Мотивационно потребностная сфера уровень активности направленность активности. Мотивационно-потребностная сфера личности. Направленность личности. Потребность в познании и понимании


Элементарные частицы , в узком смысле - частицы, которые нельзя считать состоящими из других частиц. В современной физике термин "элементарные частицы " используют в более широком смысле: так называют мельчайшие частицы материи, подчиненные условию, что они не являются и атомами (исключение составляет протон); иногда по этой причине элементарные частицы называют субъядерными частицами. Большая часть таких частиц (а их известно более 350) являются составными системами.

Элементарные частицы участвуют в электромагнитном, слабом, сильном и гравитационном взаимодействиях. Из-за малых масс элементарных частиц их гравитационное взаимодействие обычно не учитывается. Все элементарные частицы разделяют на три основные группы. Первую составляют так называемые бозоны - переносчики электрослабого взаимодействия. Сюда относится фотон, или квант электромагнитного излучения. Масса покоя фотона равна нулю, поэтому скорость распространения электромагнитных волн в (в т. ч. световых волн) представляет собой предельную скорость распространения физического воздействия и является одной из фундаментальных физических постоянных; принято, что с = (299792458±1,2) м/с.

Вторая группа элементарных частиц - лептоны, участвующие в электромагнитных и слабых взаимодействиях. Известно 6 лептонов: , электронное нейтрино, мюон, мюонное нейтрино, тяжелый τ-лептон и соответствующее нейтрино. Электрон (символ e) считается материальным носителем наименьшей массы в природе m e , равной 9,1×10 -28 г (в энергетических единицах ≈0,511 МэВ) и наименьшего отрицательного электрического заряда e = 1,6×10 -19 Кл. Мюоны (символ μ -) - частицы с массой около 207 масс электрона (105,7 МэВ) и электрическим зарядом, равным заряду электрона; тяжелый τ-лептон имеет массу около 1,8 ГэВ. Соответствующие этим частицам три типа нейтрино - электронное (символ ν e), мюонное (символ ν μ) и τ-нейтрино (символ ν τ) - легкие (возможно, безмассовые) электрически нейтральные частицы.

Каждому из лептонов соответствует , имеющая те же значения массы, спина и других характеристик, но отличающаяся знаком электрического заряда. Существуют (символ e +) - античастица по отношению к , положительно заряженный (символ μ +) и три типа антинейтрино (символы ), которым приписывают противоположный знак особого квантового числа, называемого лептонным зарядом (см. ниже).

Третья группа элементарных частиц - адроны, они участвуют в сильном, слабом и электромагнитном взаимодействиях. Адроны представляют собой "тяжелые" частицы с массой, значительно превышающей массу электрона. Это наиболее многочисленная группа элементарных частиц . Адроны делятся на барионы - частицы со спином ½ћ, мезоны - частицы с целочисленным спином (0 или 1); а также так называемые резонансы - короткоживущие возбужденные состояния адронов. К барионам относят протон (символ p) - ядро атома водорода с массой, в ~ 1836 раз превышающей m e и равной 1,672648×10 -24 г (≈938,3 МэВ), и положительным электрическим зарядом, равным заряду нейтрон (символ n) - электрически нейтральная частица, масса которой немного превышает массу протона. Из протонов и нейтронов построены все , именно сильное взаимодействие обусловливает связь этих частиц между собой. В сильном взаимодействии протон и нейтрон имеют одинаковые свойства и рассматриваются как два квантовых состояния одной частицы - нуклона с изотопическим спином ½ћ (см. ниже). Барионы включают и гипероны - элементарные частицы с массой больше нуклонной: Λ-гиперон имеет массу 1116 МэВ, Σ-гиперон - 1190 МэВ, Θ-гиперон - 1320 МэВ, Ω-гиперон - 1670 МэВ. Мезоны имеют массы, промежуточные между массами протона и электрона (π-мезон, K -мезон). Существуют мезоны нейтральные и заряженные (с положительным и отрицательным элементарным электрическим зарядом). Все мезоны по своим статистическим свойствам относятся к бозонам.

Основные свойства элементарных частиц

Каждая элементарная частица описывается набором дискретных значений физических величин (квантовых чисел). Общие характеристики всех элементарных частиц - масса, время жизни, спин, электрический заряд.

В зависимости от времени жизни элементарные частицы делятся на стабильные, квазистабильные и нестабильные (резонансы). Стабильными (в пределах точности современных измерений) являются: электрон (время жизни более 5×10 21 лет), протон (более 10 31 лет), фотон и нейтрино. К квазистабильным относятся частицы, распадающиеся вследствие электромагнитного и слабого взаимодействий, их времена жизни более 10 -20 с. Резонансы распадаются за счет сильного взаимодействия, их характерные времена жизни 10 -22 - 10 -24 с.

Внутренними характеристиками (квантовыми числами) элементарных частиц являются лептонный (символ L ) и барионный (символ В )заряды; эти числа считаются строго сохраняющимися величинами для всех типов фундаментальных взаимодействий. Для лептонных и их античастиц L имеют противоположные знаки; для барионов В = 1, для соответствующих античастиц В =-1.

Для адронов характерно наличие особых квантовых чисел: "странности", "очарования", "красоты". Обычные (нестранные) адроны - протон, нейтрон, π-мезоны. Внутри разных групп адронов имеются семейства частиц, близких по массе и со сходными свойствами по отношению к сильному взаимодействию, но с различными значениями электрического заряда; простейший пример - протон и нейтрон. Общее квантовое число для таких элементарных частиц - так называемый изотопический спин, принимающий, как и обычный спин, целые и полуцелые значения. К особым характеристикам адронов относится и внутренняя четность, принимающая значения ±1.

Важное свойство элементарных частиц - их способность к взаимопревращениям в результате электромагнитных или других взаимодействий. Один из видов взаимопревращений - так называемое рождение пары, или образование одновременно частицы и античастицы (в общем случае - образование пары элементарныех частиц с противоположными лептонными или барионными зарядами). Возможны процессы рождения электрон-позитронных пар e - e + , мюонных пар μ + μ - новых тяжелых частиц при столкновениях лептонов, образование из кварков cc - и bb -состояний (см. ниже). Другой вид взаимопревращений элементарных частиц - аннигиляция пары при столкновениях частиц с образованием конечного числа фотонов (γ-квантов). Обычно образуются 2 фотона при нулевом суммарном спине сталкивающихся частиц и 3 фотона - при суммарном спине, равном 1 (проявление закона сохранения зарядовой четности).

При определенных условиях, в частности при невысокой скорости сталкивающихся частиц, возможно образование связанной системы - позитрония e - e + и мюония μ + e - . Эти нестабильные системы, часто называемые водородоподобными . Их время жизни в веществе в большой степени зависит от свойств вещества, что позволяет использовать водородоподобные атомы для изучения структуры конденсированного вещества и кинетики быстрых химических реакций (см. Мезонная химия , Ядерная химия).

Кварковая модель адронов

Детальное рассмотрение квантовых чисел адронов с целью их классификации позволило сделать вывод о том, что странные адроны и обычные адроны в совокупности образуют объединения частиц с близкими свойствами, названные унитарными мультиплетами. Числа входящих в них частиц равны 8 (октет) и 10 (декуплет). Частицы, входящие в состав унитарного мультиплета, имеют одинаковые и внутреннюю четность, но различаются значениями электрического заряда (частицы изотопического мультиплета) и странности. С унитарными группами связаны свойства симметрии, их обнаружение явилось основой для вывода о существовании особых структурных единиц, из которых построены адроны, - кварков. Считают, что адроны представляют собой комбинации 3 фундаментальных частиц со спином ½: n -кварков, d -кварков и s -кварков. Так, мезоны составлены из кварка и антикварка, барионы - из 3 кварков.

Допущение, что адроны составлены из 3 кварков, было сделано в 1964 (Дж.Цвейг и независимо от него М.Гелл-Ман). В дальнейшем в модель строения адронов (в частности, для того чтобы не возникало противоречия с принципом Паули) были включены еще 2 кварка - "очарованный" (с ) и "красивый" (b ), а также введены особые характеристики кварков - "аромат" и "цвет". Кварки, выступающие как составные части адронов, в свободном состоянии не наблюдались. Все многообразие адронов обусловлено различными сочетаниями n -, d -, s -, с - и b -кварков, образующих связные состояния. Обычным адронам (протону, нейтрону, π-мезонам) соответствуют связные состояния, построенные из n - и d -кварков. Наличие в адроне наряду с n - и d -кварками одного s- , с - или b -кварка означает, что соответствующий адрон - "странный", "очарованный" или "красивый".

Кварковая модель строения адронов подтвердилась в результате экспериментов, проведенных в конце 60-х - начале 70-х гг. XX в. Кварки фактически стали рассматриваться как новые элементарные частицы - истинно элементарные частицы для адронной формы материи. Ненаблюдаемость свободных кварков, по-видимому, носит принципиальный характер и дает основания предполагать, что они являются теми элементарными частицами , которые замыкают цепь структурных составляющих вещества. Существуют теоретические и экспериментальные доводы в пользу того, что силы, действующие между кварками, не ослабевают с расстоянием, т.е. для отделения кварков друг от друга требуется бесконечно большая энергия или, иначе говоря, возникновение кварков в свободном состоянии невозможно. Это делает их совершенно новым типом структурных единиц вещества. Возможно, что кварки выступают как последняя ступень дробления материи.

Краткие исторические сведения

Первой открытой элементарной частицей был электрон - носитель отрицательного электрического заряда в атомах (Дж.Дж.Томсон, 1897). В 1919 Э.Резерфорд обнаружил среди частиц, выбитых из атомных ядер, протоны. Нейтроны открыты в 1932 Дж.Чедвиком. В 1905 А.Эйнштейн постулировал, что электромагнитное излучение является потоком отдельных квантов (фотонов) и на этой основе объяснил закономерности фотоэффекта. Существование как особой элементарной частицы впервые предложил В.Паули (1930); электронное

Элементарными называют частицы, у которых на данный момент не обнаружено внутренней структуры. Еще в прошлом веке элементар­ными частицами считались атомы. Их внут­ренняя структура - ядра и электроны - была обнаружена в начале XXв. в опытах Э. Резерфорда. Размер атомов - около 10 -8 см, ядер - в десятки тысяч раз меньше, а размер электронов совсем мал. Он меньше чем 10 -16 см, как это следует из современных тео­рий и экспериментов.

Таким образом, сейчас электрон - элемен­тарная частица. Что касается ядер, то их внутренняя структура обнаружилась вскоре после их открытия. Они состоят из нукло­нов - протонов и нейтронов. Ядра довольно плотные: среднее расстояние между нуклонами всего в несколько раз больше их собственного размера. Для того чтобы выяснить, из чего состоят нуклоны, понадобилось около полуве­ка, правда, при этом заодно появились и были разрешены и другие загадки природы.

Нуклоны состоят из трех кварков, которые элементарны с той же точностью, что и элек­трон, т. е. их радиус меньше 10 -16 см. Радиус нуклонов - размер области, занимаемой квар­ками, - около 10 -13 см. Нуклоны принадлежат к большому семейству частиц - барионов, составленных из трех различных (или одина­ковых) кварков. Кварки могут по-разному связываться в тройки, и это определяет раз­личия в свойствах бариона, например, он может иметь различный спин.

Кроме того, кварки могут соединяться в пары - мезоны, состоящие из кварка и антикварка. Спин мезонов принимает целые значения, в то время как для барионов он при­нимает полуцелые значения. Вместе барионы и мезоны называются адронами.

В свободном виде кварки не найдены, и сог­ласно принятым в настоящее время представ­лениям они могут существовать только в виде адронов. До открытия кварков некоторое время адроны считались элементарными частицами (и такое их название еще довольно часто встре­чается в литературе).

Первым экспериментальным указанием на составную структуру адронов были опыты по рассеянию электронов на протонах на линейном ускорителе в Станфорде (США), которые мож­но было объяснить, лишь предположив наличие внутри протона каких-то точечных объектов.

Вскоре стало ясно, что это - кварки, существо­вание которых предполагалось еще ранее тео­ретиками.

Здесь представлена таблица современных элементарных частиц. Кроме шести видов квар­ков (в опытах пока проявляются только пять, но теоретики предполагают, что есть и шестой) в этой таблице приведены лептоны - частицы, к семье которых принадлежит и электрон. Еще в этой семье обнаружены мюон и (совсем не­давно) t-лептон. У каждого из них есть свое нейтрино, так что лептоны ес­тественным образом разбиваются на три пары е, n е; m, n m ;t, n t .

Каждая из этих пар объединяется с соответ­ствующей парой кварков в четверку, которая называется поколением. Свойства частиц повторяются из поколения в поколение, как это видно из таблицы. Отличаются лишь массы. Второе поколение тяжелее первого, а третье по­коление тяжелее второго.

В природе встречаются в основном частицы первого поколения, а остальные создаются искусственно на ускорителях заряженных час­тиц или при взаимодействии космических лучей в атмосфере.

Кроме имеющих спин 1/2 кварков и лептонов, вместе называемых частицами ве­щества, в таблице приведены частицы со спином 1. Это кванты полей, создаваемых час­тицами вещества. Из них наиболее известная частица - фотон, квант электромагнитного поля.

Так называемые промежуточные бозоны W + иW - , обладающие очень большими массами, были недавно обнаружены в экспериментах на встречных р -пучках при энергиях в несколь­ко сотен ГэВ. Это переносчики слабых взаимо­действий между кварками и лептонами. И на­конец, глюоны - переносчики сильных взаимодействий между кварками. Как и сами квар­ки, глюоны не обнаружены в свободном виде, но проявляются на промежуточных стадиях реакций рождения и уничтожения адронов. Недавно были зарегистрированы струи адронов, порожденные глюонами. Поскольку все пред­сказания теории кварков и глюонов - кван­товой хромодинамики - сходятся с опытом, почти нет сомнений в существовании глюонов.

Частица со спином 2 - это гравитон. Его существование вытекает из теории тяготе­ния Эйнштейна, принципов квантовой механики и теории относительности. Обнаружить грави­тон экспериментально будет чрезвычайно трудно, поскольку он очень слабо взаимодействует с веществом.

Наконец, в таблице со знаком вопроса приве­дены частицы со спином 0 (Н-мезоны) и 3/2 (гравитино); они не обнаружены на опы­те, но их существование предполагается во многих современных теоретических моделях.

Элементарные частицы

спин 0? 1/2 1 3/2 2?
название Частицы Хиггса Частицы вещества Кванты полей
кварки лептоны фотон векторные бозоны глюон гравитино гравитон
символ H u d n e e g Z W g
(масса) (?) (?) (0,5) (0) (~95Гэв) (~80Гэв) (?) (?)
символ с s n m m
(масса) (0?) (106)
символ t b n t t
(масса) (0?) (1784)
Барионный заряд 0 1/3 1/3 0 0 0 0 0 0 0 0
Электрический заряд 0, ±1 2/3 1/3 0 -1 0 0 ±1 0 0 0
цвет - 3 3 - - - - - 8 - -

Адроны - общее название для частиц, участ­вующих в сильных взаимодействиях. Название происходит от греческого слова, означающего «сильный, крупный». Все адроны делятся на две большие группы - мезоны и барионы.

Барионы (от греческого слова, означающего «тяжелый») - это адроны с полуце­лым спином . Самые известные барионы - протони нейтрон. К барионам принадлежит также ряд частиц с квантовым числом, названным когда-то странно­стью . Единицей странности обладают барион лямбда (L°) и семейство барионов сигма (S - , S+ и S°). Индексы +, - ,0 указывают на знак электрического заряда или нейтральность частицы. Двумя единицами странности обла­дают барионы кси (X - и X°). Барион W - имеет странность, равную трем. Массы перечисленных барионов примерно в полтора раза больше массы протона, а их характерное время жизни составляет около 10 -10 с. Напомним, что протон практически стабилен, а нейтрон живет более 15 мин. Казалось бы, более тяжелые барионы очень недолговечны, но по масштабам микро­мира это не так. Такая частица, даже двига­ясь относительно медленно, со скоростью, скажем, равной 10% от световой скорости, успевает пройти путь в несколько миллиметров и оста­вить свой след в детекторе элементарных час­тиц. Одним из свойств барионов, отличающих их от других видов частиц, можно считать наличие у них сохраняющегося барионного за­ряда. Эта величина введена для описания опытного факта постоянства во всех извест­ных процессах разности между числом барио­нов и антибарионов.

Протон - стабильная частица из класса адронов, ядро атома водорода. Трудно ска­зать, какое событие следует считать откры­тием протона: ведь как ион водорода он был известен уже давно. В открытии протона сыграли роль и создание Э. Резерфордом планетарной модели атома (1911), и откры­тие изотопов (Ф. Содди, Дж. Томсон, Ф. Астон, 1906-1919), и наблюдение ядер водорода, выбитых альфа-частицами из ядер азота (Э. Резерфорд, 1919). В 1925 г. П. Блэкетт получил в камере Вильсона (см. Детекторы ядерных излучений) первые фотографии следов протона,подтвердив открытие искусственного превра­щения элементов. В этих опытах a-частица захватывалась ядром азота, которое испускало протон и превращалось в изотоп кислорода.

Вместе с нейтронами протоны образуют атомные ядра всех химических элементов, причем число протонов в ядре определяет атом­ный номер данного элемента. Протон имеет положительный электрический заряд, равный элементарному заряду, т. е. абсолютной величине заряда электрона. Это проверено на эксперименте с точностью до 10 -21 . Масса протона m p = (938,2796 ± 0,0027)МэВ или ~ 1,6-10 -24 г, т. е. протон в 1836 раз тяжелее электрона! С современ­ной точки зрения протон не является истин­но элементарной частицей: он состоит из двух u -кварков с электрическими зарядами +2/3 (в единицах элементарного заряда) и одного d -кварка с электрическим зарядом -1/3. Кварки связаны между собой обменом другими гипотетическими частицами - глюонами, квантами поля, переносящего сильные взаимо­действия. Данные экспериментов, в которых рассматривались процессы рассеяния электро­нов на протонах, действительно свидетельству­ют о наличии внутри протонов точечных рас­сеивающих центров. Эти опыты в определенном смысле очень похожи на опыты Резерфорда, приведшие к открытию атомного ядра. Будучи составной частицей, протон имеет конечныеразмеры ~ 10 -13 см, хотя, разумеется, его нель­зя представлять как твердый шарик. Скорее, протон напоминает облако с размытой грани­цей, состоящее из рождающихся и аннигили­рующих виртуальных частиц.

Протон, как и все адроны, участвует в каж­дом из фундаментальных взаимодействий. Так. сильные взаимодействия связывают протоны и нейтроны в ядрах, электромагнитные взаимо­действия - протоны и электроны в атомах. Примерами слабых взаимодействий могут слу­жить бета-распад нейтрона или внутриядерное превращение протона в нейтрон с испусканием позитрона и ней­трино (для свободного про­тона такой процесс невозможен в силу закона сохранения и превращения энергии, так как нейтрон имеет несколько большую массу). Спин протона равен 1/2. Адроны с полу­целым спином называются барионами (от греческого слова, означающего «тяжелый»). К барионам относятся протон, нейтрон, раз­личные гипероны (L, S, X, W) и ряд частиц с новыми квантовыми числами, большинство из которых еще не открыто. Для характеристики барионов введено особое число - барионный заряд, равный 1 для барионов, - 1 - для антибарионов и О - для всех прочих частиц. Барионный заряд не является источником барионного поля, он введен лишь для описания закономерностей, наблюдавшихся в реакциях с частицами. Эти закономерности выражаются в виде закона сохране­ния барионного заряда: разность между числом барионов и антибарионов в системе сохраняется в любых реакциях. Сох­ранение барионного заряда делает невозмож­ным распад протона, ибо он легчайший из барионов. Этот закон носит эмпирический ха­рактер и, безусловно, должен быть проверен на эксперименте. Точность закона сохранения барионного заряда характеризуется стабиль­ностью протона, экспериментальная оценка для времени жизни которого дает значение не меньше 1032 лет.