Внедрение кельвина. Новое определение кельвина. Температура кипения жидкого азота

16 ноября 2018 года 26-я Генеральная конференция по весам и мерам (КГПМ) единогласно проголосовала за новые определения основных единиц СИ : килограмма, ампера, кельвина и моля. Единицы будут определяться путем задания точных численных значений для постоянной Планка (h), элементарного электрического заряда (e), постоянной Больцмана (k) и постоянной Авогадро (Nа) соответственно. Новые определения вступят в силу 20 мая 2019 года.

Определение, которое будет введено с 20 мая 2019: «Кельвин, символ К это единица термодинамической температуры, которая определена путем установления фиксированного численного значения постоянной Больцмана k равным 1,380649 × 10 -23 , Дж⋅K -1 (или кг⋅м 2 ⋅с -2 ⋅K -1)»

В течении многих лет Международный комитет по мерам и весам при МБМВ исследовал возможность переопределения основных единиц Международной системы СИ через универсальные физические константы для того, чтобы устранить зависимость единиц от какого-либо образца или материала. В 2005 г. была издана Рекомендация №1 МКМВ одобряющая действия по разработке новых определений основных единиц: килограмма, ампера, кельвина и моля, основанных на фундаментальных физических константах.

Новое определение кельвина будет основано на назначении фиксированного значения для постоянной Больцмана, которая является коэффициентом, связывающим единицу температуры с единицей тепловой энергии. Величина кТ = τ , которая присутствует в уравнениях состояния, является характеристической энергией, определяющей распределение энергии между частицами системы, находящейся в тепловом равновесии. Так, для несвязанных атомов, температура пропорциональна средней кинетической энергии. Если в настоящее время фиксированное значение приписано температуре тройной точки воды, а постоянная Больцмана является зависимой величиной, то по предложению МКМВ, фиксированное значение будет иметь постоянная Больцмана, а все температуры реперных точек, включая тройную точку воды, будут измеряемыми величинами.
(Более подробную информацию о понятии "температура" и смысле постоянной Больцмана можно получить из раздела сайта (МТШ-90/Введение)

В рамках ККТ была создана специальная рабочая группа, которая должна обобщить материалы исследований по измерению константы Больцмана, изучить последствия введения нового определения, его положительные и отрицательные стороны.

Главным преимуществом введения нового определения кельвина МКМВ считает повышение точности температурных измерений в области температур, далекой от тройной точки воды. Таким образом, например, станет возможным применение абсолютных радиационных термометров без опоры на тройную точку воды. Новое определение кельвина будет способствовать развитию первичных термодинамических методов реализации температурной шкалы, наряду с методами, описанными в МТШ-90. В перспективе, новое определение кельвина должно привести к повышению точности температурной шкалы и расширению ее диапазона без серьезных экономических и организационных последствий, сопровождавших введение новых предыдущих практических шкал.

В мае 2007 г. рабочая группа ККТ опубликовала на сайте МБМВ отчет о ходе работы по подготовке к пересмотру определения кельвина и выпустила специальное обращение к метрологам, которое мы приводим на сайте на языке оригинала и в переводе на русский язык:

Updating the definition of the kelvin

The international measurement community, through the International Committee for Weights and Measures, is considering updating the International System of Units (SI). This update, which will probably occur in 2011, will redefine the kilogram, the ampere and the kelvin in terms of fundamental physical constants. The kelvin, instead of being defined by the triple point of water as it is currently, will be defined by assigning an exact numerical value to Boltzmann’s constant. The change would generalise the definition, making it independent of any material substance, measurement technique, and temperature range, to ensure the long-term stability of the unit.

For almost all users of temperature measurements, the redefinition will pass unnoticed; water will still freeze at 0 °C, and thermometers calibrated before the change will continue to indicate the correct temperature. The immediate benefits of the redefinition will be to encourage the use of direct measurements of thermodynamic temperatures in parallel with the methods described in the International Temperature Scale.

In the longer term, the new definition will allow the accuracy of temperature measurements to gradually improve without the limitations associated with the manufacture and use of triple point of water cells. For some temperature ranges at least, true thermodynamic methods are expected to eventually replace the International Temperature Scale as the primary standard of temperature.

(перевод)

Международное сообщество метрологов, через представителей в Международном Комитете по мерам и весам, рассматривает вопрос о пересмотре Международной Системы Единиц (СИ). Изменение СИ вероятно произойдет в 2011 г. и коснется переопределения таких величин как килограмм, ампер и кельвин. Единица кельвин, взамен определения через тройную точку воды, как это установлено на настоящий момент, будет определяться посредством назначения точного значения константе Больцмана. Это изменение будет делать определение единицы температуры более общим, не зависимым от какого-либо материала, методики измерений, и температурного диапазона, что обеспечит долговременную стабильность единицы.

Для почти всех людей, занимающихся измерением температуры, переопределение единицы температуры будет не заметно. Вода будет по-прежнему затвердевать при 0 °С и термометры, градуированные до изменения определения кельвина будут по-прежнему показывать правильное значение температуры. Преимуществом переопределения единицы станет продвижение техники прямых измерений термодинамической температуры параллельно с методами, описанными в МТШ.

В последствии новое определение будет способствовать постепенному повышению точности температурных измерений без ограничений, накладываемых производством и использованием сосудов тройной точки воды. Ожидается, что, по крайней мере, для некоторых диапазонов прямые термодинамические методы могут заменить МТШ как первичный эталон температуры.

Более подробная информация приведена в отчете рабочей группы для CIPM, находящимся в свободном доступе на сайте МБМВ (Kelvin_CIPM.pdf)

Основные положения, рассматриваемые в документе ККТ «Report to the CIPM on the implications of changing the definition of the base unit kelvin» следующие:

1.Изменение определения кельвина практически не повлияет на реализацию МТШ-90 и передачу размера единицы температуры рабочим СИ. МТШ-90 в обозримом будущем будет использоваться как наиболее точная и надежная аппроксимация термодинамической шкалы. Однако это не будет единственная, используемая для температурных измерений шкала. В отдаленном будущем термодинамические методы возможно достигнут такой точности, что смогут постепенно стать основными методами измерения температуры. В обозримом будущем ключевой диапазон шкалы -200…960 °С по-прежнему будет осуществляться с помощью платиновых термометров сопротивления. Значения температур реперных точек останутся прежними. Неопределенность измерений будет зависеть от практической реализации точек и неединственности шкалы.

2.Немного изменяться неопределенности, которые приписаны температурам реперных точек на этапе подготовки МТШ-90. Заметим, что эти неопределенности после утверждения шкалы обычно никого из практиков не интересуют, хотя составляют в середине диапазона несколько десятков мК из-за сложностей работы с приборами первичной термометрии. Поскольку фиксированным значением будет постоянная Больцмана, то температура тройной точки воды, оставаясь по-прежнему равной 273,16 К приобретет неопределенность, связанную с экспериментальным определением этой константы. Например, сейчас это примерно 1,8 х 10 -6 , что соответствует неопределенности температуры ТТВ 0,49 мК. Трансформирование этого значения на остальные точки будет не существенным, учитывая приписанную им неопределенность. Например, в точке алюминия (660,323 °С) вместо 25 мК мы получим 25,1 мК. Такие изменения никак не могут повлиять на принятые стандарты, устанавливающие допуски к термопарам, термометрам сопротивления и другим промышленным датчикам.

3.В настоящее время не известны методы, позволяющие существенно снизить неопределенность реализации ТТВ, которая составляет примерно 0,05 мК. Поэтому фиксирование постоянной Больцмана на данном этапе развития науки не может в обозримом будущем повлиять на значение, которое является принятым на настоящий момент, т.е. 273,16 К.

В отчете рассматриваkbcm следующие возможные варианты нового определения единицы температуры:

(1) The kelvin is the change of thermodynamic temperature that results in a change of thermal energy kT by exactly 1.380 65XX x 10 -23 joule. (Кельвин - изменение термодинамической температуры, которое обуславливает изменение тепловой энергии кТ на 1.380 65XX x 10 -23 джоуля) (знаки ХХ в значении будут заменены на точные числа в момент принятия нового определения кельвина.)

(1a) The kelvin is the change of thermodynamic temperature T that results in a change of the thermal energy kT by exactly 1.380 65XX x 10 -23 joule, where k is the Boltzmann constant. (Кельвин - изменение термодинамической температуры, которое обуславливает изменение тепловой энергии кТ на 1.380 65XX x 10 -23 джоуля, где к - постоянная Больцмана)

(2) The kelvin is the thermodynamic temperature at which the mean translational kinetic energy of atoms in an ideal gas at equilibrium is exactly (3/2) 1.380 65XX x 10 -23 joule. (Кельвин -термодинамическая температура, при которой средняя кинетическая энергия поступательного движения атомов идеального газа в состоянии равновесия равна (3/2) х 1.380 65XX x 10 -23 джоуля)

(3) The kelvin is the thermodynamic temperature at which particles have an average energy of exactly (1/2) x 1.380 65XX x 10 -23 joule per accessible degree of freedom. (Кельвин - термодинамическая температура, при которой средняя энергия частиц равна точно (1/2) х 1.380 65XX x 10 -23 джоуля на одну степень свободы)

(4) The kelvin, unit of thermodynamic temperature, is such that the Boltzmann constant is exactly 1.380 65XX x 10 -23 joule per kelvin. (Кельвин - это единица термодинамической температуры, такая, что постоянная Больцмана равна точно 1.380 65XX x 10 -23 джоуля на кельвин)

У каждого из рассматриваемых вариантов есть свои плюсы и минусы. Сейчас ККТ высказывается за последнее определение, осознавая, что в предыдущих вариантах есть неточности. Однако, надо принимать во внимание политику МКМВ в области переопределения других единиц СИ. Если будет решено, что определения должны отражать природу единицы, то, скорее всего, будет принят первый вариант.

17 - 21 октября 2011 г. в Севре под Парижем состоялось 24-е заседание Генеральной Конференции по Мерам и Весам. Конференция одобрила будущие предлагаемые изменения в определениях основных единиц СИ: кельвина, ампера, моля и килограмма.

В пресс-релизе МБМВ отмечено, что 21 октября 2011 г. ГКМВ сделала исторический шаг по направлению к переопределению физических единиц, приняв Резолюцию №1 и, таким образом, анонсировав грядущее введение новых определений единиц и определив основные шаги необходимые для окончательного завершения проекта перехода на новые определения. В пресс-релизе МБМВ также подчеркивается, что переход на новые определения единиц должен осуществляться с осторожностью. Необходимо проводить консультации и разъяснения для всех людей о том, что он не должен повлиять на измерения в повседневной жизни: килограмм по-прежнему будет тем же килограммом, вода будет замерзать при нуле градусов Цельсия и т.д. Никто в повседневной жизни ничего не должен заметить. Изменения определений немедленно скажутся только на самых точных, эталонных измерениях, проводимых в научных лабораториях мира.

Новые определения кельвина, ампера, моля не оспаривалось членами консультативных комитетов. Наибольшие сложности вызывала передача размера единицы килограмма от прототипа килограмма, хранящегося в МБМВ.

Переопределение килограмма требует сначала высокоточного измерения какой-либо фундаментальной константы по отношению к массе реального прототипа килограмма. Затем числовое значение этой фундаментальной константы будет зафиксировано и тот же экспериментальный метод будет использован для измерения массы всех объектов. После переопределения необходимы будут несколько эквивалентных лабораторий в мире, которые способны проводить эталонные измерения массы. Для наиболее точных измерений целевая неопределенность должна быть не хуже 20 мкг на килограмм. Эту точность сейчас можно достичь двумя методами. Первый метод - метод «электоронных весов», который позволяет определить массу через постоянную Планка. Второй метод - сравнение массы прототипа килограмма и массы атома кремния. Эти два метода должны давать один и тот же результат. Современная ситуация оценивалась CODATA на основе работы, опубликованной в конце 2010 г. Было сделано заключение, что неопределенность постоянной Планка на основании всех имеющихся экспериментальных данных составляет сейчас 44 мкг на килограмм. Генеральная конференция по метрам и весам (ГКМВ) заявила, что не одобрит новые определения единиц до тех пор, пока не будут решены все проблемы с единицей массы. Завершение проекта перехода на новые определения единиц СИ планировалось в 2014 г.

В 2014 году 25-е заседании Генеральной Конференции по Мерам и Весам был отмечен прогресс в определении физических констант и был утвержден стратегический план перехода на новое определение Кельвина и других величин. С планом можно ознакомиться на сайте МБМВ по ссылке: SI road map

Для более широкого освящения процесса перехода на новые определения единиц Интернет сайт МБМВ открыл новый раздел «new si» В разделе каждый в доступной форме может найти ответы на вопросы: «почему нужны новый определения?», «когда произойдут изменения?», «как изменения повлияют на повседневную жизнь?» и т.д. Рекомендуем ознакомиться с данным разделом всем специалистам, которые опасаются перехода на новое определения кельвина.

КЕЛЬВИН (Kelvin) Уильям Томас, барон (1824 1907), британский физик и математик, в честь которого получила свое название шкала абсолютной ТЕМПЕРАТУРЫ. Установка Атлантического подводного телефонного кабеля стала возможной благодаря… … Научно-технический энциклопедический словарь

- (К), единица СИ термодинамич. темп ры, равная 1/273,16 части термодинамич. темп ры тройной точки воды. Названа в честь англ. физика У. Томсона (лорда Кельвина, W. Thomson, Lord Kelvin). До 1968 именовалась градус Кельвина (°К). Применяется как ед … Физическая энциклопедия

кельвин - К Единица измерения температуры, которая характеризует в радиотехнике шумовую температуру. Шкала Кельвина (К) связана со шкалой Цельсия (t °C и Фаренгейта (t °F) двумя простыми соотношениями: К=t °C+273 и t °C=5/9 (t °F 32). т … Справочник технического переводчика

КЕЛЬВИН, смотри Томсон У … Современная энциклопедия

Единица термодинамической температуры, равная 1/273,16 части термодинамической температуры тройной точки воды. Обозначается К, до 1968 именовалась градус Кельвина (.К), названа в честь У. Томсона (Кельвина). Единица Международной практической… …

См. Томсон У … Большой Энциклопедический словарь

Сущ., кол во синонимов: 1 единица (830) Словарь синонимов ASIS. В.Н. Тришин. 2013 … Словарь синонимов

- (К, по имени физика Kelvin) единица измерения температуры по Международной системе единиц (СИ). IК=1°С. Температура в Кельвинах отсчитывается от абсолютного нуля, а в градусы Цельсия (t) переводится в Кельвины простым вычитанием: 273,15 t.… … Экологический словарь

Кельвин - Кельвин, К – основная единица температуры или степени нагретости тела по термодинамической температурной шкале, в которой для температуры тройной точкой воды установлено значение 273,16К (точно). За нулевую термодинамическую температуру… … Энциклопедия терминов, определений и пояснений строительных материалов

Кельвин - КЕЛЬВИН, смотри Томсон У.. … Иллюстрированный энциклопедический словарь

КЕЛЬВИН - единица термодинамической температуры по шкале Кельвина в СИ; обозначается К (до 1968 г. именовалась градус Кельвина (°К)). 1 К равен 1/273,16 части термодинамической температуры точки равновесия льда, воды и её пара (тройной точки воды), 1 К = 1 … Большая политехническая энциклопедия

Книги

  • Вильям Томсон лорд Кельвин. 1824 1907 гг. , В. Лебединский. Воспроизведено в оригинальной авторской орфографии издания 1924 года (издательство`Ленинград`). В…
  • Вильям Томсон лорд Кельвин. 1824–1907 гг. , В. Лебединский. Эта книга будет изготовлена в соответствии с Вашим заказом по технологии Print-on-Demand. Воспроизведено в оригинальной авторской орфографии издания 1924 года (издательство "Ленинград"…

Инструкция

Кельвин, ранее именовавшийся градусом Кельвина, является одной из семи основных единиц измерения, принятых в системе СИ. Он заглавной буквой К. В системе градусов по Кельвину отсчет начинается от точки абсолютного нуля, соответствующей минус 273,15 градусам по Цельсию. Кельвин представляет собой 1/273,15 часть термодинамической температуры тройной точки воды, в настоящее время Международный комитет мер и весов работает над изменением этого определения, которое представляется слишком сложным для восприятия. В скором времени Кельвин будет принято выражать через и постоянную Больцмана.

Чтобы оценить правильность перевода температуры из градусов Фаренгейта Цельсия , ориентируйтесь на следующие типичные показатели:+32 °F - точка таяния льда;+212 °F - воды;+100 °F - температура человеческого тела.На то, что +100 °F согласно формуле соответствует +37,78 ºС не обращайте особого внимания – просто жена Фаренгейта оказалась слишком горячей …

Чтобы не запутаться в расчетах, воспользуйтесь для перевода температуры в градусы Цельсия многочисленными он-лайн сервисами, например: www.convertr.ru или http://2mb.ru/konverter-velichin/temperatura/. Выберите наименование физической величины (температура), укажите заданную единицу измерения и введите числовое значение. Существенным преимуществом он-лайн сервисов является не только удобство и скорость расчета, но и возможность перевести в градусы Цельсия температуру, заданную по экзотическим температурным шкалам. Таким, которые в настоящее время практически не используются: Реомюра, Ранкина, Ньютона, Делиля, Рёмера.

Видео по теме

Температурой называют среднюю кинетическую энергию частиц системы, находящейся в термодинамическом равновесии. Из этого следует, что температура должна измеряться в энергетических единицах, включенных в систему СИ в Джоулях. Но, исторически сложилось, что температуру стали измерять задолго до появления молекулярно-кинетической теории и в практике применяют условные единицы – градусы. В международной системе СИ единицей измерения термодинамической температуры тела является Кельвин (К), являющийся одной из семи основных единиц системы. Однако на практике чаще всего температура измеряется Цельсия.

Инструкция

По шкале Кельвина отсчет температуры ведется от абсолютного нуля – состояние, в котором полностью отсутствуют тепловые , один градус шкалы равен 1/273,15 расстояния от абсолютного нуля до тройной точки воды. Тройная воды – это состояние, в котором лед, вода и водяной пар находятся в равновесии. Понятие абсолютной температуры ввел У. Томсон (Кельвин), поэтому данная шкала по его имени.

В составе производных величин СИ для температуры Цельсия. Шкала Цельсия была предложена в 1742 году шведским ученым А. Цельсием и часто применяется на практике. Данная шкала привязана к основным характеристикам воды – температуре таяния льда (0 °С) и температуре кипения (100 °С). Данная шкала удобна потому, что большинство процессов происходит именно в этом диапазоне . Фактически температуры кипения и замерзания воды определены недостаточно точно, поэтому шкалу Цельсия определяют через шкалу Кельвина . Абсолютный ноль при этом определен как 0 К, что равняется равно 273,15 °С.

Источники:

  • как перевести градусы в кельвины

В мире существует три основных шкалы измерения температуры: шкала , шкала Фаренгейта и шкала Кельвина. Шкалой Кельвина пользуются в основном учёные. В большинстве стран для измерения температуры используют шкалу Цельсия. За ноль в шкале Цельсия принята температура замерзания воды, а за 100 градусов - температура кипения воды. Эту шкалу применяют в медицине, технике, метеорологии, в быту. В Англии, США и некоторых других англоязычных странах используется шкала Фаренгейта.

Инструкция

Один градус Фаренгейта равен 1/180 части разности кипения воды и таяния льда. Для температуру из градусов Фаренгейта в градусы Цельсия, необходимо из по Фаренгейту вычесть 32 и полученное на 1,8. C=(F-32) / 1,8. С - по Цельсию, F - температура в Фаренгейта. Приведём некоторые соответствия.
1. 0 градусов по Фаренгейту соответствует -17,8 градусов Цельсия,
2. 32 градуса Фаренгейта соответствуют 0 градусов Цельсия,
3. 212 градусов Фаренгейта соответствуют 100 градусам Цельсия,
4. Температура тела здорового составляет 36,6 градусов Цельсия или 98,2 градуса Фаренгейта.

Для того чтобы перевести температуру из градусов Фаренгейта в градусы Кельвина, необходимо прибавить к температуре по фаренгейту 459 и полученное значение разделить на 1,8. К=(F ? 32) / 1,8. К? температура по Кельвину. Следует отметить, что ноль градусов Кельвина температурой абсолютного нуля. Абсолютный ноль по Кельвину - это минимальная температура, которая может существовать. Эта температура соответствует -271,15 градусам Цельсия или -459,67 градусам Фаренгейта.

Видео по теме

Обратите внимание

Температура абсолютного нуля. -459,67°. -273,15°. При переводе из шкалы Фаренгейта в шкалу Цельсия из исходной цифры вычитают 32 и умножают на 5/9.

Полезный совет

Абсолютный ноль, температура, при которой термодинамическая система обладает самой низкой энергией, 0 Келвинов (K). По шкале Цельсия температура абсолютного ноля соответствует -273,15°C , по шкале Фаренгейта - -459,67°F. Эта температура является самой низкой, теоретически достижимой системой. Газ при постоянном снижении температуры занимает меньший объем.

Источники:

  • Что такое Шкала Фаренгейта.

Для того чтобы перевести единицы температуры из ов Цельсия в Кельвины , снимите данные с термометра и к полученному показателю в градусах Цельсия прибавьте число 273,15.

Вам понадобится

Инструкция

Возьмите термометр любой системы и поместите его датчик (это может быть пузырек с жидкостью, баллончик с газом, биметаллическая пластина, термопара и т.д.) в ту точку , где необходимо измерить температуру теплового процесса. Например, для того чтобы измерить температуру воды обычным жидкостным термометром, поместите пузырек термометра, в котором находится подкрашенный или ртуть, непосредственно в воду. То же самое и с газом или твердым телом. Определите текущее значение температуры по показаниям стрелки на шкале, уровню подъема в трубке или считайте цифровые показания на экране электронного термометра.

При измерении температуры нужно обязательно соблюдать безопасности, чтобы не травму. Помещайте датчик в точку, где , очень аккуратно, чтобы не обжечься. То же правило действует при измерении сверхнизких температур. Очень важно следить за целостностью датчика, особенно в ртутных термометрах. Если пузырек с ртутью треснул, измерения нужно немедленно прекратить, а термометр - утилизировать.

Видео по теме

Обратите внимание

Поскольку температура 0 Кельвина достигается в том случае, когда в веществе полностью прекращается тепловое движение (не двигаются не только атомы и молекулы, но и электроны в атомах), данная температура называется абсолютным нулем, ниже которого температура не опускается. Это значит, что если в результате расчетов получилось значение в Кельвинах, которое меньше нуля – измерение или расчет сделаны неверно. Повторно измерьте температуру и переведите ее в Кельвины - результат должен стать положительным.

Измерение величин в ах, минутах и секундах чаще всего используется для обозначения географических или астрономических координат. Как и при измерении времени, каждая угловая минута содержит 60 секунд, а в градус вмещается 60 минут. Эта шестидесятеричная система исчисления сохраняется со времен древнего Вавилона. Но в современных системах стандартизации, включая используемую в России СИ, применяется десятичное исчисление, поэтому достаточно часто требуется перевести минуты и секунды в десятичные доли градуса.

Инструкция

Используйте для практических вычислений, так как для расчета с точностью до тысячных долей нужны уж очень редко встречающиеся математические способности. Например, это может быть стандартный калькулятор ОС Windows. Для его запуска надо щелкнуть кнопку «Пуск» (или нажать клавишу WIN), перейти в меню в раздел «Программы», затем в его подраздел «Стандартные» и выбрать пункт «Калькулятор». Можно это сделать и по-другому - нажать сочетание клавиш WIN + R, набрать команду calc и нажать клавишу Enter.

Введите известное число секунд, щелкая кнопки в интерфейсе калькулятора на экране или используя клавиатуру. Потом щелкните клавишу с косой чертой («слэш») и введите число 3600. Затем нажмите знак равенства, и калькулятор посчитает и покажет вам величину в северной во вселенной . В 1954 году на Х Генеральной конференции по мерам и весам была установлена термодинамическая температурная шкала, единицей которой был выбран Кельвин, приравненный как 1 к 273,16 части термодинамической тройной точки воды. Эта точка отвечает состоянию, в котором лед, вода и водяной пар находятся в состоянии равновесия. То есть ее температура была постоянной и равняется 273,16 Кельвина, что соответствует 0,01 градусу по шкале Цельсия.

Градус Цельсия является распространенной во всем мире единицей измерения температуры, которая наряду с Кельвином является , применяющейся в Международной системе СИ. Градус Цельсия назван по имени великого шведского ученого Андерса Цельсия, предложившего свою шкалу для измерения температуры.

Температурная шкала Цельсия

Изначально было принято градуса Цельсия связанное с определением стандартного , так как и температура кипения таянья льда, и температура кипения воды зависят от давления. Однако, это крайне неудобно для стандартизации единиц измерения. В связи с этим, после того, как градусы Кельвина были приняты, как стандарт СИ, определение температуры по Цельсию было пересмотрено.

Шкала Цельсия более удобна в быту, так как привязана характеристикам воды – таянием и кипением. К тому же, большинство природных процессов, с которыми сталкивается человек проходят в диапазоне температур по этой шкале. На практике температуру замерзания и кипения воды шкале Цельсия определены недостаточно точно, поэтому температуру воды определяют по шкале Кельвина, после чего переводят в шкалу Цельсия. При этом абсолютный ноль по шкале Кельвина, определяется, как 0 К () и равняется 273, 15 градусов по Цельсию.

Перевод Кельвинов в градусы Цельсия

Перевод температуры тела из Кельвинов Цельсия рассчитывается очень просто. Для этого нужно от температуры в кельвинах отнять 273, 15. Полученное число и будет равняться температуре тела в градусах Цельсия.
Например, абсолютный ноль по Кельвину будет равен:
0 К = 0 + 273,15 °C.

Видео по теме

Существует несколько различных единиц измерения температуры.

Наиболее известными являются следующие:

Градус Цельсия - применяется в Международной системе единиц (СИ) наряду с кельвином.

Градус Цельсия назван в честь шведского учёного Андерса Цельсия, предложившего в 1742 году новую шкалу для измерения температуры.

Первоначальное определение градуса Цельсия зависело от определения стандартного атмосферного давления, потому что и температура кипения воды и температура таяния льда зависят от давления. Это не очень удобно для стандартизации единицы измерения. Поэтому после принятия кельвина K, в качестве основной единицы измерения температуры, определение градуса Цельсия было пересмотрено.

Согласно современному определению, градус Цельсия равен одному кельвину K, а ноль шкалы Цельсия установлен таким образом, что температура тройной точки воды равна 0,01 °C. В итоге, шкалы Цельсия и Кельвина сдвинуты на 273,15:

В 1665 году голландский физик Христиан Гюйгенс вместе с английским физиком Робертом Гуком впервые предложили использовать в качестве отсчетных точек температурной шкалы точки таяния льда и кипения воды.

В 1742 году шведский астроном, геолог и метеоролог Андерс Цельсий (1701-1744) на основе этой идеи разработал новую температурную шкалу. Первоначально в ней 0° (нулём) была точка кипения воды, а 100° - температура замерзания воды (точка плавления льда). Позже, уже после смерти Цельсия, его современники и соотечественники ботаник Карл Линней и астроном Мортен Штремер использовали эту шкалу в перевёрнутом виде (за 0° стали принимать температуру таяния льда, а за 100° - кипения воды). В таком виде шкала и используется до нашего времени.

По одним сведениям, Цельсий сам перевернул свою шкалу по совету Штремера. По другим сведениям, шкалу перевернул Карл Линней в 1745 году. А по третьим - шкалу перевернул преемник Цельсия Мортен Штремер, и в XVIII веке такой термометр был широко распространён под названием «шведский термометр», а в самой Швеции - под именем Штремера, но известнейший шведский химик Йёнс Якоб Берце́лиус в своем труде «Руководство по химии» назвал шкалу «Цельсиевой» и с тех пор стоградусная шкала стала носить имя Андерса Цельсия.

Градус Фаренгейта.

Назван в честь немецкого учёного Габриеля Фаренгейта, предложившего в 1724 году шкалу для измерения температуры.

На шкале Фаренгейта точка таяния льда равна +32 °F, а точка кипения воды +212 °F (при нормальном атмосферном давлении). При этом один градус Фаренгейта равен 1/180 разности этих температур. Диапазон 0…+100 °F по шкале Фаренгейта примерно соответствует диапазону −18…+38 °C по шкале Цельсия. Ноль на этой шкале определяется по температуре замерзания смеси воды, соли и нашатыря (1:1:1), а за 96 °F принята нормальная температура человеческого тела.

Кельвин (до 1968 года градус Кельвина) - единица термодинамической температуры в Международной системе единиц (СИ), одна из семи основных единиц СИ. Предложена в 1848 году. 1 кельвин равен 1/273,16 части термодинамической температуры тройной точки воды. Начало шкалы (0 К) совпадает с абсолютным нулём.

Пересчёт в градусы Цельсия: °С = K−273,15 (температура тройной точки воды - 0,01 °C).

Единица названа в честь английского физика Уильяма Томсона, которому было пожаловано звание лорд Кельвин Ларгский из Айршира. В свою очередь, это звание пошло от реки Кельвин (River Kelvin), протекающей через территорию университета в Глазго.

Кельвин

Градус Цельсия

Градус Фаренгейта

Абсолютный ноль

Температура кипения жидкого азота

Сублимация (переход из твёрдого состояния в газообразное) сухого льда

Точка пересечения шкал Цельсия и Фаренгейта

Температура плавления льда

Тройная точка воды

Нормальная температура человеческого тела

Температура кипения воды при давлении в 1 атмосферу (101,325 кПа)

Градус Реомюра - единица измерения температуры, в которой температура замерзания и кипения воды приняты за 0 и 80 градусов, соответственно. Предложен в 1730 году Р. А. Реомюром. Шкала Реомюра практически вышла из употребления.

Градус Рёмера - неиспользуемая ныне единица температуры.

Температурная шкала Рёмера была создана в 1701 году датским астрономом Оле Кристенсеном Рёмером. Она стала прообразом шкалы Фаренгейта, который посещал Рёмера в 1708 году.

За ноль градусов берётся температура замерзания солёной воды. Вторая реперная точка - температура человеческого тела (30 градусов по измерениям Рёмера, то есть 42 °C). Тогда температура замерзания пресной воды получается как 7,5 градусов (1/8 шкалы), а температура кипения воды - 60 градусов. Таким образом, шкала Рёмера - 60-градусная. Такой выбор, по-видимому, объясняется тем, что Рёмер прежде всего астроном, а число 60 было краеугольным камнем астрономии со времён Вавилона.

Градус Ранкина – единица температуры в абсолютной температурной шкале, названа по имени шотландского физика Уильяма Ранкина (1820-1872). Используется в англоязычных странах для инженерных термодинамических расчётов.

Шкала Ранкина начинается при температуре абсолютного нуля, точка замерзания воды соответствует 491,67°Ra, точка кипения воды 671,67°Ra. Число градусов между точками замерзания и кипения воды по шкале Фаренгейта и Ранкина одинаково и равно 180.

Соотношение между кельвином и градусом Ранкина: 1 K = 1,8 °Ra, градусы Фаренгейта переводятся в градусы Ранкина по формуле °Ra = °F + 459,67.

Градус Делиля - ныне неупотребляемая единица измерения температуры. Была изобретена французским астрономом Жозефом Николя Делилем (1688-1768). Шкала Делиля схожа с температурной шкалой Реомюра. Использовалась в России до XVIII века.

Петр Первый пригласил французского астронома Жозефа Николя Делиля в Россию, учреждая Академию Наук. В 1732 году Делиль создал термометр, использующий ртуть в качестве рабочей жидкости. В качестве нуля была выбрана температура кипения воды. За один градус было принято такое изменение температуры, которое приводило к уменьшению объема ртути на одну стотысячную.

Таким образом, температура таяния льда составила 2400 градусов. Однако позже столь дробная шкала показалась избыточной, и уже зимой 1738 года коллега Делиля по петербургской академии, медик Йозиас Вайтбрехт (1702-1747), уменьшил число ступеней от температуры кипения до температуры замерзания воды до 150.

«Перевернутость» этой шкалы (как и изначального варианта шкалы Цельсия) по сравнению с принятыми в настоящее время обычно объясняют чисто техническими трудностями, связанными с градуировкой термометров.

Шкала Делиля получила достаточно широкое распространение в России, и его термометры использовались около 100 лет. Этой шкалой пользовались многие российские академики, в том числе Михаил Ломоносов, который, однако «перевернул» её, расположив ноль в точке замерзания, а 150 градусов - в точке кипения воды.

Градус Гука - историческая единица температуры. Шкала Гука считается самой первой температурной шкалой с фиксированным нулём.

Прообразом для созданной Гуком шкалы стал попавший к нему в 1661 термометр из Флоренции. В изданной через год «Микрографии» Гука встречается описание разработанной им шкалы. Гук определил один градус как изменение объёма спирта на 1/500, т. е. один градус Гука равен примерно 2,4 °C.

В 1663 году члены Королевского общества согласились использовать термометр Гука в качестве стандартного и сравнивать с ним показания других термометров. Голландский физик Христиан Гюйгенс в 1665 г. вместе с Гуком предложил использовать температуры таяния льда и кипения воды для создания шкалы температур. Это была первая шкала с фиксированным нулём и отрицательными значениями.

Градус Дальтона – историческая единица температуры. Он не имеет определённого значения (в единицах традиционных температурных шкал, таких как шкала Кельвина, Цельсия или Фаренгейта), поскольку шкала Дальтона - логарифмическая.

Шкала Дальтона была разработана Джоном Дальтоном для проведения измерений при высоких температурах, поскольку обычные термометры с равномерной шкалой давали ошибку из-за неравномерного расширения термометрической жидкости.

Нуль шкалы Дальтона соответствует нулю Цельсия. Отличительной чертой шкалы Дальтона является то, что в ней абсолютный нуль равен − ∞°Da, т. е. он является недостижимой величиной (что на самом деле так, согласно теореме Нернста).

Градус Ньютона - не используемая ныне единица температуры.

Температурная шкала Ньютона была разработана Исааком Ньютоном в 1701 году для проведения теплофизических исследований и стала, вероятно, прообразом шкалы Цельсия.

В качестве термометрической жидкости Ньютон использовал льняное масло. За ноль градусов Ньютон взял температуру замерзания пресной воды, а температуру человеческого тела он обозначил как 12 градусов. Таким образом, температура кипения воды стала равна 33 градусам.

Лейденский градус - историческая единица температуры, использовавшаяся в начале XX века для измерения криогенных температур ниже −183 °C.

Эта шкала происходит из Лейдена, где с 1897 года находилась лаборатория Камерлинг-Оннеса. В 1957 году Х. ван Дийк и М. Дюро ввели шкалу L55.

За ноль градусов бралась температура кипения стандартного жидкого водорода (−253 °C), состоящего на 75 % из ортоводорода и на 25 % из параводорода. Вторая реперная точка - температура кипения жидкого кислорода (−193 °C).

Планковская температура , названная в честь немецкого ученого-физика Макса Планка, единица температуры, обозначаемая T P , в Планковской системе единиц. Это одна из планковских единиц, которая представляет фундаментальный предел в квантовой механике. Современная физическая теория не способна описать что-либо более горячее из-за отсутствия в ней разработанной квантовой теории гравитации. Выше планковской температуры энергия частиц становится настолько большой, что гравитационные силы между ними становятся сравнимы с остальными фундаментальными взаимодействиями. Это температура Вселенной в первый момент (Планковское время) Большого взрыва в соответствии с текущими представлениями космологии.

Так вот повелось, что люди невнимательны к деталям. Не то что бы прям специально. Вопрос лежит в плоскости «меньше знаешь, крепче спишь». А сон для некоторых это святое. И не к чему им эти будоражущие ум подробности.

Энергетические установки в крепостях звездных? Вы совсем там с ума сошли?

Очередные шедевры в начале поста. А теперь дружно придумаем назначение фонтану. Что-то у нас ныне в водонапорных башнях почему-то не принято фонтаны ставить. Только ёмкость для воды. Наверное всё же для красоты.

Принцип действия электростатического генератора (генератора Ван де Граафа) показан на рис.9.14.

Положительный полюс источника питания а) соединен с шаром е). Отрицательный полюс заземлен. Пробный шарик б) касается шара е), заряжается и переносится внутрь большого шара в), где и разряжается. Заряд переходит на внешнюю поверхность сферы в). Электрометр г) показывает нарастание потенциала. Процесс можно автоматизировать, если соединить положительный полюс источника с водой д). Таким образом можно «накапать» весьма большой заряд.

Так это ж наш фонтан, что на первых двух картинках. Или непохож?

А так капище оно и есть капище.

Уже много было выложено по транспортным системам, в частности, про «крепости» звёзды. По классической версии такую форму придавали, что не было мертвых зон. Чтоб наступающих ворогов можно было лупить с любого угла. Особо продвинутые аналитики рисовали круглые башни и сравнивали их с углами бастионов, доказывая, что круглые башни это вчерашний день. Даёшь каждому городу по крепости в виде звезды.

То что форма и причина образования таких крепостей лежит несколько в иной плоскости, это не рассматривается. Просто совпало и всё. Зачем это сравнивать?

По мотивам фиорты, теме обсуждения Долевиков и фиортов с assucareira.

Порой мы находим на развалинах прежних миров, что были до людей, странные аппараты, назначение которых нам вовсе неизвестно. Часть из них приспособлена, большая часть просто валяется ненужным хламом, а люди всё ждут, что неким волшебным образом, без их потуг, откроется их память. Вот и нет, память это данность, а это приобретённое людьми. И чтобы только ею владеть в этом мире, надо использовать, пополнять, обновлять и тренировать, а не просто ждать, что данные возможности сами внезапно обретут гибкость и упругость.

В тематике Фиортов, странных сооружений, доставшихся людям от прежнего.
Текст предоставлен кусками ответов, при необходимости, желающие сами могут пройтись по ссылкам и составить своё мнение.

Роза ветров нашего текущего мира изначально делится кратно 4, по сторонам света, а потому число нитей в ней всегда кратно 4, 38 кратно 2, потому 19 сильная роза (19*2) может быть только в мире 2-х ветров, наш же мир 4-х ветров, где есть всего 2 стороны света, есть такие миры, они плоские, там есть то, что бы мы назвали север и юг, и край мира. Там роза ветров иная, а ветры дуют вполне обыденно. :)
В нашем мире её используют для относительной навигации, т.е. навигации по ходу корабля, где есть нос и корма корабля и там вся роза ветров для ветрил сводится к направлению вперёд и отклонениям от него.

Почему роза и почему ветров? Роза – варианты направлений. Ветра – поток из мест, где открыто пространство, соответственно сквозняк. Обычно это закат, потому и розовый (РоЗа). Там на закате открывается дверь в межмирье, и по ветру, как по дуновению на пламя свечи, определяют куда плыть. Проще говоря, где открылся портал через Навъ. С увеличение сложности мира, появлялись дополнительные направления.

http://assucareira.livejournal.com/1366 32.html
Форт отличается от Фиорта тем, что форт даёт фору – это оборонное сооружение, т.е. обычная банальная крепость, где засели защитники и держат оборону, и вопрос времени, сколько они там просидят. Фиорт же, это древнее сооружение ещё допотопного мира, предназначенное для прохождения через миры, мы бы нынче сказали аэровокзал, или порт, или портал, т.е. порт на все направления. Были порталы в виде Храмов, на одно направление, а были межмирные (между Планидные, не путать с планетными), фиорты. Т.е. порталы через фи пространство, нолевое. Естественно сооружение представляло собой некое строение, в коем пространства сходились, можно сказать, что это места силы. Рядом с которым был индикатор схождения пространств – типа указателя, в какой мир нынче рейс действителен. Для удержания баланса миров, конструкция была довольно размерная, и разлапистая, что-то типа расставленных лап у подъёмника, дабы обеспечить устойчивость. По размерности и «лапам» можно судить о «грузоподъёмности» и прочим транспортным характеристикам. Естественно устанавливалось сооружение лишь входом к этому миру, выходить с другой стороны никто собственно и не собирался, ибо там была «взлётная полоса» и фиорт уже иного пространства, мира, планиды, меры. Фиорды были более практичны, чем храмовые комплексы, и профункционировали дольше, хотя почему были? Они и нынче есть.

Самые новые модели оборудовались долевиками, прибором над входом, с указанием какой мир на подключении. Более простые новейшие модели, были оборудованы лишь лампочками, где менялся цвет под зону того мира, куда можно пройти, это для обывателей, так сказать простая в обиходе модель с цветными индикаторами. Использовалась исто верующими людьми, часто духами и призраками, магическими сущностями, которые грамоты не разумели и осваивали лишь простые операции с цветовыми табло. Некоторые и ныне ждут посадки на свой рейс в некий Рай, хотя рейсы давно отменили, но они собираются по звуку колокольчика и ждут, что вот-вот откроются врата и можно переходить.. :)

Механические долевики были расчерчены под розы ветров, т.е. откуда ветер дует, там и открыта дверь портала, потому очень удобно располагались на таких направлениях. Помимо индикаторного устройства, имелось и исполнительное устройство долевиков, типа переключателя пространств, представляющего из себя этакую карусель, которая постепенно смещалась, мерцая. Попадая в зону мерцания, желающие отбыть, перемещались в тот или иной мир, пространство, Планиду и Меру. Довольно удобное устройство для межзвёздных «перелётов» Всё естественно подписано, а каждая доля имела и свой цвет, причём плавно переливающийся.

Куда делись? Дык когда всё завалило, системы переклинило, ремонтировать было некому, а многое попросту разворовали, на собственные нужды. Те немногие капища, что функционировало — порушили, дабы пресечь контрабанду через иные миры. Собственно всё как всегда.

И тд. и тп. Какие-то установки, что жужжали и делали проходы. Отбывающий окукливался «тут», и выкукливался «там». Все завязано на неслабый математичекий аппарат учитывающих много поправок на межпланетный «ветер».

А звезды никто не строил. Они сами образовывались под действием сил работы установки. Конечно потом в непонятках подлатали еще немного этих «бамбуковых самолетов». А так, по большей части, всё происходит как на тех пластинках на которые соль сыпят.