Что электрическое равновесие напряженность равна. Open Library - открытая библиотека учебной информации. Элементарный заряд. Закон сохранений заряда Проводники Полупроводники Диэлектрики Закон Кулона

ПРОВОДНИКИ В ЭЛЕКТРОСТАТИЧЕСКОМ ПОЛЕ

§1 Распределение заряда в проводнике.

Связь между напряженностью поля у поверхности проводника и поверхностной плотностью заряда

Следовательно, поверхность проводника при равновесии зарядов является эквипотенциальной.

При равновесии зарядов ни в каком месте внутри проводника не может быть избыточных зарядов - все они распределены по поверхности проводника с некоторой плотностью σ.

Рассмотрим замкнутую поверхность в форме цилиндра, образующие которого перпендикулярны поверхности проводника. На поверхности проводника расположены свободные заряды с поверхностной плотностью σ.

Т.к. внутри проводника зарядов нет, то поток через поверхность цилиндра внутри проводника равен нулю. Поток через верхнюю часть цилиндра вне проводника по теореме Гаусса равен

т.е. вектор электрического смещения равен поверхностной плотности свободных зарядов проводника или

2. При внесении незаряженного проводника во внешнее электростатическое поле свободные заряды начнут перемещаться: положительные - по полю, отрицательные - против поля. Тогда с одной стороны проводника будут накапливаться положительные, а с другой отрицательные заряды. Эти заряды называются ИНДУЦИРОВАННЫМИ . Процесс перераспределения зарядов будет происходить до тех пор, пока напряженность внутри проводника не станет равной нулю, а линии напряженности вне проводника перпендикулярны его поверхности. Индуцированные заряды появляются на проводнике вследствие смещения, т.е. являются поверхностной плотностью смещенных зарядов и т.к. то поэтому назвали вектором электрического смещения.

§2 Электроемкость проводников.

Конденсаторы

  1. УЕДИНЕННЫМ называется проводник, удаленный от других проводников, тел, зарядов. Потенциал такого проводника прямо пропорционален заряду на нем

Из опыта следует, что разные проводники, будучи одинаково заряженными Q 1 = Q 2 приобретает различные потенциалы φ 1 ¹ φ 2 из-за различной формы, размеров и окружающей проводник среды (ε). Поэтому для уединенного проводника справедлива формула

где - емкость уединенного проводника . Емкость уединенного проводника равна отношению заряда q , сообщение которого проводнику изменяет его потенциал на 1 Вольт.

В системе SI емкость измеряется в Фарадах

Емкость шара


Рассчитаем емкость плоского конденсатора с площадью пластин S , поверхностной плотностью заряда σ, диэлектрической проницаемостью ε диэлектрика между пластинами, расстоянием между пластинами d . Напряженность поля равна

Используя связь Δφ и Е , находим

Емкость плоского конденсатора.

Для цилиндрического конденсатора:

Для сферического конденсатора

Т.к. при некоторых значениях напряжения в диэлектрике наступает пробой (электрический разряд через слой диэлектрика), то для конденсаторов существует пробивное напряжение. Пробивное напряжение зависит от формы обкладок, свойств диэлектрика и его толщины.

  1. Емкость при параллельном и последовательном соединении конденсаторов

а) параллельное соединение

По закону сохранения заряда

б) последовательное соединение

По закону сохранения заряда

§3 Энергия электростатического поля

  1. Энергия системы неподвижных точечных зарядов

Электростатическое поле является потенциальным. Силы, действующие между зарядами - консервативные силы. Система неподвижных точечных зарядов должна обладать потенциальной энергией. Найдем потенциальную энергию двух неподвижных точечных зарядов q 1 и q 2 , находящихся на расстоянии r друг от друга.

Потенциальная энергия заряда q 2 в поле, создаваемом

зарядом q 1 , равна

Аналогично, потенциальная энергия заряда q 1 в поле, создаваемом зарядом q 2 , равна

Видно, что W 1 = W 2 , тогда обозначив потенциальную энергию системы зарядов q 1 и q 2 через W , можно записать

Равновесие зарядов на проводнике

В рамках электростатики мы рассматриваем задачи, в которых распределение зарядов отличается статичностью . Другими словами, такие состояния тел, которые реализуются после того, когда тела рассматриваемых систем пришли в равновесие после некоторых воздействий, например, сообщения заряда, помещения в электрическое поле и т.п. Проводники , в отличие от, диэлектриков, имеют в своем составе свободные носители заряда , которые могут перемещаться по объему проводника. В случае металлов такими носителями заряда являются электроны. Скорость их перемещения по металлу весьма высока, поэтому металлы приходят в равновесие в очень малые доли секунды. В случае других материалов может оказаться, что переход в равновесие происходит гораздо медленнее, однако мы сейчас будем рассматривать ситуации, когда равновесие достигнуто.

В состоянии равновесия выполняются следующие условия:

1. Напряженность поля внутри проводника была равна нулю: .

2. На поверхности (вблизи, в непосредственной окрестности…) проводника напряженность электрического поля перпендикулярна поверхности.

Эти условия являются следствиями наличия в проводнике свободных носителей заряда. Действительно, в равновесии перемещение зарядов должно отсутствовать, а, значит, напряженность поля внутри проводника должна быть равна нулю. Следствием этого условия является утверждение о том, что все точки проводника должны иметь одинаковый потенциал, и поверхность проводника является эквипотенциальной .

Поскольку внутри проводника в равновесии не может быть некомпенсированных зарядов (они создавали бы ненулевое поле внутри проводника), то заряд сообщаемый проводнику, располагается в очень тонком слое проводника вблизи поверхности, т.е. на поверхности проводника .

На поверхности проводника у вектора напряженности электрического поля должна отсутствовать тангенциальная (направленная по касательной к поверхности составляющая) составляющая . При ее наличии должно было бы происходить движение зарядов вдоль поверхности, чего в равновесии не может быть. Это утверждение справедливо для любого направления, поэтому вектор напряженностидолжен быть перпендикулярен поверхности .

Заряд, сообщенный проводнику, располагается на его поверхности с плотностью . Поток вектора электрической индукции через поверхность цилиндра, показанного на рисунке 16.1, по теореме Гаусса должен быть равен величине свободного заряда, заключенного внутри поверхности – . Однако поток через боковую поверхность отсутствует, поскольку вектор напряженности (а значит и вектор индукции) параллелен ей, поток через основание внутри проводника отсутствует – там нет электрического поля, а поток через внешнее основание равен . Поэтому

Представим уединенный проводник которому сообщен некоторый заряд. На большом, по сравнению с размерами проводника, расстоянии от него, независимо от формы проводника, его можно считать точечным заряженным телом . Эквипотенциальные поверхности точечного заряда являются сферами. Вблизи проводника эквипотенциальные поверхности должны приблизительно повторять его форму. Вследствие этого вблизи концов проводника эквипотенциальные поверхности сгущаются. Это означает, что потенциал в этих точках пространства изменяется быстро, а напряженность поля, соответственно достигает больших значений. Вследствие большой напряженности поля вблизи острых концов проводников возможно возникновение газового разряда, сопровождающегося стеканием заряда с проводника. По этой причиной элементы высоковольтных линий электропередач обязательно выполняются с округлыми поверхностями.

Равновесие зарядов на проводнике

В рамках электростатики мы рассматриваем задачи, в которых распределение зарядов отличается статичностью . Другими словами, такие состояния тел, которые реализуются после того, когда тела рассматриваемых систем пришли в равновесие после некоторых воздействий, например, сообщения заряда, помещения в электрическое поле и т.п. Проводники , в отличие от, диэлектриков, имеют в своем составе свободные носители заряда , которые могут перемещаться по объему проводника. В случае металлов такими носителями заряда являются электроны. Скорость их перемещения по металлу весьма высока, поэтому металлы приходят в равновесие в очень малые доли секунды. В случае других материалов может оказаться, что переход в равновесие происходит гораздо медленнее, однако мы сейчас будем рассматривать ситуации, когда равновесие достигнуто.

В состоянии равновесия выполняются следующие условия:

1. Напряженность поля внутри проводника была равна нулю: .

2. На поверхности (вблизи, в непосредственной окрестности…) проводника напряженность электрического поля перпендикулярна поверхности.

Эти условия являются следствиями наличия в проводнике свободных носителей заряда. Действительно, в равновесии перемещение зарядов должно отсутствовать, а, значит, напряженность поля внутри проводника должна быть равна нулю. Следствием этого условия является утверждение о том, что все точки проводника должны иметь одинаковый потенциал, и поверхность проводника является эквипотенциальной .

Поскольку внутри проводника в равновесии не может быть некомпенсированных зарядов (они создавали бы ненулевое поле внутри проводника), то заряд сообщаемый проводнику, располагается в очень тонком слое проводника вблизи поверхности, т.е. на поверхности проводника .

На поверхности проводника у вектора напряженности электрического поля должна отсутствовать тангенциальная (направленная по касательной к поверхности составляющая) составляющая . При ее наличии должно было бы происходить движение зарядов вдоль поверхности, чего в равновесии не может быть. Это утверждение справедливо для любого направления, поэтому вектор напряженностидолжен быть перпендикулярен поверхности .

Заряд, сообщенный проводнику, располагается на его поверхности с плотностью . Поток вектора электрической индукции через поверхность цилиндра, показанного на рисунке 16.1, по теореме Гаусса должен быть равен величине свободного заряда, заключенного внутри поверхности – . Однако поток через боковую поверхность отсутствует, поскольку вектор напряженности (а значит и вектор индукции) параллелен ей, поток через основание внутри проводника отсутствует – там нет электрического поля, а поток через внешнее основание равен . Поэтому

Представим уединенный проводник которому сообщен некоторый заряд. На большом, по сравнению с размерами проводника, расстоянии от него, независимо от формы проводника, его можно считать точечным заряженным телом . Эквипотенциальные поверхности точечного заряда являются сферами. Вблизи проводника эквипотенциальные поверхности должны приблизительно повторять его форму. Вследствие этого вблизи концов проводника эквипотенциальные поверхности сгущаются. Это означает, что потенциал в этих точках пространства изменяется быстро, а напряженность поля, соответственно достигает больших значений. Вследствие большой напряженности поля вблизи острых концов проводников возможно возникновение газового разряда, сопровождающегося стеканием заряда с проводника. По этой причиной элементы высоковольтных линий электропередач обязательно выполняются с округлыми поверхностями.

Проводники это тела, в которых электрические заряды способны перемещаться под действием как угодно слабого электростатического поля.

Вследствие этого сообщенный проводнику заряд будет перераспределяться до тех пор, пока в любой точке внутри проводника напряженность электрического поля не станет равной нулю.

Таким образом, напряженность электрического поля внутри проводника должна быть равной нулю.

Так как , то , φ=const

Потенциал внутри проводника должен быть постоянен.

2.) На поверхности заряженного проводника вектор напряженности Е должен быть направлен по нормали к этой поверхности, иначе под действием составляющей, касательной к поверхности (Е t). заряды перемещались бы по поверхности проводника.

Таким образом, при условии статического распределения зарядов напряженность на поверхности

где E n -нормальная составляющая напряженности.

Отсюда следует, что при равновесии зарядов поверхность проводника является эквипотенциальной.

3. В заряженном проводнике некомпенсированные заряды располагаются только на поверхности проводника.

Проведём внутри проводника произвольную замкнутую поверхность S, ограничивающую некоторый внутренний объём проводника. Согласно теореме Гаусса, суммарный заряд этого объёма равен:

Таким образом, в состоянии равновесия внутри проводника избыточных зарядов нет. Поэтому если мы удалим вещество из некоторого объёма, взятого внутри проводника, то это никак не отразится на равновесном расположении зарядов. Таким образом, избыточный заряд распределяется на полом проводнике так же, как и на сплошном, т.е. по его наружной поверхности. На внутренней поверхности избыточные заряды располагаться не могут. Это следует также из того, что одноимённые заряды отталкиваются и, следовательно, стремятся расположиться на наибольшем расстоянии друг от друга.

Исследуя величину напряжённости электрического поля вблизи поверхности заряженных тел различной формы можно судить и о распределении зарядов по поверхности.

Исследования показали, что плотность зарядов при данном потенциале проводника определяется кривизной поверхности – она растёт с увеличением положительной кривизны (выпуклости) и убывает с увеличением отрицательной кривизны (вогнутости).Особенно велика бывает плотность на остриях. Напряженность поля вблизи остриёв может быть настолько большой, что происходит ионизация молекул окружающего газа. При этом заряд проводника уменьшается, он как бы стекает с острия.

Если поместить на внутреннюю поверхность полого проводника электрический заряд, то этот заряд перейдёт на наружную поверхность проводника, повышая потенциал последнего. Многократно повторяя передачу полому проводнику можно значительно повысить его потенциал до величины, ограничиваемой явлением стекания зарядов с проводника. Этот принцип был использован Ван-дер-Граафом для построения электростатического генератора. В этом устройстве заряд от электростатической машины передаётся бесконечной непроводящей ленте, переносящий его внутрь большой металлической сферы. Там заряд снимается и переходит на наружную поверхность проводника, таким образом, удаётся постепенно сообщить сфере очень большой заряд и достигнуть разности потенциалов в несколько миллионов вольт.

Проводники во внешнем электрическом поле.

В проводниках могут свободно перемещаться не только заряды, принесённые извне, но и заряды, из которых состоят атомы и молекулы проводника (электроны и ионы). Поэтому при помещении незаряженного проводника во внешнее электрическое поле свободные заряды будут перемещаться к его поверхности, положительные по полю, а отрицательные против поля. В результате у концов проводника возникают заряды противоположного знака, называемые индуцированными зарядами. Это явление, состоящее в электризации незаряженного проводника во внешнем электростатическом поле путём разделения на этом проводнике уже имеющихся в нём в равных количествах положительных и отрицательных электрических зарядов называется электризацией через влияние или электростатической индукцией .


Перемещение зарядов в проводнике помещённом во внешнее электрическое поле Е 0 будет происходить до тех пор, пока создаваемое индукционными зарядами дополнительное поле Е доп не скомпенсирует внешнее поле Е 0 во всех точках внутри проводника и результирующее поле Е внутри проводника станет равным нулю.

Суммарное поле Е вблизи проводника будет заметно отличаться от своего первоначального значения Е 0 . Линии Е будут перпендикулярны к поверхности проводника и будут частично кончаться на индуцированных отрицательных зарядах и вновь начинаться на индуцированных положительных зарядах.

Индуцированные на проводнике заряды исчезают, когда проводник удаляют из электрического поля. Если предварительно отвести индуцированные заряды одного знака на другой проводник (например в землю) и отключить последний, то первый проводник останется заряженным электричеством противоположного знака.

Отсутствие поля внутри проводника, помещённого в электрическое поле, широко применяется в технике для электростатической защиты от внешних электрических полей (экранировки) разных электрических приборов и проводов. Когда какой-то прибор хотят защитить от воздействия внешних полей, его окружают проводящим футляром (экраном). Подобный экран действует хорошо и в том случае, если его сделать не сплошным, а в виде густой сетки.

Условия равновесия зарядов в проводнике. Электрическое поле внутри проводников

Проводники – тела, содержащие огромное количество свободных электрически заряженных частиц. Эти частицы могут перемещаться внутри проводника под действием сколь угодно малой силы.

Для равновесия зарядов в проводнике необходимо выполнение следующих условий:

Но, следовательно

Потенциал внутри проводника должен быть постоянным.

2. Напряженность на поверхности проводника должна быть в каждой точке направлена по нормали к поверхности.

Если проводнику сообщить некоторый заряд то он распределится по поверхности так, чтобы эти условия равновесия опять соблюдались.

Если незаряженный проводник внести во внешнее электрическое поле, то носители зарядов в проводнике придут в движение – электроны начнут двигаться против направления вектора напряженности. В результате у концов проводника возникнут заряды противоположного знака. Это – индуцированные заряды. Внутри проводника образуется собственное электрическое поле, направленное против внешнего, оно ослабляет внешнее поле, накладываясь на него. Перераспределение зарядов происходит до тех пор, пока не будут выполнены условия равновесия зарядов в проводнике, т.е. напряженность внутри не станет равной нулю, а линии вне не станут перпендикулярными поверхности ( и, ). Таким образом, проводник, внесенный в поле, разрывает линии напряженности. Они заканчиваются на отрицательных

индуцированных зарядах, а начинаются на положительных

индуцированных зарядах. Индуцированные заряды распределяются по внешней поверхности проводника. Если внутри проводника имеется полость, то при равновесном распределении зарядов поле внутри полости отсутствует. На этом основана электростатическая защита.