно, что экзотические изотопы 11Be и 14Be обладают ядерным ореолом . Это явление можно понять, так как ядра 11Be и 14Be имеют соответственно 1 и 4 нейтрона, вращающихся практически вне классической модели Ферми.

Распространенность

Солнце имеет концентрацию бериллия 0,1 частей на миллиард (чнмрд). Бериллий имеет концентрацию от 2 до 6 частей на миллион (чнм) в земной коре. Он наиболее сконцентрирован в почвах, 6 чнм. Следовые количества 9Be содержатся в атмосфере Земли . Концентрация бериллия в морской воде составляет 0,2-0,6 частей на триллион. Однако, в проточной воде бериллий более распространен и имеет концентрацию 0,1 чнмрд . Бериллий встречается в более чем 100 минералах , но большинство из них встречается редко. Более распространенные минералы, содержащие бериллий, включают: бертрандит (Be4Si2O7 (OH) 2), берилл (Al2Be3Si6O18), хризоберил (Al2BeO4) и фенакит (Be2SiO4). Драгоценными формами берилла являются аквамарин, красный берилл и изумруд. Зеленый цвет в высококачественных формах берилла связан с разными количествами хрома (около 2% для изумруда). Две основные руды бериллия, берилл и бертранит, встречаются в Аргентине, Бразилии, Индии, Мадагаскаре, России и Соединенных Штатах. Общие мировые запасы бериллиевой руды составляют более 400 000 т. Бериллий является составной частью табачного дыма.

Производство

Извлечение бериллия из его соединений является трудным процессом из-за его высокой аффинности к кислороду при повышенных температурах и его способности уменьшать количество воды при удалении оксидной пленки. Соединенные Штаты, Китай и Казахстан являются единственными тремя странами, вовлеченными в промышленную добычу бериллия. Бериллий чаще всего экстрагируется из минерального берилла, который либо спекается с использованием экстрагента, либо расплавляется в растворимую смесь. Процесс спекания включает смешивание берилла с фторосиликатом натрия и содой при 770 ° C (1420 ° F) с образованием фторбериллата натрия, оксида алюминия и диоксида кремния. Гидроксид бериллия осаждают из раствора фторобериллата натрия и гидроксида натрия в воде. Экстракция бериллия с использованием метода расплава включает измельчение берилла в порошок и его нагревание до 1650 ° C (3000 ° F). Раствор быстро охлаждают водой и затем повторно нагревают до 250-300 ° C (482-557 ° F) в концентрированной серной кислоте, в основном, получая сульфат бериллия и сульфат алюминия. Водный аммиак затем используют для удаления алюминия и серы, оставляя гидроксид бериллия. Гидроксид бериллия, созданный с использованием либо метода агломерата, либо расплава, затем превращается во фторид бериллия или хлорид бериллия. Для образования фторида, водный фторид аммония добавляют к гидроксиду бериллия с получением осадка тетрафторбериллата аммония, который нагревают до 1000 ° С (1830 ° F) с образованием фтористого бериллия. Нагрев фторида до 900 °C (1,650 °F) с магнием дает мелкодисперсный бериллий, а дополнительный нагрев до 1300 °C (2,370 °F) создает компактный металл. Нагревание гидроксида бериллия образует оксид, который превращается в хлорид бериллия в сочетании с углеродом и хлором. Электролиз расплавленного бериллиевого хлорида затем используется для получения металла.

Химические свойства

Химическое поведение бериллия в значительной степени является результатом его небольших атомных и ионных радиусов. Таким образом, он обладает очень высоким потенциалом ионизации и сильной поляризацией при соединении с другими атомами, поэтому все его соединения являются ковалентными. Он более химически подобен алюминию, чем его близкие соседи в периодической таблице из-за того, что он имеет одинаковое отношение «заряд к радиусу». Вокруг бериллия образуется оксидный слой, что предотвращает дальнейшие реакции с воздухом, если вещество не нагревается выше 1000 °С. При воспламенении, бериллий горит блестящим огнём, образуя смесь оксида бериллия и нитрида бериллия. Бериллий легко растворяется в неокисляющих кислотах, таких как HCl и разбавленный H2SO4, но не в азотной кислоте или воде, так как в этом процессе образуется оксид. Это аналогично поведению алюминия. Бериллий также растворяется в щелочных растворах. Атом бериллия имеет электронную конфигурацию 2s2. Два валентных электрона дают состояние окисления бериллия a+2 и, следовательно, способность образовывать две ковалентные связи; единственным доказательством более низкой валентности бериллия является растворимость металла в BeCl2. Из-за правила октета, атомы стремятся найти валентность 8, чтобы напоминать благородный газ. Бериллий пытается достичь координационного числа 4, потому что две его ковалентных связи заполняют половину этого октета. Тетракоординирование позволяет соединениям бериллия, таким как фторид или хлорид, образовывать полимеры. Эта характеристика используется в аналитических методах с использованием ЭДТА (этилендиаминтетрауксусной кислоты) в качестве лиганда. ЭДТА предпочтительно образует октаэдрические комплексы, таким образом, поглощая другие катионы, такие как Al3+, которые могут мешать, например, при экстракции растворителем комплекса, образованного между Be2 + и ацетилацетоном . Бериллий (II) легко образует комплексы с сильными донорными лигандами, такими как оксиды фосфинов и оксиды арсинов. Были проведены обширные исследования этих комплексов, которые показывают стабильность связи O-Be. Растворы солей бериллия, например, сульфат бериллия и нитрат бериллия, являются кислотными из-за гидролиза 2+ 2+ + H2O ⇌ + + H3O + Другие продукты гидролиза включают тримерный ион 3+. Гидроксид бериллия, Be (OH) 2, нерастворим даже в кислых растворах с рН менее 6, то есть, при биологическом рН. Он амфотерный и растворяется в сильнощелочных растворах. Бериллий образует бинарные соединения со многими неметаллами. Безводные галогениды известны для F, Cl, Br и I. BeF2 имеет структуру, подобную кремнезему, с четырьмя тетраэдрами с общим углом. BeCl2 и BeBr2 имеют цепные структуры с краевыми тетраэдрами. Все галогениды бериллия имеют линейную мономерную молекулярную структуру в газовой фазе . Дифторид бериллия, BeF2, отличается от других дифторидов. Как правило, бериллий имеет тенденцию связываться ковалентно, гораздо больше, чем другие щелочноземельные металлы, а его фторид частично ковалентен (хотя и более ионный, чем его другие галогениды). BeF2 имеет много общего с SiO2 (кварцем), главным образом, с ковалентно связанной сетью. BeF2 имеет тетраэдрически скоординированный металл и образует стекла (трудно кристаллизуется). В кристаллической форме, фторид бериллия имеет такую же кристаллическую структуру комнатной температуры, что и кварц, и имеет также много высокотемпературных структур. Дифторид бериллия очень растворим в воде, в отличие от других дифторидов щелочноземельных металлов. (Хотя они сильно ионны, они не растворяются из-за особенно сильной энергии решетки структуры флюорита). Однако, BeF2 имеет гораздо меньшую электропроводность, когда находится в растворе или расплавлен, чем можно было бы ожидать, если бы он был полностью ионным. Оксид бериллия, BeO, представляет собой белое огнеупорное твердое вещество, которое имеет кристаллическую структуру вюрцита и теплопроводность выше, чем в некоторых металлах. BeO является амфотерным. Соли бериллия могут быть получены обработкой Be (OH) 2 кислотой. Известны сульфид, селенид и теллурид бериллия, все из которых имеют структуру сфалерита. Нитрид бериллия, Be3N2, представляет собой соединение с высокой температурой плавления, которое легко гидролизуется. Известен азид бериллия, BeN6, и фосфид бериллия, Be3P2, который имеет сходную структуру с Be3N2. Основной бериллиевый нитрат и основной ацетат бериллия имеют сходные тетраэдрические структуры с четырьмя атомами бериллия, координированными с центральным оксидным ионом. Известен ряд боридов бериллия, таких как Be5B, Be4B, Be2B, BeB2, BeB6 и BeB12. Карбид бериллия, Be2C, представляет собой огнеупорное кирпично-красное соединение, которое реагирует с водой с получением метана. Силицид бериллия не был идентифицирован.

История

Минерал берилл, содержащий бериллий, использовался, по крайней мере, с момента правления династии Птолемеев в Египте. В первом веке н.э. римский натуралист Плиний Старший упоминал в своей энциклопедии «Естественная история» о схожести берилла и изумруда («smaragdus»). Папирус Graecus Holmiensis, написанный в третьем или четвертом веке н.э., содержит примечания о том, как подготовить искусственный изумруд и берилл. Ранние анализы изумрудов и бериллов Мартина Генриха Клапрота, Торберна Олофа Бергмана, Франца Карла Ахарда и Иоганна Якоба Биндхайма всегда давали аналогичные элементы, что приводило к ошибочному выводу, что оба вещества представляют собой силикаты алюминия . Минералог René Just Haüy обнаружил, что оба кристалла геометрически идентичны, и он попросил химика Луи-Николаса Вокелина провести химический анализ. В документе 1798 года, прочитанном в Институте Франции, Вокелин сообщил, что он нашел новую «землю» при растворении гидроксида алюминия из изумруда и берилла в дополнительной щелочи. Редакторы журнала Annales de Chimie et the Physique назвали новую землю «глюцин» из-за сладкого вкуса некоторых его соединений . Клапрот предпочел название «бериллина» из-за того, что иттрия также образовывала сладкие соли. Название «бериллий» впервые было использовано Вёлером в 1828 году. Фридрих Вёлер был одним из ученых, которые независимо изолировали бериллий. Фридрих Вёлер и Антуан Бюсси независимо изолировали бериллий в 1828 году благодаря химической реакции металлического калия с хлоридом бериллия, следующим образом:

    BeCl2 + 2 K → 2 KCl +

При использовании спиртовой лампы, Вёлер нагревал чередующиеся слои хлорида бериллия и калия в платиновом тигле с проводным замыканием. Вышеуказанная реакция немедленно происходила и заставляла тигель принимать белый цвет. После охлаждения и промывки полученного серо-черного порошка, ученый увидел, что вещество состояло из мелких частиц с темным металлическим блеском . Высокореактивный калий был получен электролизом его соединений, и этот процесс был обнаружен 21 год назад. Химический метод, использующий калий, давал только мелкие зерна бериллия, из которых нельзя было отливать или забивать слиток металла. Прямой электролиз расплавленной смеси фтористого берилла и фторида натрия Паулем Лебо в 1898 году привел к образованию первых чистых (99,5 - 99,8 %) образцов бериллия. Первый коммерчески успешный процесс производства бериллия был разработан в 1932 году Альфредом Фондом и Хансом Гольдшмидтом. Процесс включает в себя электролиз смеси бериллиевых фторидов и бария, что заставляет расплавленный бериллий собираться на катоде с водяным охлаждением. Образец бериллия бомбардировался альфа-лучами от распада радия в эксперименте Джеймса Чадвика 1932 года, который раскрыл существование нейтрона. Этот же метод используется в одном классе лабораторных нейтронных источников на основе радиоизотопов, которые производят 30 нейтронов для каждого миллиона α-частиц. Производство бериллия во время Второй мировой войны стремительно увеличивалось из-за растущего спроса на твердые сплавы из бериллия и меди и люминофоры для люминесцентных ламп. В большинстве ранних флуоресцентных ламп использовался ортосиликат цинка с различным содержанием бериллия, излучающим зеленоватый свет. Небольшие добавки вольфрамата магния улучшили синюю часть спектра, чтобы получить приемлемый белый свет. На основе галогенофосфатных люминофоров были заменены люминофоры на основе бериллия, после того как бериллий оказался токсичным. Электролиз смеси фтористого берилла и фторида натрия использовался для выделения бериллия в течение XIX века. Высокая температура плавления металла делает этот процесс более энергоемким, чем соответствующие процессы, используемые для щелочных металлов. В начале 20-го века производство бериллия путем термического разложения йодистого бериллия было исследовано после успеха аналогичного процесса получения циркония, но этот процесс оказался неэкономичным для объемного производства . Чистый бериллиевый металл не был легкодоступным до 1957 года, хотя он использовался в качестве легирующего металла для упрочнения меди намного раньше. Бериллий можно получить путем восстановления соединений бериллия, таких как хлорид бериллия, с металлическим калием или натрием. В настоящее время, большую часть бериллия получают путем восстановления фтористого бериллия с очищенным магнием. В 2001 году цена вакуумных литых бериллиевых слитков на американском рынке составляла около 338 долл. США за фунт (745 долл. США за килограмм). В период с 1998 по 2008 годы, мировое производство бериллия уменьшилось с 343 до 200 тонн, из которых 176 тонн (88%) поступали из Соединенных Штатов.

Этимология

Ранних предшественников слова бериллий можно проследить во многих языках, включая латинский Beryllus; французский Béry; греческий βήρυλλος, bērullos, beryl; Prakrit veruliya (वॆरुलिय); Pāli veḷuriya (वेलुरिय), veḷiru (भेलिरु) или viḷar (भिलर्) - «бледнеть», применительно к бледному полудрагоценному камню берилла. Первоначальным источником, вероятно, является санскритское слово वैडूर्य (вайдурия), которое имеет дравидийское происхождение и может быть связано с названием современного города Белур. В течение примерно 160 лет бериллий также был известен как глюцин или глюциний (с сопровождающим химическим символом «Gl», или «G»). Название происходит от греческого слова, обозначающего сладость: γλυκυς, из-за сладкого вкуса солей бериллия.

Применения

Радиационные окна

Из-за его низкого атомного номера и очень низкого поглощения для рентгеновских лучей, самое старое и все еще одно из наиболее важных применений бериллия – в радиационных окнах для рентгеновских трубок. Крайние требования предъявляются к чистоте бериллия во избежание появления артефактов на рентгеновских снимках. Тонкая бериллиевая фольга используется в качестве радиационных окон для рентгеновских детекторов, а чрезвычайно низкое поглощение минимизирует эффекты нагрева, вызванные высокоинтенсивными рентгеновскими лучами с низкой энергией, характерными для синхротронного излучения. Вакуум-герметичные окна и лучевые трубки для радиационных экспериментов на синхротронах изготавливаются исключительно из бериллия. В научных установках для различных исследований рентгеновского излучения (например, энергодисперсионной рентгеновской спектроскопии), держатель образца обычно изготовляют из бериллия, поскольку его излучаемые рентгеновские лучи имеют гораздо более низкие энергии (~ 100 эВ), чем рентгеновские лучи большинства изученных материалов. Низкий атомный номер также делает бериллий относительно прозрачным для энергетических частиц. Поэтому он используется для построения лучевой трубы вокруг области столкновения в установках физики частиц, таких как все четыре основных экспериментальных детектора на Большом адронном коллайдере (ALICE, ATLAS, CMS , LHCb), Tevatron и SLAC. Низкая плотность бериллия позволяет продуктам столкновения достигать окружающих детекторов без значительного взаимодействия, его жесткость позволяет создавать мощный вакуум внутри трубы, чтобы минимизировать взаимодействие с газами, его термостабильность позволяет ему нормально функционировать при температурах всего в несколько градусов выше абсолютного нуля, и его диамагнитная природа не позволяет вмешиваться в сложные мультипольные магнитные системы, используемые для управления и фокусировки пучков частиц.

Механические применения

Из-за его жесткости, малой массы и стабильности размеров в широком температурном диапазоне, бериллиевый металл используется для легких конструкционных компонентов в оборонной и аэрокосмической промышленности на высокоскоростных самолетах, управляемых ракетах, космических аппаратах и спутниках. В нескольких ракетах с жидким топливом использовали ракетные сопла из чистого бериллия. Бериллиевый порошок сам изучался как ракетное топливо, но это использование никогда не имело место. Небольшое количество экстремальных высококачественных велосипедных рамок было построено с использованием бериллия . С 1998 по 2000 годы команда McLaren Formula One использовала двигатели Mercedes-Benz с поршнями из бериллиево-алюминиевого сплава. Использование компонентов бериллиевого двигателя было запрещено после протеста Scuderia Ferrari. Смешивание около 2,0% бериллия в меди привело к образованию сплава под названием бериллиевая медь, который в шесть раз сильнее, чем медь в отдельности. Бериллиевые сплавы имеют многочисленные применения из-за того, что сочетают в себе эластичность, высокую электропроводность и теплопроводность, высокую прочность и твердость, немагнитные свойства, а также хорошую стойкость к коррозии и сопротивление прочности. Эти применения включают в себя неискрящие инструменты, которые используются вблизи легковоспламеняющихся газов (бериллиевый никель), в пружинах и мембранах (бериллиевый никель и железо бериллия), используемых в хирургических инструментах и высокотемпературных устройствах. Менее 50 частей на миллион бериллия, легированного жидким магнием, приводят к значительному повышению стойкости к окислению и снижению воспламеняемости. Высокая эластичная жесткость бериллия привела к его широкому использованию в прецизионных измерительных приборах, например, в системах инерциального наведения и в опорных механизмах для оптических систем. Бериллиево-медные сплавы также применялись в качестве отвердителя в «пистолетах Джейсона», которые использовались для отделения краски от корпусов кораблей . Бериллий также использовался для консолей в высокопроизводительных патронах-картриджах, где его предельная жесткость и низкая плотность позволили снизить вес отслеживания до 1 грамма, но все же отслеживать высокочастотные каналы с минимальными искажениями. Раннее крупное применение бериллия – в тормозах для военных самолетов из-за его твердости, высокой температуры плавления и исключительной способности рассеивать тепло. Из-за экологических соображений, бериллий заменили другими материалами. Для снижения затрат, бериллий может быть легирован значительным количеством алюминия, в результате чего образуется сплав AlBeMet (торговое название). Эта смесь дешевле, чем чистый бериллий, и сохраняет при этом многие полезные свойства бериллия.

Зеркала

Бериллиевые зеркала представляют особый интерес. Зеркала большой площади, часто с сотовой опорной конструкцией, используются, например, в метеорологических спутниках, где малая масса и долговременная пространственная стабильность являются критическими факторами. Меньшие бериллиевые зеркала используются в оптических системах наведения и в системах управления огнем, например, в немецких танках Leopard 1 и Leopard 2. В этих системах требуется очень быстрое перемещение зеркала, что также требует низкую массу и высокую жесткость. Обычно бериллиевое зеркало имеет жесткое никелевое покрытие, которое легче отполировать до более тонкого оптического покрытия, чем бериллий. Однако, в некоторых применениях бериллиевая заготовка полируется без какого-либо покрытия. Это особенно применимо к криогенной работе, когда рассогласование теплового расширения может привести к искривлению покрытия. Космический телескоп Джеймса Уэбба будет иметь 18 гексагональных сегментов бериллия в его зеркалах. Поскольку этот телескоп столкнется с температурой 33 К, зеркало делается из позолоченного бериллия, способного справляться с экстремальным холодом лучше, чем стекло. Бериллий сжимается и деформируется меньше, чем стекло, и остается более однородным при таких температурах. По этой же причине, оптика космического телескопа Спитцера полностью построена из бериллиевого металла.

Магнитные применения

Бериллий немагнитен. Поэтому инструменты, изготовленные из материалов на основе бериллия, используются морскими или военными командами для уничтожения боеприпасов для работы на морских минах или вблизи них, поскольку эти мины обычно имеют магнитные взрыватели. Они также обнаружены в ремонтных и строительных материалах вблизи приборов для магнитно-резонансной томографии (МРТ) из-за генерируемых больших магнитных полей. В области радиосвязи и мощных (обычно военных) радаров, ручные инструменты из бериллия используются для настройки высокомагнитных клистронов, магнетронов, бегущих волновых трубок и т. д., которые используются для создания высоких уровней мощности СВЧ в передатчиках.

Ядерные применения

Тонкие пластины, или фольга из бериллия, иногда используются в конструкциях ядерного оружия как самый внешний слой плутониевых ям на первичных этапах создания термоядерных бомб, помещенных вокруг делящегося материала. Эти слои бериллия являются хорошими «толкателями» для имплозии плутония-239, а также хорошими нейтронными отражателями, точно так же, как и в ядерных реакторах с бериллием. Бериллий также широко используется в некоторых источниках нейтронов в лабораторных устройствах, в которых требуется относительно мало нейтронов (вместо того, чтобы использовать ядерный реактор или генератор нейтронов с ускорителем на основе частиц). С этой целью, бериллий-9 бомбардируется энергичными альфа-частицами из радиоизотопа, такого как полоний-210, радий-226, плутоний-238 или америций-241. В ядерной реакции, которая имеет место, ядро бериллия превращается в углерод-12, испускается один свободный нейтрон, перемещаясь примерно в том же направлении, что и альфа-частица. Такие ранние атомные бомбы использовались в таких источниках нейтронов бериллиевого типа, которые назывались нейтронными инициаторами типа «еж». Источники нейтронов, в которых бериллий бомбардируется гамма-излучением из радиоизотопа гамма-распада, также используются для создания лабораторных нейтронов. Бериллий также используется для изготовления топлива для реакторов CANDU. Топливные элементы имеют небольшие придатки с сопротивлением, припаянные к оболочке топлива, с использованием процесса индукционной пайки с использованием Be в качестве материала для пайки наполнителем. Подшипниковые накладки припаяны, чтобы предотвратить попадание пучка топлива в контакт с напорной трубой, а межэлементные распорные подушки спаяны для предотвращения контакта элементов. Бериллий также используется в совместной европейской исследовательской лаборатории по ядерному синтезу Torus, и он будет использоваться в более продвинутом ITER для изучения компонентов, которые сталкиваются с плазмой. Бериллий также был предложен в качестве материала оболочки для стержней ядерного топлива из-за его хорошей комбинации механических, химических и ядерных свойств. Фтористый берилл является одной из составных солей смеси эвтектических солей FLiBe, которая используется в качестве растворителя, замедлителя и хладагента во многих гипотетических проектах реактора с расплавленной солью, включая жидкий фторидный ториевый реактор (LFTR).

Акустика

Низкий вес и высокая жесткость бериллия делают его полезным в качестве материала для высокочастотных динамиков. Поскольку бериллий является дорогостоящим (во много раз дороже титана), трудно формируется из-за его хрупкости, и является токсичным при неправильном использовании, бериллиевые высокочастотные динамики используются только домами высокого класса, профессиональными аудиосистемами и публичными адресными приложениями. Некоторые высококачественные продукты были обманным образом заявлены как изготовленные из этого материала. В некоторых высококачественных картриджах для фонографов использовались кантилеверы из бериллия для улучшения отслеживания за счет уменьшения массы.

Электроника

Бериллий является примесью p-типа в составных полупроводниках III-V. Он широко используется в таких материалах, как GaAs, AlGaAs, InGaAs и InAlAs, выращенных методом молекулярно-лучевой эпитаксии (MBE) . Поперечно-прокатанный лист из бериллия является отличной конструкционной поддержкой для печатных плат в технологии поверхностного монтажа. В критических электронных приложениях, бериллий является как структурной опорой, так и теплоотводом. Такое применение также требует коэффициент теплового расширения, который хорошо согласуется с подложками из оксида алюминия и полиимида. Композиции «E-Materials» из бериллий-бериллиевого оксида были специально разработаны для этих электронных приложений и имеют дополнительное преимущество в том, что коэффициент теплового расширения может быть адаптирован к различным материалам субстрата. Оксид бериллия полезен для многих применений, которые требуют комбинированных свойств электрического изолятора и отличного теплопроводника с высокой прочностью и твердостью и очень высокой температурой плавления. Оксид бериллия часто используется в качестве опорной пластины изолятора в высокомощных транзисторах в радиочастотных передатчиках для телекоммуникаций. Оксид бериллия также изучается для использования в повышении теплопроводности гранул ядерного топлива на основе урана. Соединения бериллия использовались в люминесцентных лампах, но это использование было прекращено из-за болезни бериллиоза, которая развилась у рабочих, которые делали эти трубки.

Здравоохранение

Безопасность и гигиена труда

Бериллий представляет собой проблему безопасности для рабочих, имеющих дело с этим элементом. Воздействие бериллия на рабочем месте может привести к иммунологической реакции сенсибилизации и со временем может вызвать хроническое заболевание бериллия. Национальный институт безопасности и гигиены труда (NIOSH) в США исследует эти эффекты в сотрудничестве с крупным производителем бериллиевых продуктов. Целью этих исследований является предотвращение сенсибилизации путем разработки лучшего понимания рабочих процессов и воздействий, которые могут представлять потенциальный риск для работников, а также разработка эффективных мер вмешательства, которые уменьшат риск неблагоприятного воздействия бериллия на здоровье. Национальный институт охраны труда также проводит генетические исследования по вопросам сенсибилизации, независимо от этого сотрудничества. Руководство по аналитическим методам Национального института охраны труда содержит методы измерения профессионального облучения бериллием.

Меры предосторожности

В теле человека, в среднем, содержится около 35 микрограммов бериллия, количество, которое не считается вредным. Бериллий химически подобен магнию и поэтому может вытеснять его из ферментов, что приводит к их неисправности. Поскольку Be2 + представляет собой сильно заряженный и маленький ион, он может легко проникать во многие ткани и клетки, где он специфически нацеливается на ядра клеток, ингибируя многие ферменты, в том числе, используемые для синтеза ДНК. Его токсичность усугубляется тем фактом, что организм не имеет средств для контроля уровней бериллия, и попав в организм, бериллий не может быть удален оттуда. Хронический бериллиоз – легочное и системное гранулематозное заболевание, вызванное вдыханием пыли или паров, загрязненных бериллием; либо путем попадания большого количества бериллия в течение короткого времени, либо небольшого количества в течение длительного времени. Развитие симптомов этого заболевания может занять до пяти лет; около трети пациентов, страдающих бериллиозом, умирают, а оставшиеся в живых остаются инвалидами. Международное агентство по изучению рака (МАИР) причисляет соединения бериллия и бериллий к канцерогенам категории 1. В США, Администрация по безопасности и гигиене труда (OSHA) назначила допустимый предел воздействия бериллия (PEL) на рабочем месте со средневзвешенным временем (TWA) 0,002 мг / м3 и постоянным пределом воздействия 0,005 мг / м3 в течение 30 минут с максимальным пиковым пределом 0,025 мг / м3. Национальный институт безопасности и гигиены труда (NIOSH) установил рекомендуемый предел воздействия (REL) с постоянным показателем 0,0005 мг / м3. Значение IDLH (количество, немедленно опасное для жизни и здоровья) составляет 4 мг / м3. Токсичность тонкоизмельченного бериллия (пыль или порошок, в основном встречающиеся в промышленных условиях, где бериллий производится или обрабатывается) очень хорошо задокументирована. Твердый бериллиевый металл не связан с теми же опасностями, что и аэрозольная пыль, но любая опасность, связанная с физическим контактом, плохо задокументирована. Работники, занимающиеся обработкой готовых изделий из бериллия, обычно советуют обрабатывать их перчатками, как в качестве меры предосторожности, так и потому, что многие, если не большинство применений бериллия, не могут переносить остатки контакта с кожей, такие как отпечатки пальцев. Кратковременная болезнь бериллия в виде химического пневмонита впервые была представлена в Европе в 1933 году и в Соединенных Штатах в 1943 году. Опрос показал, что около 5% рабочих на заводах, производящих флуоресцентные лампы в 1949 году в Соединенных Штатах, страдали от болезней, связанных с бериллием. Хронический бериллиоз во многом похож на саркоидоз, а дифференциальный диагноз часто бывает затруднителен. Бериллиоз был причиной смерти некоторых ранних работников в области разработки ядерного оружия, таких как Герберт Л. Андерсон. Бериллий может быть обнаружен в угольном шлаке. Когда из этого шлака делают абразивный реактор для струйной краски и когда с его поверхности формируется ржавчина, бериллий может стать источником вредного воздействия.

4 | Be | Бериллий — Цена

Бериллий (Be) — рассеянный редкий металл , атомный номер — 4, атомная масса — 9,02, плотность — 1.85 г/см3, температура плавления — 1285ОС, коэффициент линейного расширения-(5.10-6) при (-100ОС); 21.10-6 при (650ОС), удельная электропроводность-4м/ом.мм2, предел прочности при растяжении-11,9кг/мм2(литой); 19,0кг/мм2(кованый), твёрдость по Бринелю-140кг/мм2.
В 1797 году, французский химик Воклен, анализируя минерал берилл, открыл оксид ранее неизвестного элемента, который он назвал «бериллиевой землёй» и, после выделения самого элемента, ему дали название бериллий. В 1828 году, химики исследователи получили металлический бериллий в виде порошка, путём восстановления хлорида бериллия, калием. В 1898 году, путём электролиза, был получен чистый металл-бериллий.
Бериллий-серебристо-серый металл, похожий на алюминий, очень лёгкий, в полтора раза легче алюминия, по плотности среди металлов стоит на втором месте, после лития. Бериллий очень прочный и упругий металл (превосходит по этим качествам спецстали), жаростоек. Эти ценные свойства бериллия сохраняются и в сплавах.
Добывается бериллий из минералов силикатов: берилла, фенакита, бертрандита. Месторождения берилла и других бериллиевых минералов встречаются в пегматитовых и и гидротермальных жилах, в виде кристаллов, иногда огромного размера и массы. Содержание окиси бериллия в рудах 0,1-0,3%.
Бериллом (от греческого слова « бериллос» — блестящий), называется особый минерал, прозрачная разновидность которого, окрашенная в голубой или зелёный цвет, считается драгоценным камнем. Зеленовато-голубые камни называются аквамаринами, зелёные-изумрудами.
На долю бериллия приходится 0,001% (столько же, сколько и на цинк) от общего количества атомов земной коры.
Металлический бериллий отлично полируется. Бериллий, полученный в вакууме, содержащий 99,95-99,97% Be, очень пластичен и катается в тонкие листы на холоду. Добавка к нему до 0,07% Al, не изменяет пластических свойств, кремний, даже в малых количествах не растворяется в бериллии. В твёрдом бериллии, железо крайне мало растворимо и располагается на грани зёрен кристаллов. Наихудшее влияние на пластичность оказывает кислород. Бериллий в 17 раз меньше алюминия задерживает рентгеновские лучи.
На воздухе, компактный бериллий, воспламеняется лишь при высокой температуре, воду, бериллий при обычной температуре и при нагревании, почти не разлагает, вследствие образования плотной защитной плёнки BeO, не растворимой в воде. Пары серы не действуют на бериллий, галоиды весьма энергично с ним соединяются. Бериллий хорошо соединяется с бором и углеродом, пары HCl легко действуют на бериллий, в слабой соляной кислоте бериллий легко растворяется с выделением водорода. С крепкой серной кислотой бериллий реагирует, с выделением сернистого газа, со слабой-выделяет водород, в азотной кислоте не растворяется, даже при кипячении. Бериллий растворим в щелочах (КОН), раствор аммиака на бериллий не действует.
Бериллий даёт сплавы с медью, железом, никелем, кобальтом и другими тяжёлыми металлами, а также с алюминием, не сплавляется с магнием.

ПОЛУЧЕНИЕ.

Основным сырьём для получения бериллия служит минерал берилл, после обогащения содержание окиси бериллия в технических концентратах колеблется от 4 до13%.
Первой стадией получения бериллия является «вскрытие» руды или концентрата действием кислот, щелочей, карбидизирующей плавкой в электропечи, хлорированием и другими способами разрушающими прочные связи природного алюмосиликата.
После вскрытия применяются различные сложные схемы химической обработки, в результате которых выделяют из вскрытого концентрата чистую окись или простые и двойные фтористые соли бериллия.
Для тонкой очистки бериллия от сопровождающих его примесей алюминия, урана, ванадия, титана, железа, используют свойство основной уксусной соли бериллия, растворяться в хлороформе, в отличие от солей перечисленных примесей.
Существует три основных промышленных способа получения металлического бериллия:
Электролиз соли оксифторида бария в расплаве из NaF+BaF3 , при температуре около 1350ОС, в тигле-аноде из чистого графита с железным трубчатым охлаждаемым «катодом касания», который по мере хода процесса поднимается из электролита с нарощенным стержнем бериллия. Выход по току 80 %, напряжение на ванне 80в, извлечение бериллия-90%.
Электролиз соли BeF2 в расплаве NaF+BaF2 при температуре около 1200ОС в графитовом тигле-аноде с подъёмным вращающимся охлаждаемым катодом.
Электролиз расплавленной смеси солей BeCl2+NaCl при температуре 750-800ОС, в железном тигле катоде с графитовым анодом, напряжение на ванне 5-6в. Металлический бериллий выделяется в виде мелких частиц.

ПРИМЕНЕНИЕ.

Бериллий, в настоящее время, очень широко применяется в самых передовых отраслях промышленности.
Одной из основных областей применения бериллия является производство меднобериллиевых сплавов. Добавка 0,5-3% бериллия к меди значительно повышает механические и антикоррозионные свойства меди-твёрдость по Бринелю возрастает с 50до 365кг/мм2, сопротивление разрыву повышается в семь раз, особенно сильно возрастает сопротивление усталости металла, вследствие чего, такие сплавы оказались значительно используемыми для изготовления пружин и деталей, работающих при повторно-переменных нагрузках.
Сплавы меди с небольшой добавкой бериллия (до2%)-бериллиевая бронза, устойчивы в бензине, маслах, морской воде, не дают искрение при ударе о другой металл. Изделия из бериллия устойчивы не только химически, но и механически: очень плохо истираются, хорошо сохраняют размеры в широком интервале температур. Бериллиевую бронзу используют для изготовления электрических контактов, деталей часовых механизмов, шестерён.
Тормозные диски для самолётов, носовые корпуса управляемых снарядов, кромки крыльев сверхзвуковых самолётов, обшивка космических кораблей для входа в плотные слои атмосферы-объекты потребляющие бериллий.
Большую техническую ценность представляют сплавы Cu-Be-Co, Cu-Be, Ag-Be, Al-Be. Сплавы Cu-Be (маллорит) и Al-Be (бералит) используются в самолётостроении, космическом аппаратостроении, кораблестроении, приборостроении.
Соединения бериллия применяются в осветительной технике, при изготовлении стекла, для синтеза соединений алифатического ряда, в качестве огнеупорного материала, при изготовлении красок.
Сплавы бериллия применяются в качестве компонентов ракетного топлива (легко воспламеняющие и взрывчатые сплавы).
Из бериллиевых сплавов изготавливают несущие конструкции и детали спутников, космических кораблей (теплозащитная обшивка отсеков и самих аппаратов, возвращаемых на землю, рули, антенны, переносные контейнеры). Бериллиевые сплавы используют при изготовлении ракетных двигателей, камер сгорания и сопел так как они обладают очень высокой теплопроводностью и теплоёмкостью при высоких температурах (3000ОС). Бериллиевые сплавы применяются для создания солнечных батарей для космических аппаратов, в конструкциях подводных аппаратов и подводных лодок. В автомобилестроении из бериллиевых сталей изготавливают «вечные» рессоры, выдерживающие сотни миллионов толчковых нагружений.
Из бериллиевых сплавов изготавливают «окна» рентгеновских аппаратов так как бериллий в 17 раз прозрачнее алюминия.
Чистый бериллий используется для производства рентгеновских трубок, антикатодов циклотронов, неоновых сигнальных ламп различных электронных приборов.
Особое место бериллий занимает в атомной промышленности.
Бериллий применяется для изготовления деталей атомных реакторов, а также, как источник и замедлитель быстрых нейтронов при производстве атомной энергии. Внедрению бериллия в атомную энергетику, в частности для изготовления тепловыделяющих элементов реакторов, отражателей нейтронов способствуют такие свойства бериллия как малая атомная масса, высокое рассеяние нейтронов на бериллии, устойчивость к воздействию облучения и высоких температур.
Высокие огнеупорные свойства окиси бериллия (температура плавления 2570ОС) , а также большая инертность её в нагретом состоянии ко многим расплавленным металлам и их солям, используется для изготовления огнеупорных тиглей.
Все растворимые соединения бериллия —ядовиты, и работа с ними требует применения специальных мер безопасности.

«Бериллий и сплавы, содержащие бериллий. Свойства, применение в химической технологии»


Введение

Применяемые в промышленности и быту металлические изделия редко состоят из чистых металлов, примером является алюминиевая или медная проволока с процентным содержанием металла около 99,9%, в большинстве других случаев идет речь о сплавах. Сплавы – системы, состоящие из двух или нескольких металлов, а также из металлов и неметаллов, обладающие свойствами, присущими металлическому состоянию. Так, различные виды железа и стали содержат наряду с металлическими добавками незначительные количества углерода, которые оказывают решающее влияние на механическое и термическое поведение сплавов. Все сплавы имеют специальную маркировку, т. к. сплавы с одним названием (например, латунь) могут иметь разные массовые доли других металлов.

Для изготовления сплавов применяют различные металлы. Самое большое значение среди всех сплавов имеют стали различных составов. Для получения легированных сталей к железу, являющемуся главной составляющей сплава, добавляют кремний, медь, марганец, никель, хром, вольфрам, ванадий, молибден и другие компоненты.

В данной работе будут рассмотрены свойства и применение металла бериллия и содержащих бериллий сплавов.


Бериллий – светло-серый металл второй группы Периодической системы элементов Д.И. Менделеева. Порядковый номер 4, атомная масса 9,013. Символ Be (лат. Beryllium). Имеет один стабильный изотоп 9 Be, известны также радиоактивные изотопы бериллия 7 Be и 10 Be с периодами полураспада 53,29 дней и 1,6·10 6 лет соответственно. Открыт в 1798 в виде окиси BeO, выделенной из минерала берилла Л. Вокленом. Металлический Ве впервые получили в 1828 Ф. Вёлер и А. Бюсси независимо друг от друга. Так как некоторые соли Ве сладкого вкуса, его вначале называли «глюциний» (от греч. glykys – сладкий) или «глиций». Название Glicinium (знак GI) употребляется (наряду с Ве) только во Франции. Применение Ве началось в 40-х гг. 20 в., хотя его ценные свойства как компонента сплавов были обнаружены ещё ранее, а замечательные ядерные – в начале 30-х гг. 20 в.

Ве может существовать в двух полиморфных модификациях. Низкотемпературная модификация (α-Ве), существующая до 1250 °С, имеет гексагональную плотноупакованную решетку, высокотемпературная (β-Ве) – решетку объемно-центрированного куба.

Нахождение в природе

Редкий металл – содержание Ве в земной коре 5 · 10 -4 % (как и соседние с ним литий и бор, относительно мало распространен в земной коре). Типичный литофильный элемент, характерный для кислых, субщелочных и щелочных магм. Не является рассеянным, так как входит в состав поверхностных залежей берилла в пегматитовых породах, которые последними закристаллизовались в гранитных куполах. Есть сообщения о гигантских бериллах длиной до 1 м и массой до нескольких тонн.

Известно 54 собственно бериллиевых минерала – из них наибольшее практическое значение имеет берилл 3BeO·Al 2 O 3 ·6SiO 2 , который после обработки переводят в форму хлорида или фторида. Этот минерал имеет много окрашенных разновидностей: изумруд (около 2% Cr придают ему зеленый цвет), аквамарин (примесь Fe(II) обуславливает его голубую окраску), воробьевит (розового цвета из-за примесей соединений Mn(II)), а гелиодор (золотисто-желтый – ионы Fe(III)). Перспективны и частично используются фенакит 2BeO·SiO 2 , гельвин (Mn, Fe, Zn) 4 3 S, хризоберилл BeAl 2 O 4 , бертрандит 4BeO·2SiO 2 ·H 2 O.

Мировые природные ресурсы Ве оцениваются более чем в 80 тыс. т (по содержанию Ве), из которых около 65% сосредоточено в США (основное Ве сырье – бертрандитовая руда). Подтвержденные запасы – на месторождении Spur Mountain (шт. Юта), являющемся основным в мире источником Ве, на конец 2000 составили примерно 19 тыс. т (по содержанию металла). Из других стран наибольшими запасами Ве обладают Китай, Россия и Казахстан. Во времена СССР Ве на территории России добывался на Малышевском (Свердловская область), Завитинском (Читинская область), Ермаковском (Бурятия), Пограничном (Приморский край) месторождениях. В связи с сокращением ВПК и прекращением строительства атомных электростанций его добыча была прекращена на Малышевском и Ермаковском и значительно сокращена на Завитимском месторождениях. При этом значительная часть добываемого Ве продается за рубеж, в основном, в Европу и Японию.

Физические свойства – по сравнению с другими легкими материалами бериллий обладает уникальным сочетанием физических и механических свойств.

Кристаллическая решётка Ве гексагональная плотноупакованная с периодами а = 2,855 Å и с= 3,5840 Å.

Плотность 1847,7 кг/м 3

Температура плавления 1551 °С

Температура кипения 3243 о С

Скрытая теплота плавления 250–275 кал/г (самая высокая среди всех металлов)

Коэффициент линейного расширения 10,3–131 (25–100 °С)

Модуль продольной упругости (модуль Юнга) 300ГН/м 2 (3.104 кг с/мм 2)

Предел прочности при растяжении 200–550 МН/м 2 (20–55 кг с/мм 2)

Предел текучести 250–600 МН/м 2 (25–60 кг с/мм 2)

Предел прочности в направлении вытяжки – до 400–800МН/м 2 (40–80 кг с/мм 2) Относительное удлинение – до 4–12%

Ударная вязкость 10–50 кДж/м 2 (0,1 – 0,5 кгс. м/см 2)

Температура перехода из хрупкого состояния в пластическое 200 – 400 °С

Твёрдость НВ 60–85 (для горячепрессованного Ве)

Теплоемкость для α-Ве 16,44 Дж/(моль К), для β-Ве – 30,0 Дж/(моль К)

Ве обладает: наиболее высокой из всех металлов удельной теплоёмкостью – 1,80 кДж/(кг. К) или 0,43 ккал/ (кг °С)

высокой теплопроводностью – 178 Вт/(м К) или 0,45 кал/см сек °С) (50 °С)

низким электросопротивлением – 3,6–4,5 мкОм см (20 °С)

Сравним некоторые свойства Ве с характеристиками других материалов.

Удельная прочность и жесткость материалов

Влияние температуры на удельный модуль упругости различных материалов

Свойства Ве зависят от качества и структуры металла и заметно меняются с температурой, механические – от чистоты металла, величины зерна и текстуры, определяемой характером обработки. Обработка давлением приводит к определённой ориентации кристаллов Ве, возникает анизотропия, становится возможным значительное улучшение свойств. Механические свойства в направлении, перпендикулярном вытяжке, почти не меняются. Ве – хрупкий металл (особенно литой) при комнатной температуре, что является главным препятствием к его широкому использованию в качестве конструкционного материала; к еще большей хрупкости материала приводит содержание даже незначительных примесей (например, введение в очищенный Ве всего 0,001% Si). Имеет низкую пластичность и хорошую коррозионную стойкость. Упругость паров Ве при температуре плавления очень мала.

Механические свойства Ве в литом и деформированном состояниях различаются в зависимости от направления проведения испытаний. Наилучшими механическими свойствами обладает Ве после тёплой обработки давлением, которая проводится при температурах ниже температуры рекристаллизации. Температура рекристаллизации Ве изменяется в пределах от 700 °С до 900 °С в зависимости от степени деформации и времени выдержки. Рекристаллизационный отжиг значительно повышает пластичность и уменьшает прочность Ве.

Отношение прочности к плотности у Be значительно выше, чем у авиационных сталей и сплавов на основе Ti и Al.

Важным специфическим свойством Ве является его высокая проницаемость для рентгеновских лучей, которая в 17 раз выше, чем у алюминия.

Высокие ядерные характеристики – самое низкое среди металлов эффективное поперечное сечение захвата тепловых нейтронов и самое высокое поперечное сечение их рассеяния.

Дает эвтектические сплавы с Al и Si. Растворимость примесных элементов в Ве чрезвычайно мала.

Химические свойства

Степени окисления +2 и +1 (последняя крайне неустойчива), конфигурация внешних электронов 2s 2 .

По химическим свойствам Be подобен Al. Сходство между этими элементами привело к существенному заблуждению относительно валентности и атомной массы Ве – долгое время Ве считали трехвалентным с относительной атомной массой 14 (что примерно равно утроенной массе одного эквивалента Ве 3 × 4,7); лишь через 70 лет после открытия Ве русский ученый Д.И. Менделеев пришел к выводу, что в его периодической таблице места для такого элемента нет, а вот двухвалентный элемент с относительной атомной массой 9 (приблизительно равной удвоенной массе одного эквивалента Ве 2 × 4,7) легко размещается между Li и B.

Металлический Ве относительно мало реакционноспособен при комнатной температуре (например, устойчив к кислороду воздуха благодаря плёнке окиси, образующейся на его поверхности), в данных условиях взаимодействует с F 2 . В компактном виде не реагирует с водой и водяным паром даже при температуре красного каления и не окисляется воздухом до 600° С. При 1200 °С металлический Ве горит, превращаясь в белый порошок ВеО. Галогены реагируют с Ве при температуре выше 600° С, а халькогены требуют еще более высокой температуры. Компактный Ве интенсивно реагирует с N 2 при температурах более 1000 градусов, а в порошкообразном состоянии – при температурах более 500 о С. Аммиак взаимодействует с Ве при температуре выше 1200° С с образованием нитрида Be 3 N 2 , а углерод дает карбид Ве 2 С при 1700° С. С Н 2 Ве непосредственно не реагирует, и гидрид ВеН 2 получают косвенным путем (получен при разложении бериллийорганических соединений, устойчив до 240 °С).

«Бериллий и сплавы, содержащие бериллий. Свойства, применение в химической технологии»


Введение

Применяемые в промышленности и быту металлические изделия редко состоят из чистых металлов, примером является алюминиевая или медная проволока с процентным содержанием металла около 99,9%, в большинстве других случаев идет речь о сплавах. Сплавы – системы, состоящие из двух или нескольких металлов, а также из металлов и неметаллов, обладающие свойствами, присущими металлическому состоянию. Так, различные виды железа и стали содержат наряду с металлическими добавками незначительные количества углерода, которые оказывают решающее влияние на механическое и термическое поведение сплавов. Все сплавы имеют специальную маркировку, т. к. сплавы с одним названием (например, латунь) могут иметь разные массовые доли других металлов.

Для изготовления сплавов применяют различные металлы. Самое большое значение среди всех сплавов имеют стали различных составов. Для получения легированных сталей к железу, являющемуся главной составляющей сплава, добавляют кремний, медь, марганец, никель, хром, вольфрам, ванадий, молибден и другие компоненты.

В данной работе будут рассмотрены свойства и применение металла бериллия и содержащих бериллий сплавов.


Бериллий – светло-серый металл второй группы Периодической системы элементов Д.И. Менделеева. Порядковый номер 4, атомная масса 9,013. Символ Be (лат. Beryllium). Имеет один стабильный изотоп 9 Be, известны также радиоактивные изотопы бериллия 7 Be и 10 Be с периодами полураспада 53,29 дней и 1,6·10 6 лет соответственно. Открыт в 1798 в виде окиси BeO, выделенной из минерала берилла Л. Вокленом. Металлический Ве впервые получили в 1828 Ф. Вёлер и А. Бюсси независимо друг от друга. Так как некоторые соли Ве сладкого вкуса, его вначале называли «глюциний» (от греч. glykys – сладкий) или «глиций». Название Glicinium (знак GI) употребляется (наряду с Ве) только во Франции. Применение Ве началось в 40-х гг. 20 в., хотя его ценные свойства как компонента сплавов были обнаружены ещё ранее, а замечательные ядерные – в начале 30-х гг. 20 в.

Ве может существовать в двух полиморфных модификациях. Низкотемпературная модификация (α-Ве), существующая до 1250 °С, имеет гексагональную плотноупакованную решетку, высокотемпературная (β-Ве) – решетку объемно-центрированного куба.

Нахождение в природе

Редкий металл – содержание Ве в земной коре 5 · 10 -4 % (как и соседние с ним литий и бор, относительно мало распространен в земной коре). Типичный литофильный элемент, характерный для кислых, субщелочных и щелочных магм. Не является рассеянным, так как входит в состав поверхностных залежей берилла в пегматитовых породах, которые последними закристаллизовались в гранитных куполах. Есть сообщения о гигантских бериллах длиной до 1 м и массой до нескольких тонн.

Известно 54 собственно бериллиевых минерала – из них наибольшее практическое значение имеет берилл 3BeO·Al 2 O 3 ·6SiO 2 , который после обработки переводят в форму хлорида или фторида. Этот минерал имеет много окрашенных разновидностей: изумруд (около 2% Cr придают ему зеленый цвет), аквамарин (примесь Fe(II) обуславливает его голубую окраску), воробьевит (розового цвета из-за примесей соединений Mn(II)), а гелиодор (золотисто-желтый – ионы Fe(III)). Перспективны и частично используются фенакит 2BeO·SiO 2 , гельвин (Mn, Fe, Zn) 4 3 S, хризоберилл BeAl 2 O 4 , бертрандит 4BeO·2SiO 2 ·H 2 O.

Мировые природные ресурсы Ве оцениваются более чем в 80 тыс. т (по содержанию Ве), из которых около 65% сосредоточено в США (основное Ве сырье – бертрандитовая руда). Подтвержденные запасы – на месторождении Spur Mountain (шт. Юта), являющемся основным в мире источником Ве, на конец 2000 составили примерно 19 тыс. т (по содержанию металла). Из других стран наибольшими запасами Ве обладают Китай, Россия и Казахстан. Во времена СССР Ве на территории России добывался на Малышевском (Свердловская область), Завитинском (Читинская область), Ермаковском (Бурятия), Пограничном (Приморский край) месторождениях. В связи с сокращением ВПК и прекращением строительства атомных электростанций его добыча была прекращена на Малышевском и Ермаковском и значительно сокращена на Завитимском месторождениях. При этом значительная часть добываемого Ве продается за рубеж, в основном, в Европу и Японию.

Физические свойства – по сравнению с другими легкими материалами бериллий обладает уникальным сочетанием физических и механических свойств.

Кристаллическая решётка Ве гексагональная плотноупакованная с периодами а = 2,855 Å и с= 3,5840 Å.

Плотность 1847,7 кг/м 3

Температура плавления 1551 °С

Температура кипения 3243 о С

Скрытая теплота плавления 250–275 кал/г (самая высокая среди всех металлов)

Коэффициент линейного расширения 10,3–131 (25–100 °С)

Модуль продольной упругости (модуль Юнга) 300ГН/м 2 (3.104 кг с/мм 2)

Предел прочности при растяжении 200–550 МН/м 2 (20–55 кг с/мм 2)

Предел текучести 250–600 МН/м 2 (25–60 кг с/мм 2)

Предел прочности в направлении вытяжки – до 400–800МН/м 2 (40–80 кг с/мм 2) Относительное удлинение – до 4–12%

Ударная вязкость 10–50 кДж/м 2 (0,1 – 0,5 кгс. м/см 2)

Температура перехода из хрупкого состояния в пластическое 200 – 400 °С

Твёрдость НВ 60–85 (для горячепрессованного Ве)

Теплоемкость для α-Ве 16,44 Дж/(моль К), для β-Ве – 30,0 Дж/(моль К)

Ве обладает: наиболее высокой из всех металлов удельной теплоёмкостью – 1,80 кДж/(кг. К) или 0,43 ккал/ (кг °С)

высокой теплопроводностью – 178 Вт/(м К) или 0,45 кал/см сек °С) (50 °С)

низким электросопротивлением – 3,6–4,5 мкОм см (20 °С)

Сравним некоторые свойства Ве с характеристиками других материалов.

Удельная прочность и жесткость материалов

Влияние температуры на удельный модуль упругости различных материалов

Свойства Ве зависят от качества и структуры металла и заметно меняются с температурой, механические – от чистоты металла, величины зерна и текстуры, определяемой характером обработки. Обработка давлением приводит к определённой ориентации кристаллов Ве, возникает анизотропия, становится возможным значительное улучшение свойств. Механические свойства в направлении, перпендикулярном вытяжке, почти не меняются. Ве – хрупкий металл (особенно литой) при комнатной температуре, что является главным препятствием к его широкому использованию в качестве конструкционного материала; к еще большей хрупкости материала приводит содержание даже незначительных примесей (например, введение в очищенный Ве всего 0,001% Si). Имеет низкую пластичность и хорошую коррозионную стойкость. Упругость паров Ве при температуре плавления очень мала.

Механические свойства Ве в литом и деформированном состояниях различаются в зависимости от направления проведения испытаний. Наилучшими механическими свойствами обладает Ве после тёплой обработки давлением, которая проводится при температурах ниже температуры рекристаллизации. Температура рекристаллизации Ве изменяется в пределах от 700 °С до 900 °С в зависимости от степени деформации и времени выдержки. Рекристаллизационный отжиг значительно повышает пластичность и уменьшает прочность Ве.

Отношение прочности к плотности у Be значительно выше, чем у авиационных сталей и сплавов на основе Ti и Al.

Важным специфическим свойством Ве является его высокая проницаемость для рентгеновских лучей, которая в 17 раз выше, чем у алюминия.

Высокие ядерные характеристики – самое низкое среди металлов эффективное поперечное сечение захвата тепловых нейтронов и самое высокое поперечное сечение их рассеяния.

Дает эвтектические сплавы с Al и Si. Растворимость примесных элементов в Ве чрезвычайно мала.

Химические свойства

Степени окисления +2 и +1 (последняя крайне неустойчива), конфигурация внешних электронов 2s 2 .

По химическим свойствам Be подобен Al. Сходство между этими элементами привело к существенному заблуждению относительно валентности и атомной массы Ве – долгое время Ве считали трехвалентным с относительной атомной массой 14 (что примерно равно утроенной массе одного эквивалента Ве 3 × 4,7); лишь через 70 лет после открытия Ве русский ученый Д.И. Менделеев пришел к выводу, что в его периодической таблице места для такого элемента нет, а вот двухвалентный элемент с относительной атомной массой 9 (приблизительно равной удвоенной массе одного эквивалента Ве 2 × 4,7) легко размещается между Li и B.

Металлический Ве относительно мало реакционноспособен при комнатной температуре (например, устойчив к кислороду воздуха благодаря плёнке окиси, образующейся на его поверхности), в данных условиях взаимодействует с F 2 . В компактном виде не реагирует с водой и водяным паром даже при температуре красного каления и не окисляется воздухом до 600° С. При 1200 °С металлический Ве горит, превращаясь в белый порошок ВеО. Галогены реагируют с Ве при температуре выше 600° С, а халькогены требуют еще более высокой температуры. Компактный Ве интенсивно реагирует с N 2 при температурах более 1000 градусов, а в порошкообразном состоянии – при температурах более 500 о С. Аммиак взаимодействует с Ве при температуре выше 1200° С с образованием нитрида Be 3 N 2 , а углерод дает карбид Ве 2 С при 1700° С. С Н 2 Ве непосредственно не реагирует, и гидрид ВеН 2 получают косвенным путем (получен при разложении бериллийорганических соединений, устойчив до 240 °С).

Ве легко растворяется в разбавленных водных растворах кислот (соляной, серной, азотной, плавиковой), слабо реагирует с концентрированной серной и разбавленной азотной кислотами, однако холодная концентрированная азотная кислота пассивирует металл. Реакция Ве с водными растворами щелочей сопровождается выделением Н 2 и образованием гидроксобериллатов:

Be + 2NaOH (р) + 2H 2 O = Na 2 + H 2

При проведении реакции с расплавом щелочи при 400–500° С образуются диоксобериллаты:

Be + 2NaOH (ж) = Na 2 BeO 2 + H 2

Металлический Ве быстро растворяется в водном растворе NH 4 HF 2 . Эта реакция имеет технологическое значение для получения безводного BeF 2 и очистки Ве: Be + 2NH 4 HF 2 = (NH 4) 2 + H 2

Мелкодисперсный порошок Ве сгорает в парах S, Se, Te. Расплавленный Be взаимодействует с большинством окислов, нитридов, сульфидов и карбидов.


Соединения бериллия

У Ве, в отличие от других элементов 2 группы, нет соединений с преимущественно ионными связями, в то же время для него известны многочисленные координационные соединения, а также металлоорганические соединения, в которых часто образуются многоцентровые связи.

Вследствие малого размера атома Ве почти всегда проявляет координационное число 4, что важно для аналитической химии.

Соли Ве сильно гигроскопичны и за небольшим исключением (фосфат, карбонат) хорошо растворимы в воде, быстро гидролизуются с образованием ряда гидроксокомплексов неопределенной структуры, среда раствора кислая. Осаждение начинается при отношении OH – :Be 2+ > 1. Дальнейшее добавление щелочи приводит к растворению осадка.

Гидрид Ве ВеН 2 был впервые получен в 1951 восстановлением ВеCl 2 с помощью LiAlH 4 . Аморфное белое вещество, при нагревании до 250° С гидрид ВеН 2 выделять Н 2 . Это соединение умеренно устойчиво в воздухе и воде, но быстро разлагается кислотами. ВеН 2 полимеризован за счет трехцентровых связей ВеНВе.

BeHal : Безводные BeHalнельзя получить реакциями в водных растворах вследствие образования гидратов, таких как F 2 , и гидролиза. Лучшим способом для получения BeF 2 является термическое разложение (NH 4) 2 , а BeCl 2 удобно получать из оксида – для этого действуют Cl 2 на смесь BeO и СО 2 при 650–1000° С. BeCl 2 можно также синтезировать прямым высокотемпературным хлорированием металлического Ве или его карбида. Эти же реакции используются для получения безводных бромида и иодида.

BeF 2 – стекловидный материал, его структура состоит из неупорядоченной сетки из атомов Ве (КЧ 4), связанных мостиками из атомов F, и похожа на структуру кварцевого стекла. Выше 270° С BeF 2 самопроизвольно кристаллизуется. Подобно кварцу, он существует в низкотемпературной α-форме, которая при 227° С переходит в β-форму, кроме того, можно получить формы кристобалита и тридимита. Структурное сходство между BeF 2 и SiO 2 распространяется также на фторобериллаты (которые образуются при взаимодействии BeF 2 с фторидами щелочных элементов и аммония) и силикаты.

BeF 2 – компонент фторобериллатных стекол и солевой смеси, используемой в ядерных реакторах на расплавленных солях.

Хлорид и другие галогениды Ве можно рассматривать как полиядерные комплексные соединения, в которых координационное число Ве равно 4. В кристаллах BeCl 2 есть бесконечные цепочки с мостиковыми атомами Cl:

Даже при температуре кипения 550° С в газовой фазе содержится около 20% молекул димеров Be 2 Cl 4 .

Цепочечная структура BeCl 2 легко разрушается слабыми лигандами, такими, как диэтиловый эфир, с образованием молекулярных комплексов :

Более сильные доноры, такие, так вода или аммиак, дают ионные комплексы 2 + (Cl –) 2 . В присутствии избытка галогенид-ионов образуются галогенидные комплексы, например 2– .

Оксид Ве BeO встречается в природе в виде редкого минерала бромеллита.

Непрокаленный ВеО гигроскопичен, адсорбирует до 34% воды, а прокаленный при 1500° С – лишь 0,18%. ВеО, прокаленный не выше 500° С, легко взаимодействует с кислотами, труднее – с растворами щелочей, а прокаленный выше 727° С – лишь HF, горячей концентрированной серной кислотой и расплавами щелочей. BeO устойчив к воздействию расплавленных Li, Na, K, Ni и Fe.

BeO получают термическим разложением сульфата или гидроксида Be выше 800° С. Продукт высокой чистоты образуется при разложении основного ацетата выше 600° С.

BeO обладает очень высокой теплопроводностью – при 100° С она составляет 209,3 Вт/(м·К), что больше, чем у любых неметаллов и даже у некоторых металлов. ВеО сочетает высокую температуру плавления (2507° С) при с незначительным давлением пара при температуре ниже этой. Он служит в качестве химически стойкого и огнеупорного материала для изготовления тиглей, высокотемпературных изоляторов, труб, чехлов для термопар, специальной керамики. В инертной атмосфере или вакууме тигли из ВеО могут применяться при температурах до 2000° С.

Хотя оксид бериллия часто заменяют более дешевым и менее токсичным AlN, в этих случаях обычно наблюдается ухудшение рабочих характеристик оборудования. Ожидают, что в более отдаленной перспективе продолжится стабильный рост потребления ВеО, особенно в производстве компьютеров.

Гидроксид бериллия Be(OH) 2 осаждают из водных растворов солей Ве аммиаком или NaOH. Его растворимость в воде при комнатной температуре намного ниже, чем у его соседей по Периодической системе и составляет всего лишь 3·10 –4 г·л –1 . Be(OH) 2 – слабое амфотерное основание, вступает в реакции как с кислотами, так и со щелочами с образованием солей, в которых Be входит в состав катиона или аниона, соответственно:


Be(OH) 2 + 2H 3 O + = Be 2+ + 2H 2 O

Be(OH) 2 + 2OH – = 2–

(BeOH) 2 CO 3 – соединение переменного состава. Образуется при взаимодействии водных растворов солей Be с карбонатами натрия или аммония. При действии избытка растворимых карбонатов легко образует комплексные соединения, такие как (NH 4) 2 .

Карбоксилаты Be . Уникальность Be проявляется в образовании устойчивых летучих молекулярных оксид-карбоксилатов с общей формулой , где R = H, Me, Et, Pr, Ph и т.д. Эти белые кристаллические вещества, типичным представителем которых является основный ацетат бериллия (R =CH 3), хорошо растворимы в органических растворителях, включая алканы, и нерастворимы в воде и низших спиртах. Их можно получить простым кипячением гидроксида или оксида Be с карбоновой кислотой. Структура таких соединений содержит центральный атом O, тетраэдрически окруженный четырьмя атомами Be. На шести ребрах этого тетраэдра есть шесть мостиковых ацетатных групп, расположенных таким образом, что каждый атом Be имеет тетраэдрическое окружение из четырех атомов O. Ацетатное соединение плавится при 285° С и кипит при 330° С. Оно устойчиво к нагреванию и окислению в нежестких условиях, медленно гидролизуется горячей водой, но быстро разлается минеральными кислотами с образованием соответствующей соли Be и свободной карбоновой кислоты.

Нитрат Be Be(NO 3) 2 при обычных условиях существует в виде тетрагидрата. Он хорошо растворим в воде, гигроскопичен. При 60–100° С образуется гидроксонитрат переменного состава. При более высокой температуре он разлагается до BeO.

Основный нитрат имеет аналогичную карбоксилатам структуру с мостиковыми нитрогруппами. Это соединение образуется при растворении BeCl 2 в смеси N 2 O 4 и этилацетата с образованием кристаллического сольвата , который затем нагревают до 50° С, чтобы получить безводный нитрат Be(NO 3) 2 , быстро разлагающийся при 125° С на N 2 O 4 и .

Бериллийорганические соединения. Для Ве известны многочисленные соединения, содержащие связи Ве-С. Соединения состава ВеR 2 , где R – алкил, являются ковалентными и имеют полимерную структуру. Соединение (CH 3) 2 Be имеет цепочное строение с тетраэдрическим расположением метильных групп вокруг атома Ве. Он легко возгоняется при нагревании. В парах существует в виде димера или тримера.

Соединения R 2 Be самовоспламеняются на воздухе и в атмосфере СО 2 , бурно реагируют (некоторые со взрывом) с водой и спиртами, дают устойчивые комплексы с аминами, фосфинами, эфирами.

Синтезируют R 2 Be взаимодействием BeCl 2 с магнийорганическими соединениями в эфире или Ве с R 2 Hg. Для получения (C 6 H 5) 2 Be и (C 5 H 5) 2 Be используют реакцию BeCl 2 с соответствующими производными щелочных элементов.

Предполагают, что соединения состава RBeX (Х – галоген, OR, NH 2 , H) представляют собой R 2 Be·BeX 2 . Они менее реакционноспособны, в частности, на них не действует СО 2 .

Получение, производство, обработка

В промышленности Ве и его соединения получают переработкой берилла в гидроокись Be(OH) 2 или сульфат BeSO 4 .

1) фторидный способ: измельченный берилл спекают с Na 2 SiF 6 и Na 2 CO 3 при 700–750° С, при этом образуется тетрафторобериллат натрия:

3BeO·Al 2 O 3 ·6SiO 2 + 2Na 2 + Na 2 CO 3 = 3Na 2 + 8SiO 2 + Al 2 O 3 + CO 2 . Образующиеся фторбериллаты натрия Na 2 BeF 4 и NaBeF 3 выщелачивают из смеси водой. При добавлении к этому раствору NaOH (рН = 12) в осадок выпадает Be(OH) 2 .

2) сульфатный способ: берилл спекают при 750° С с известью или мелом (карбонатом Na или Ca), спек обрабатывают концентрированной горячей серной кислотой. На образовавшийся раствор BeSO 4 , Al 2 (SO 4) 3 и других металлов действуют (NH 4) 2 SO 4 – это приводит к выделению большей части Al в виде KAl(SO 4) 2 . Оставшийся раствор обрабатывают избытком NaOH, при этом образуется раствор, содержащий Na 2 и алюминаты Na; при кипячении этого раствора в результате разложения гидроксобериллата осаждается Be(OH) 2 (алюминаты остаются в растворе).

Известно также вскрытие берилла хлорированием или действием фосгена. Дальнейшая обработка ведётся с целью получения BeF 2 или BeCl 2 .

Металлический Ве получают восстановлением фторида магнием: BeF 2 + Mg = Be + MgF 2 , –при высокой температуре (900–1300 °С) или электролизом его хлорида в смеси с хлоридом натрия (350 о С). Полученный металл переплавляют в вакууме: металл высокой чистоты (до 99,98%.) получают дистилляцией, а в небольших количествах – зонной плавкой (пластичный бериллий, содержащий не более 10–4% примесей – многократное повторение зонной плавки (до 8 проходов) позволяет получать особо чистый Ве с чрезвычайно высокой пластичностью (δ = 140%)); применяют также электролитическое рафинирование. Из-за трудностей получения качественных отливок заготовки для изделий из Ве готовят методами порошковой металлургии. В безокислительной среде Ве измельчают в порошок и подвергают горячему прессованию в вакууме при 1140–1180 °С; чем мельче зерна порошка, тем выше прочностные и пластические свойства металла. Для предотвращения взаимодействия с воздухом горячепрессованные заготовки бериллия помещают в стальные оболочки, нагревают до температуры 800–1100 °С и в таком виде проводят обработку давлением. Прутки, трубы и др. профили получают выдавливанием при 800–1050 °С (горячее выдавливание) или при 400–500 °С (тёплое выдавливание). Листы из Ве (основной вид продукции, используемый в ракетной технике) получают прокаткой горячепрессованных заготовок или выдавленных полос при 760–840 °С. Степень обжатия при выдавливании 5:1 и более. Выдавливанием получают заготовки не только круглого или квадратного сечения, но и более сложного профиля.

Профили заготовок, выдавливаемых из бериллия

Свойства горячевыдавленного Ве значительно выше, чем свойства Ве после горячего прессования при исходной крупности порошка менее 70 мкм.

Применяют и др. виды обработки – ковку, штамповку, волочение. При механической обработке Ве пользуются твердосплавным инструментом (Ве плохо обрабатывается резанием).

Деформированные полуфабрикаты имеют развитую текстуру деформации, вызывающую сильную анизотропию свойств.

Получаемый Ве содержит в большом количестве кислород в виде окиси Ве (1–3%), а также другие примеси. Эти примеси, хотя и повышают прочность металла, но существенно снижают его пластичность, вызывая в сварных швах образование холодных трещин. Для обеспечения удовлетворительной свариваемости в техническом Ве ограничивается содержание вредных примесей до следующих количеств (в% по массе): ВеО до 0,3%; Fe до 0,04%; А1 до 0,02%; Si до 0,02%.

Увеличение содержания ВеО ухудшает формирование и повышает пористость швов. Однако и при наличии сравнительно небольшого количества примесей вследствие особенностей кристаллического строения (гексагональная решетка) Ве малопластичен, поскольку в его деформации участвует мало плоскостей скольжения. В этом отношении Ве уступает не только Al, но и Mg.

Для соединения деталей из Ве находит применение аргонодуговая сварка вольфрамовым электродом и электроннолучевая сварка. Предпочтительны соединения с отбортовкой кромок. При сварке стыковых соединений требуется введение в ванну присадочной проволоки.

Сварку неплавящимся электродом в инертных газах – Ar, He и их смесях производят преимущественно в камерах с контролируемой атмосферой вольфрамовым электродом на переменном токе. Техника и сварочная аппаратура те же, что и при сварке Al.

В процессе сварки заметно вырастает зерно в околошовной зоне, прочность сварного соединения составляет 0,5–0,6 прочности основного металла.

Техника электроннолучевой сварки также близка к технике сварки алюминиевых сплавов. Однако высокое давление паров Be создает определенные трудности в обеспечении устойчивого сварочного процесса.

Переработка Ве осложняется острой токсичностью летучих соединений, порошков, пыли и паров, содержащих Ве, поэтому при работе с Ве и его соединениями нужны специальные меры защиты – вместе с тем обработанные детали из бериллия вполне безопасны.

Биологическая роль

Ве присутствует в тканях многих растений и животных. Содержание в почвах – от 2 10 -4 до 1 10 -3 %, в золе растений – около 2 10 -4 %. У животных Ве распределяется во всех органах и тканях, в золе костей содержится от 5,10 -4 до 7.10 -3 % Б. Около 50% усвоенного животным Ве выделяется с мочой, около 30% поглощается костями, 8% обнаружено в печени и почках. Плохо всасывается в желудочно-кишечном тракте, большинство его выводится через кишечник и в меньшей степени через почки. Из того количества Ве, которое усваивается организмом, существенная часть (до 30%) депонируется (откладывается) в костях, а остальное – в легких, лимфатических узлах, печени, сердечной мышце.

Биологическое значение Ве мало выяснено, оно определяется участием элемента в обмене Mg и Р в костной ткани (способность Be(II) замещать Mg в магниесодержащих ферментах за счет его более сильной координационной способности). Не относится к биологически важным, но повышенное содержание Ве опасно для здоровья. При избытке в рационе Ве, по-видимому, происходит связывание в кишечнике ионов фосфорной кислоты в неусвояемый фосфат Ве. Активность некоторых ферментов (щелочной фосфатазы, аденозинтрифосфатазы) тормозится малыми концентрациями Ве. Под влиянием Ве при недостатке фосфора развивается не излечиваемый витамином D бериллиевый рахит, встречаемый у животных в биогеохимических, богатых Ве.

Соединения Ве очень ядовиты, особенно в виде пыли и дыма, обладают аллергическим и канцерогенным действием, раздражают кожу и слизистые оболочки. При попадании в легкие могут вызвать хроническое заболевание – бериллиоз (легочная недостаточность). Заболевания легких, кожи и слизистых оболочек могут возникнуть через 10–15 лет после прекращения контакта с Ве.

Поступление Ве с пищей и водой незначительно. Предельно допустимые концентрации Ве в воздухе ≤0,001 мг/м 3 .

бериллий элемент химический сплав

Сплавы бериллия, их свойства и применение

Главная сложность при легировании Ве состоит в малых размерах его атомов, в результате чего большинство элементов при растворении сильно искажают кристаллическую решетку, сообщая сплаву повышенную хрупкость. Легирование возможно лишь теми элементами, которые образуют с Ве механические смеси с минимальной взаимной растворимостью.

Серьезный недостаток Ве, заключающийся в низкой ударной вязкости и хладноломкости, может быть преодолен использованием сплавов с Al. Из диаграммы состояния Al–Be видно, что эти элементы практически взаимно нерастворимы.

Диаграмма состояния системы Al–Be

В таких сплавах эвтектического типа твердые частицы Be равномерно распределены в пластичной алюминиевой матрице. Сплавы содержат 24–43% Al, остальное – Be. Фирмой «Локхид» (США) разработан сплав, содержащий 62% Be, названный локеллоем. Сплавы Be–Al имеют структуру, состоящую из мягкой пластичной эвтектики и твердых хрупких включений первичного Be. Эти сплавы сочетают высокую жесткость, прочность и малую плотность, характерные для Be, с пластичностью Al.


Зависимость механических свойств сплавов Al–Be от содержания Be

Благодаря пластичности матрицы снижается концентрация напряжений у частиц Be фазы и уменьшается опасность образования трещин, что позволяет использовать сплавы в условиях более сложного напряженного состояния.

Для получения Be-Al сплавов также используют методы порошковой металлургии. Деформацию осуществляют выдавливанием с последующей ковкой и штамповкой в оболочках. Механические свойства труб из локеллоя (Be + 38% Al) при комнатной температуре: σв = 600 МПа, σ0,2 = 570 МПа, δ = 1%.

Для увеличения прочности сплавы Be–Al дополнительно легируют Mg и Ag– элементами, растворимыми в Al фазе. В этом случае матрица представляет собой более прочный и вязкий сплав Al–Mg или Al–Ag.

Al–Be, Al–Be–Mg сплавы удовлетворительно деформируются при 380 – 420 о С, имеют высокий модуль упругости, малую скорость роста усталостных трещин, высокий предел выносливости, износоустойчивы, высоко электро- и теплопроводны. Круг сфер их использования широк – от авиакосмической промышленности до производства компьютеров.

Пластичную матрицу можно получить, используя композицию Be–Ag, содержащую до 60% Ag. Сплавы с Ag дополнительно легируют Li и La.

За исключением сплавов с пластичной матрицей, легирование другими элементами не устраняет хладноломкость Be. Максимальную пластичность имеет Be высокой чистоты.

Широкое распространение получили сплавы Cu с 2–5% Be, так называемые Be бронзы. В России широко применяется Be бронза БрБ2 с 2% Be. Из диаграммы состояния видно, что этот сплав дисперсионно-твердеющий и может упрочняться закалкой с последующим старением.

Диаграмма состояния системы Cu–Be

Закалка с 800 °С фиксирует пересыщенный α–твердый раствор, из которого в процессе старения при 300–350 °С выделяются дисперсные частицы CuBe, образуя регулярную, так называемую квазипериодическую структуру.


Электронно-микроскопическое изображение бериллиевой бронзы после сгорания (регулярное расположение выделений)

После закалки свойства Be бронзы БрБ2: σв = 500 МПа, δ = 30%, после старения – σв = 1200 МПа, δ = 4%.

Be бронзы обладают высокими упругими свойствами. Их используют для изготовления пружин, сохраняющих упругость в широком интервале температур, в том числе в криогенных условиях. Они хорошо сопротивляются усталости и коррозии.

Bе бронзы немагнитны и не искрят при ударе. Из них изготавливают инструменты для работы во взрывоопасных средах – шахтах, газовых заводах, где нельзя использовать обычные стали (например, ручной инструмент в нефтяной промышленности).

Неискрящие и немагнитные инструменты Cu - Be сплава

Литейные Be сплавы (ЛБС), состав которых приведен в таблице «Химические составы (%, остальное – Be) литейных Be сплавов, используют для деталей корпусов оснований, рам, кронштейнов и др. Be сплавы характеризуются высокими значениями теплоемкости, которые в 1,6 раза выше, чем у сплавов Al. Теплопроводность и температуропроводность сплавов лишь незначительно уступает литейным Al сплавам.

Совокупность теплофизических характеристик Be сплавов в целом выгодно отличает их от других материалов (например, силуминов) и определяет высокую размерную стабильность в условиях возникновения температурных градиентов при эксплуатации изделий.

Коррозионная стойкость Be сплавов находится на высоком уровне. Анодная оксидированная пленка на поверхности и лакокрасочные покрытия дополнительно обеспечивают надежную защиту сплавов ЛБС от коррозии. При этом Ве бронзам присуща также высокая электропроводность.

Механические свойства литейных Be сплавов при комнатной температуре приведены в таблице «Механические свойства литейных Be сплавов», а свойства при различных температурах испытания – в таблице «Механические свойства Be сплавов при различных температурах».

Химические составы (%, остальное – Be) литейных бериллиевых сплавов

Сплав Al Ni Mg Cu Zr, Sc, Y, Gd, РЗМ Примеси, не более
Si Fe Mn Ti O2
ЛБС-1 24–34 3–6 0,06–0,21* 0,1 0,15 0,1 0,05 0,1
ЛБС-2 36–24 3,5–4,5 0,6–0,8 0,03–0,12** 0,1 0,15 0,1 0,05 0,1
ЛБС-3 30–34 0,1–0,6 6–8 0,05–0,1 0,1 0,15 0,1

Механические свойства литейных бериллиевых сплавов

Свойство ЛБС-1 ЛБС-2 ЛБС-3
σв, МПа 220–250 250–320 270–280
σ0,2, МПа 180–220 220–270 250–270
δ, % 2–3 2–3 1,1–1,3
ψ, % 2–3 2–3,5
KCU, МДж/м2 0,025–0,035 0,033–0,040 0,025–0,045
E, ГПа 200 200 200

Механические свойства бериллиевых сплавов при различных температурах

Свойство Сплав Температура испытаний, °С
–100 0 100 200 300 400
σв, МПа ЛБС-1 255 225 186 147 112
ЛБС-2 274 255 235 176 118 70
σ0,2, МПа ЛБС-1 235 196 145 120 103
ЛБС-2 245 216 170 140 108 60
δ, % ЛБС-1 2,8 2,4 2,5 2,5 1–2,4
ЛБС-2 2,0 2,1 2,1 2,2 3,0 4,0

Деформированные Be сплавы обладают высокой жесткостью и низкой плотностью. Эти сплавы являются перспективными для использования в некоторых элементах самолетных двигателей. Для повышения жаропрочных свойств Be используется сложное последовательное легирование.

На первом этапе выбирают оптимальный бинарный сплав.

Механические свойства двойных сплавов (остальное – Be)


Из рассмотренных двойных систем сплавы системы Be–Ni характеризуются наиболее высокими механическими свойствами как при комнатной температуре, так и при 500 °С. Ni сплав, содержащий 2% Ве, используется также для высокотемпературных пружин, зажимов, мехов и электрических контактов.

Дальнейшее упрочнение осуществляется введением Ti, образующего высокопрочные интерметаллиды TiBe 12 .

Влияние Ti на прочность сплавов системы Be–Ni показано на графике.

бериллий элемент биологический сплав

Влияние Ti на прочность сплавов системы Be–Ni–Ti при 20 °С и в зависимости от содержания Ni: 1 – 4%; 2 – 6%; 3 – 8% (по И.Н. Фридляндеру)

На основе системы Be–Ni разработан сплав, имеющий марку ВБД-1 при изготовлении из литой заготовки и ВБД-1П при изготовлении из порошков со следующим химическим составом: (7,5–8,5%) Ni; (0,8–1,2%) Ti; остальное – Be.

Механические свойства сплава ВБД-1П приведены в таблице.

Механические свойства сплава ВБД-1П

Предел выносливости сплава ВБД-1П при 500 °С в два раза выше, чем у Ве; удельная жесткость (E/γ) при 20 °С ниже, а при 500 °С – на 10% выше, чем у Ве. Модуль упругости составляет 250 ГПа. Высокая жесткость сохраняется при температурах до 700 °С. Предел ползучести и длительная жаропрочность сплава ВБД-1П при 400 °С такие же, как у деформированного Ве при 300 °С.

Интерметаллические соединения Ве с Ta, Nb, Zr, и др. могут использоваться до температур ≈ 1650 o С и имеют исключительно высокую твердость и стойкость против окисления.

Одна из важнейших областей применения Ве бронз – это изготовление пружин, мембран, сильфонов, применяемых в точном приборостроении. Стоит отметить, что из-за высокой стоимости Ве эти бронзы используют лишь в изделиях небольшого сечения, имеющих особое значение.

Комплекс физических, химических и механических свойств позволяет отнести Ве к наиболее ценным конструкционным материалам, несмотря на ряд недостатков (хрупкость, хладноломкость). Высокие прочностные характеристики в сочетании с малой плотностью, относительно высокой температурой плавления, хорошей коррозионной стойкостью делают Ве и его соединения с тугоплавкими металлами в ряде случаев незаменимым конструкционным материалом для нужд авиационной, ракетной техники и в приборостроении. Находит достаточно широкое применение в конструкциях, к которым предъявляются требования высокой жесткости и легкости.

Еще несколько примеров применения Ве и его сплавов и соединений :

· Улучшение качества поверхности деталей машин и механизмов – для этого готовое изделие выдерживают в порошке Ве при 900–1000° С (бериллизация стали), и его поверхность делается тверже, чем у лучших сортов закаленной стали.

· Изготовление ядерных ректоров (Ве является одним из наиболее эффективных замедлителей и отражателей нейтронов из-за малого эффективного сечения захвата тепловых нейтронов и удовлетворительной стойкости в условиях радиации в сочетании с малой атомной массой), материал для окошек в рентгеновских трубках (Ве пропускает рентгеновские лучи в 17 раз лучше, чем Al и в 8 раз лучше, чем линдемановское стекло)

· Ве – интенсивный источник нейтронов при бомбардировке α-частицами, на этом свойстве основано использование Ве в нейтронных источниках на основе Ra, Po, Ac, Pu. Смесь соединений Ra и Ве долгое время использовалась как удобный лабораторный источник нейтронов, образующихся по ядерной реакции: 9Be + 4He = 12C + 1n. В 1932 при использовании именно этой смеси английским физиком Джеймсом Чедвиком был открыт нейтрон.

· Эффективный раскислитель в литейном деле.

· BeO обладает большой химической устойчивостью и теплопроводностью, сочетающейся с высоким электрическим сопротивлением и термостойкостью, что позволяет применять её в качестве огнеупорного материала для изготовления тиглей, футеровочных материалов, керамических покрытий и т.д.

· Бериллийорганические соединения используют как катализаторы димеризации и полимеризации олефинов, а также для получения металлического Ве высокой чистоты.

· Ве и некоторые его соединения рассматриваются как перспективное твёрдое ракетное топливо с наиболее высокими удельными импульсами.


Подготовка Ве и его сплавов под гальванопокрытия (травление)

Подготовка деталей ведется следующим образом:

1. Обработка абразивом;

2. Погружение в 10 –15%-ный раствор H 2 SO 4 на 5 –10 с и на 2 – 5 мин в раствор NaOH (450 – 500 г./л) и ZnO (100–150 г./л);

3. Промывка в холодной воде;

4. Стравливание Zn в 30 –35%-ном растворе HNO 3;

5. Повторная промывка;

6. Цинкатная обработка и ударное меднение в электролите (в г/л): NaCu(CN) 2 – 35–40; NaCN (свободный) – 3 – 5; Na 2 CO 3 – 7–10. В первую минуту iк = 2,5 ÷ 3 А/дм 2 , в последующие 10 мин iк = 1,0 ÷1,5 А/дм 2 . Детали загружают под током.

В большинстве случаев детали из Ве обезжиривают в органических растворителях, а затем в щелочи. Для Ве бериллия используют щелочи или кислоты, а для активирования – 1%-ный (по массе) раствор H 2 SO 4 . Температура комнатная, время выдержки 15 – 30 с.

С целью улучшения сцепления необходим отжиг Ве деталей в Ar или обработка в вакууме, но следует учитывать диффузию металлов внутрь Ве и его сплавов. Зона диффузии для Ni покрытия становится заметной после 18-часового нагрева при 350–400 °С, а для Fe– при 500 – 550 °С. Поэтому последние рекомендуются в качестве покрытий при работе Be при повышенных температурах.


Литература

1. Популярная библиотека химических элементов. Водород–хром. М., Наука, 1971

2. Карапетьянц М.Х., Дракин С.И. Общая и неорганическая химия. М., Химия, 1992

3. Greenwood N.N., Earnshaw A. Chemistry of the Elements, Oxford: Butterworth, 1997

4. Технология электрической сварки металлов т сплавов плавлением. Под ред. акад. Б.Е. Патона. М., Машиностроение, 1974

5. П.С. Мельников. Справочник по гальванопокрытиям в машиностроении, 1979.

6. Ю.П. Солнцев. Материаловедение: учебник для вузов. СПб., Химиздат, 2004.

ОПРЕДЕЛЕНИЕ

Бериллий - четвертый элемент Периодической таблицы. Обозначение - Be от латинского «beryllium». Расположен во втором периоде, IIА группе. Относится к металлам. Заряд ядра равен 4.

Бериллий мало распространен в земной коре . Он входит в состав некоторых минералов, из которых чаще всего встречается берилл Be 3 Al 2 (SiO 3) 6 .

Бериллий представляет собой металл серо-стального цвета (рис. 1) с плотной гексагональной кристаллической решеткой, довольно твердый и хрупкий. На воздухе покрывается оксидной пленкой, придающей ему матовый оттенок и обусловливающей пониженную химическую активность.

Рис. 1. Бериллий. Внешний вид.

Атомная и молекулярная масса бериллия

Относительная атомная масса A r - это молярная масса атома вещества, отнесенная к 1/12 молярной массы атома углерода-12 (12 С).

Относительная молекулярная масса M r - это молярная масса молекулы, отнесенная к 1/12 молярной массы атома углерода-12 (12 С). Это безразмерная величина.

Поскольку в свободном состоянии бериллий существует в виде одноатомных молекул Be, значения его атомной и молекулярной масс совпадают. Они равны 9,0121.

Изотопы бериллия

В природе бериллий существует в виде единственного изотопа 9 Be. Массовое число равно 9. Ядро атома содержит четыре протона и пять нейтронов.

Существует одиннадцать искусственных изотопов бериллия с массовыми числами от 5-ти до 16-ти, из которых наиболее устойчивыми являются 10 Be с периодом полураспада равным 1,4 млн. лет и 7 Be с периодом полураспада 53 дня.

Ионы бериллия

На внешнем энергетическом уровне атома бериллия имеется два электрона, которые являются валентными:

В результате химического взаимодействия бериллий теряет свои валентный электроны, т.е. является их донором, и превращается в положительно заряженный ион (Be 2+):

Be 0 -2e → Be 2+ ;

В соединениях бериллий проявляет степень окисления +2.

Молекула и атом бериллия

В свободном состоянии бериллий существует в виде одноатомных молекул Be. Приведем некоторые свойства, характеризующие атом и молекулу лития:

Сплавы бериллия

Главной областью применения бериллия являются сплавы, в которые этот металл вводится как легирующая добавка. Кроме бериллиевых бронз (спал меди с 2,5% бериллия), применяются сплавы никеля с 2-4% бериллия, которые по коррозионной стойкости, прочности и упругости сравнимы с высококачественными нержавеющими сталями, а в некоторых отношениях превосходят их. Они применяются для изготовления пружин и хирургических инструментов.

Небольшие добавки бериллия к магниевым сплавам повышают их коррозионную стойкость. Такие сплавы, а также сплавы алюминия с бериллием применяются в авиастроении.

Примеры решения задач

ПРИМЕР 1

Задание Напишите формулы кислородных соединений (оксидов) следующих элементов: а) бериллия (II); б) кремния (IV); в) калия (I); г) мышьяка (V).
Ответ Известно, что валентность кислорода в соединениях всегда равна II. Для того, чтобы составить формулу вещества (оксида) нужно осуществить следующую последовательность действий. Сначала записываем химические знаки элементов, входящих в состав сложного вещества и ставим над знаком каждого элемента валентность римской цифрой:

Находим наименьшее кратное чисел единиц валентностей: а) (II×II) = 4;б) (IV×II) = 8; в) (I×II) = 2; г) (V×II) = 10.

Разделим наименьшее общее кратное на число единиц валентности каждого элемента в отдельности (полученные частные и будут индексами в формуле):

а) 4/2 = 2 и 4/2 = 2, следовательно, формула оксида BeO;

б) 8/4 = 2 и 8/2 = 4, следовательно, формула оксида SiO 2 ;

в) 2/1 = 2 и 2/2 = 1, следовательно, формула оксида K 2 O;

г) 10/5 = 2 и 10/2 = 5, следовательно, формула оксида As 2 O 5 .