Кристаллическое состояние вещества примеры. Большая энциклопедия нефти и газа. Смотреть что такое "кристаллическое состояние" в других словарях


Кристаллическое состояние вещества, характеризуется наличием дальнего порядка в расположении частиц (атомов, . молекул). В кристаллическом состоянии существует и ближний порядок, который характеризуется постоянными координационными числами, и длинами хим. связей. Инвариантность характеристик ближнего порядка в кристаллическое состояние приводит к совпадению структурных ячеек при их трансляционном перемещении и образованию трехмерной периодичности структуры (см. . Кристаллы).

Вследствие своей максимальной упорядоченности кристаллическое состояние характеризуется минимальной внутренней энергией и является термодинамически равновесным состоянием при данных параметрах - давлении, температуре, составе (в случае твердых растворов ) и др. Строго говоря, полностью упорядоченное кристаллическое состояние реально не может быть осуществлено, приближение к нему имеет место при стремлении температуры к 0 К (т. наз. идеальный кристалл). Реальные тела в кристаллическом состоянии всегда содержат некоторое количество дефектов , нарушающих как ближний, так и дальний порядок. Особенно много наблюдается в твердых растворах, в которых отдельные частицы и их группировки статистически занимают различные положения в пространстве.

Вследствие трехмерной периодичности атомного строения основными признаками являются однородность и свойств и симметрия, которая выражается, в частности, в том, что при определенных условиях образования кристаллы приобретают форму многогранников (см. выращивание). Некоторые свойства на поверхности кристалла и вблизи от нее существенно отличны от этих свойств внутри кристалла, в частности из-за нарушения симметрии. Состав и, соответственно, свойства меняются по объему кристалла из-за неизбежного изменения состава среды по мере роста кристалла. Таким образом, однородность свойств так же, как и наличие дальнего порядка, относится к характеристикам "идеального" кристаллическое состояние

Большинство тел в кристаллическое состояние является поликристаллическими и представляет собой сростки большого числа мелких кристаллитов (зерен) - участков размером порядка 10 -1 -10 -3 мм, неправильной формы и различно ориентированных. Зерна отделены друг от друга межкристаллитными слоями, в которых нарушен порядок расположения частиц. В межкристаллитных слоях происходит также концентрирование примесей в процессе кристаллизации. Из-за случайной ориентации зерен поликристаллическое тело в целом (объем, содержащий достаточно много зерен) может быть изотропным, например полученное при кристаллических с послед. . Однако обычно в процессе и особенно пластической возникает текстура - преимуществ, ориентация кристаллических зерен в определенном направлении, приводящая к анизотропии свойств.

На однокомпонентной системы вследствие кристаллическое состояние может отвечать несколько полей, расположенных в области сравнительно низких температур и повышенных . Если имеется лишь одно поле кристаллического состояния и вещество химически не разлагается при повышении температуры, то поле кристаллическое состояние граничит с полями и газа по линиям плавления и возгонки - конденсации соотв., причем жидкость и газ (пар) могут находиться в метастабильном (переохлажденном) состоянии в поле кристаллическое состояние, тогда как кристаллическое состояние не может находиться в поле или пара, т. е. кристаллическое вещество нельзя перегреть выше температуры плавления или возгонки. Некоторые (мезогены) при нагреве переходят в жидкокристаллическое состояние (см. Жидкие кристаллы ). Если на диаграмме однокомпонентной системы имеются два и более полей кристаллического состояния, эти поля граничат по линии полиморфных превращений. Кристаллическое вещество можно перегреть или переохладить ниже температуры полиморфного превращения. В этом случае рассматриваемое кристаллическое состояние может находиться в поле других кристаллических модификации и является метастабильным.

В то время как жидкость и пар благодаря существованию критической точки на линии испарения можно непрерывно перевести друг в друга, вопрос о возможности непрерывного взаимного превращения кристаллического состояния и окончательно не решен. Для некоторых веществ можно оценить критические параметры - давление и температуру, при которых DH пл и DV пл равны нулю, т. е. кристаллическое состояние и жидкость термодинамически неразличимы. Но реально такое превращение не наблюдалось ни для одного (см. Критическое состояние ).

Вещество из кристаллическое состояние можно перевести в неупорядоченное состояние (аморфное или стеклообразное), не отвечающее минимуму свободной энергии, не только изменением параметров состояния (давления, температуры, состава), но и воздействием ионизирующего излучения или тонким измельчением. Критический размер частиц, при котором уже не имеет смысла говорить о кристаллическое состояние, примерно 1 нм, т.е. того же порядка, что и размер элементарной ячейки.

§ 1 Кристаллическое состояние вещества

Вы уже знакомы с разным агрегатным состоянием веществ - газообразным, жидким, твердым, переходами их из одного состояния в другое.

В твердом состоянии вещества имеют преимущественно кристаллическую структуру. Кристаллических веществ много. Их кристаллы разнообразны, но геометрически правильной формы.

Кристаллы поваренной соли имеют форму куба, горного хрусталя - форму тетраэдра, калийной селитры - форму призмы.

Кристалл (от древнегреческого kristallos - лед, горный хрусталь) - это твердое тело, состоящее из закономерно расположенных частиц. Кристаллическое твердое состояние вещества характеризуется регулярной повторяемостью в расположении частиц в любом направлении, так называемым дальним порядком.

Кристаллическая решетка - это порядок расположения частиц в кристалле. На изображениях кристаллических решеток пересекающиеся прямые линии обозначают грани кристалла, а точки их пересечения - центры частиц, которые называются узлами кристаллической решетки.

В узлах расположены атомы, молекулы или ионы, стянутые в кристалл разными силами (связями).

Силы притяжения частиц в кристалле характеризуют энергию кристаллической решетки в кДж/моль, ее прочность. Любая кристаллическая решетка построена из повторяющихся одинаковых структурных единиц, индивидуальных для каждого кристалла. Таковые называются элементарными ячейками. Элементарная ячейка - это предел делимости кристалла, наименьший его объем, при котором он сохраняет форму и свойства.

В кристалле хлорида натрия каждый ион окружён шестью ионами противоположного знака.

§ 2 Основные типы кристаллических решеток

Остановимся на характеристике основных типов кристаллических решеток и установим зависимость от них свойств веществ.

Молекулярные кристаллические решетки - это решетки, в узлах которых расположены молекулы, связанные между собой слабыми силами межмолекулярного взаимодействия.

Примером веществ с молекулярной кристаллической решёткой может служить кристаллический оксид углерода (IV) СО2 - «сухой лед». Рассмотрим модель его кристаллической решетки. В ее узлах находятся молекулы.

Многие вещества в твердом состоянии имеют молекулярную кристаллическую решетку, особенно органические. Атомы в их молекулах связаны прочными ковалентными связями. Молекулы же в кристаллах стянуты слабыми межмолекулярными силами, которые легко разорвать. Поэтому кристаллы с молекулярной решеткой обладают малой твердостью, легкоплавки, летучи. Молекулярные вещества легко переходят из одного агрегатного состояния в другое. Сухой лед при комнатной температуре и нормальном атмосферном давлении переходит в газообразное состояние, минуя жидкое. Такое явление называется возгонкой.

Атомные кристаллические решётки - решетки, в которых расположены атомы, стянутые в кристалле прочными ковалентными связями.

Атомных кристаллов сравнительно немного. Примерами таких твердых веществ служат простые вещества - алмаз, кремний, сложные вещества - карбид кальция, сульфид цинка, оксид кремния (IV) и другие. Так, например, кристалл алмаза имеет форму тетраэдра. Следовательно, структурную его единицу представляет тетраэдр. В центре его ячейки расположен атом углерод, прочно связанный с четырьмя другими атомами углерода с помощью электронных пар. Все связи одинаковы, как и углы, образующиеся между атомами. Кстати, давший название кристаллу горный хрусталь или кварц тоже имеет атомную кристаллическую решетку. Это оксид кремния (IV).

Благодаря высокой прочности ковалентной связи атомные кристаллы имеют высокую прочность, они тугоплавки. Температура плавления алмаза +3500 °С.

Алмаз - одно из самых твердых веществ.

Ионные кристаллические решетки - это решетки, в узлах которых расположены ионы с противоположными зарядами.

Связь между ионами осуществляется за счет электростатического притяжения. Типичный представитель веществ с такой решеткой - поваренная соль. Ионные кристаллические решетки характерны для многих соединений с ионной связью. Это соли, щелочи.

Энергия кристаллических решеток ионных соединений высокая, для хлорида натрия она равна 778 кДж/моль, для хлорида кальция - 2283 кДж/моль.

Ионные кристаллы отличаются высокой твердостью и температурой плавления, малой летучестью. По свойствам они сходны с атомными кристаллами.

Металлические кристаллические решетки присущи простым веществам - металлам. В узлах металлических кристаллических решеток находятся катионы или атомы металла.

Соединяются они при помощи свободных электронов, оторвавшихся от атомов металла при превращении их в катионы. Особенности строения металлической кристаллической решетки определяют особые свойства металлов как простых веществ, а именно ковкость и пластичность, электропроводность и теплопроводность, относительно низкие температуры плавления.

§ 3 Краткие итоги по теме

Таким образом, многие простые и сложные вещества имеют кристаллическую структуру. Для них характерны закономерное расположение частиц в трехмерном пространстве и строгая правильная геометрическая форма кристаллов. Свойства таких веществ зависят не только от строения образующих их атомов и характера их химической связи, но и от кристаллической структуры веществ.

Список использованной литературы:

  1. Н.Е. Кузнецова. Химия. 8 класс. Учебник для общеобразовательных учреждений. – М. Вентана-Граф, 2012

Использованные изображения:

Агрегатные состояния вещества.

В этом разделе мы рассмотрим агрегатные состояния , в которых пребывает окружающая нас материя и силы взаимодействия между частицами вещества, свойственные каждому из агрегатных состояний.

1. Состояние твёрдого тела ,

2. Жидкое состояние и

Газообразное состояние.

Часто выделяют четвёртое агрегатное состояние – плазму .

Иногда, состояние плазмы считают одним из видов газообразного состояния.

Плазма - частично или полностью ионизированный газ , чаще всего существующий при высоких температурах.

Плазма является самым распространённым состоянием вещества во вселенной, поскоьку материя звёд пребывает именно в этом состоянии.

Для каждого агрегатного состояния характерны особенности в характере взаимодействия между частицами вещества, что влияет на его физические и химические свойства.

Каждое вещество может пребывать в разных агрегатных состояниях. При достаточно низких температурах все вещества находятся в твёрдом состоянии . Но по мере нагрева они становятся жидкостями , затем газами . При дальнейшем нагревании они ионизируются (атомы теряют часть своих электронов) и переходят в состояние плазмы .

Газообразное состояние (от нидерл. gas, восходит к др.-греч. Χάος ) характеризующееся очень слабыми связями между составляющими его частицами.

Образующие газ молекулы или атомы хаотически движутся и при этом преобладающую часть времени находятся на больших (в сравнении с их размерами) растояниях друг от друга. Вследствие этого силы взаимодействия между частицами газа пренебрежимо малы .

Основной особенностью газа является то, что он заполняет все доступное пространство, не образуя поверхности. Газы всегда смешиваются. Газ - изотропное вещество , то есть его свойства не зависят от направления.

При отсутствии сил тяготения давление во всех точках газа одинаково. В поле сил тяготения плотность и давление не одинаковы в каждой точке, уменьшаясь с высотой. Соответственно, в поле сил тяжести смесь газов становится неоднородной. Тяжелые газы имеют тенденцию оседать ниже, а более легкие - подниматься вверх.

Газ имеет высокую сжимаемость - при увеличении давления возрастает его плотность. При повышении температуры расширяются.

При сжатии газ может перейти в жидкость , но конденсация происходит не при любой температуре, а при температуре, ниже критической температуры. Критическая температура является характеристикой конкретного газа и зависит от сил взаимодействия между его молекулами. Так, например, газ гелий можно ожижить только при температуре, ниже от 4,2 К .

Существуют газы, которые при охлаждении переходят в твердое тело, минуя жидкую фазу. Превращения жидкости в газ называется испарением, а непосредственное превращение твердого тела в газ - сублимацией .

Твёрдое тело

Состояние твёрдого тела в сравнении с другими агрегатными состояниямихарактеризуется стабильностью формы .

Различают кристаллические и аморфные твёрдые тела .

Кристаллическое состояние вещества

Стабильность формы твёрдых тел связана с тем, что большинство, находящихся в твёрдом состоянии имеет кристалическое строение .

В этом случае расстояния между частицами вещества малы, а силы взаимодействия между ними велики, что и определяет стабильность формы .

В кристаллическом строении многих твёрдых тел легко убедиться, расколов кусок вещества и рассмотрев полученный излом. Обычно на изломе (например, у сахара, серы, металлов и пр.) хорошо заметны расположенные под разными углами мелкие грани кристаллов, поблескивающие вследствии различного отражения ими света.

В тех случаях, когда кристаллы очень малы, кристаллическое строение вещества можно установить при помощи микроскопа.

Формы кристаллов

Каждое вещество образует кристаллы совершенно определённой формы.

Разнообразие кристаллических форм может быть сведено к семи группам:

1. Триклинная (параллелепипед),

2.Моноклинная (призма с параллелограммом в основании),

3. Ромбическая (прямоугольный параллелепипед),

4. Тетрагональная (прямоугольный параллелепипед с квадратом в основании),

5. Тригональная ,

6. Гексагональная (призма с основанием правильного центрированного
шестиугольника),

7. Кубическая (куб).

Многие вещества, в частности железо, медь, алмаз, хлорид натрия кристализуются вкубической системе . Простейшими формами этой системы являются куб, октаэдр, тетраэдр .

Магний, цинк, лёд, кварц кристализуются в гексагональной системе . Основные формы этой системы – шестигранные призмы и бипирамида .

Природные кристаллы, а также кристаллы, получаемые искусственным путём, редко в точности соответствуют теоретическим формам. Обычно при затвердевании расплавленного вещества кристаллы срастаются вместе и потому форма каждого из них оказывается не вполне правильной.

Однако как бы неравномерно не происходило развитие кристалла, как бы ни была искажена его форма, углы, под которыми сходятся грани кристалла у одного и того же вещества остаются постоянными.

Анизотропия

Особенности кристаллических тел не ограничиваются только формой кристаллов. Хотя вещество в кристалле совершенно однородно, многие из его физических свойств – прочность, теплопроводность, отношение к свету и др. – не всегда одинаковы по различным направлениям внутри кристалла. Эта важная особенность кристаллических веществ называется анизотропией .

Внутреннее строение кристаллов. Кристаллические решётки.

Внешняя форма кристалла отражает его внутреннее строение и обусловлена правильным расположением частиц, составляющих кристалл, - молекул, атомов или ионов.

Это расположение можно представить в виде кристаллической решётки – пространственного каркаса, образованного пересекающимися прямыми линиями. В точках пересечения линий – узлах решётки – лежат центры частиц.

В зависимости от природы частиц, находящихся в узлах кристаллической решётки, и от того, какие силы взаимодействия между ними преобладают в данном кристалле, различают следующие виды кристаллических решёток :

1. молекулярные ,

2. атомные ,

3. ионные и

4. металлические .

Молекулярные и атомные решётки присущи веществам с ковалентной связью, ионные – ионным соединениям, металические – металам и их сплавам.

· Атомные кристаллические решётки

В узлах атомных решёток находятся атомы . Они связаны друг с другомковалентной связью .

Веществ, обладающих атомными решётками, сравнительно мало. К ним принадлежаталмаз, кремний и некоторые неорганические соединения.

Эти вещества характеризуются высокой твёрдостью, они тугоплавки и нерастворимы практически ни в каких растворителях. Такие их свойства объясняются прочностьюковалентной связи .

· Молекулярные кристаллические решётки

В узлах молекулярных решёток находятся молекулы . Они связаны друг с другоммежмолекулярными силами .

Веществ с молекулярной решёткой очень много. К ним принадлежат неметаллы , за исключением углерода и кремния, все органические соединения с неионной связью имногие неорганические соединения .

Силы межмолекулярного взаимодействия значительно слабее сил ковалентной связи, поэтому молекулярные кристаллы имеют небольшую твёрдость, легкоплавки и летучи.

· Ионные кристаллические решётки

В узлах ионных решёток располагаются, чередуясь положительно и отрицательно заряженные ионы . Они связаны друг с другом силамиэлектростатического притяжения .

К соединениям с ионной связью, образующим ионные решётки, относится большинство солей и небольшое число оксидов .

По прочности ионные решётки уступают атомным, но превышают молекулярные.

Ионные соединения имеют сравнительно высокие температуры плавления. Летучесть их в большинстве случаев не велика.

· Металлические кристаллические решётки

В узлах металлических решёток находятся атомы металла, между которыми свободно движутся общие для этих атомов электроны .

Характеризуется наличием дальнего порядка в расположении частиц (атомов, ионов, молекул). В К. с. существует и ближний порядок, к-рый характеризуется постоянными координац. числами, валентными углами и длинами хим. связей. Инвариантность характеристик ближнего порядка в К. с. приводит к совпадению структурных ячеек при их трансляционном перемещении и образованию трехмерной периодичности структуры (см. Кристаллохимия. Кристаллы ). Вследствие своей макс. упорядоченности К. с. в-ва характеризуется миним. внутр. энергией и является термодинамически равновесным состоянием при данных параметрах -давлении, т-ре, составе (в случае твердых растворов ) и др. Строго говоря, полностью упорядоченное К. с. реально не м. б. осуществлено, приближение к нему имеет место при стремлении т-ры к О К (т. наз. идеальный кристалл). Реальные тела в К. с. всегда содержат нек-рое кол-во дефектов , нарушающих как ближний, так и дальний порядок. Особенно много дефектов наблюдается в твердых р-рах, в к-рых отдельные частицы и их группировки статистически занимают разл. положения в пространстве. Вследствие трехмерной периодичности атомного строения основными признаками кристаллов являются однородность и св-в и симметрия, к-рая выражается, в частности, в том, что при определенных условиях образования приобретают форму многогранников (см. Монокристаллов выращивание ). Нек-рые св-ва в-ва на пов-сти кристалла и вблизи от нее существенно отличны от этих св-в внутри кристалла, в частности из-за нарушения симметрии. Состав и, соотв., св-ва меняются по объему кристалла из-за неизбежного изменения состава среды по мере роста кристалла. Т. обр., однородность св-в так же, как и наличие дальнего порядка, относится к характеристикам "идеального" К. с. Большинство тел в К. с. является поликристаллическими и представляет собой сростки большого числа мелких кристаллитов (зерен) - участков размером порядка 10 -1 -10 -3 мм, неправильной формы и различно ориентированных. Зерна отделены друг от друга межкристаллитными слоями, в к-рых нарушен порядок расположения частиц. В межкристаллитных слоях происходит также концснтрирование примесей в процессе кристаллизации. Из-за случайной ориентации зерен поликристаллич. тело в целом (объем, содержащий достаточно много зерен) м. б. изотропным, напр. полученное при осаждении кристаллич. порошков с послед. спеканием. Однако обычно в процессе кристаллизации и особенно пластич. деформации возникает текстура -преимуществ, ориентация кристаллич. зерен в определенном направлении, приводящая к анизотропии св-в. На диаграмме состояния однокомпонентной системы вследствие полиморфизма К. с. может отвечать неск. полей, расположенных в области сравнительно низких т-р и повыш. давлений. Если имеется лишь одно поле К. с. и в-во химически не разлагается при повышении т-ры, то поле К. с. граничит с полями жидкости и газа по линиям плавления кристаллизации и возгонки - конденсации соотв., причем и газ (пар) могут находиться в метастабильном (переохлажденном) состоянии в поле К. с., тогда как К. с. не может находиться в поле жидкости или , т. е. кристаллич. в-во нельзя перегреть выше т-ры плавления или возгонки. Нек-рые в-ва (мезогены) при нагреве переходят в жидкокристаллич. состояние (см. Жидкие кристаллы ). Если на диаграмме однокомпонентной системы имеются два и более полей К. с., эти поля граничат по линии полиморфных превращений. Кристаллич. в-во можно перегреть или переохладить ниже т-ры полиморфного превращения. В этом случае рассматриваемое К. с. в-ва может находиться в поле др. кристаллич. модификации и является метастабильным. В то время как жидкость и пар благодаря существованию критич. точки на линии испарения можно непрерывно перевести друг в друга, вопрос о возможности непрерывного взаимного превращ. К. с. и жидкости окончательно не решен. Для нек-рых в-в можно оценить критич. параметры -давление и т-ру, при к-рых DH пл и DV пл равны нулю, т. е. К. с. и жидкость термодинамически неразличимы. Но реально такое превращ. не наблюдалось ни для одного в-ва (см. Критическое состояние ). В-во из К. с. можно перевести в неупорядоченное состояние (аморфное или стеклообразное), не отвечающее минимуму своб. энергии, не только изменением параметров состояния (давления, т-ры, состава), но и воздействием ионизирующего излучения или тонким измельчением. Критич. размер частиц, при к-ром уже не имеет смысла говорить о К. с., примерно 1 нм, т. е. того же порядка, что и размер элементарной ячейки. К. с. отличают обычно от др. разновидностей твердого состояния (стеклообразного, аморфного) по рентгенограммам в-ва. Лит.: Шаскольская М. П., Кристаллография, М., 1976; Современная кристаллография, под ред. Б. К. Вайнштeйна. т. I. М., 1979. П. И. Федоров.

Химическая энциклопедия. - М.: Советская энциклопедия . Под ред. И. Л. Кнунянца . 1988 .

Смотреть что такое "КРИСТАЛЛИЧЕСКОЕ СОСТОЯНИЕ" в других словарях:

    кристаллическое состояние - kristalinė būsena statusas T sritis chemija apibrėžtis Būsena, kai medžiagos dalelės (atomai, jonai, molekulės) išsidėsčiusios taisyklinga, visomis kryptimis periodiškai pasikartojančia tvarka. atitikmenys: angl. crystalline state rus.… … Chemijos terminų aiškinamasis žodynas

    кристаллическое состояние - kristalinė būsena statusas T sritis fizika atitikmenys: angl. crystalline state vok. kristalliner Zustand, m rus. кристаллическое состояние, n pranc. état cristallin, m … Fizikos terminų žodynas

    КРИСТАЛЛИЧЕСКОЕ СОСТОЯНИЕ - правильное, закономерное расположение частиц (атомов, молекул) в пространстве, образующее кристаллическую решетку … Металлургический словарь

    Характеризуется тем, что звенья макромолекул образуют структуры с трехмерным дальним порядком. Размер этих структур не превышает неск. мкм; обычно их называют кристаллитами. В отличие от низкомол. в в, полимеры никогда не кристаллизуются нацело,… … Химическая энциклопедия

    Прил., кол во синонимов: 1 закристаллизовавшийся (2) Словарь синонимов ASIS. В.Н. Тришин. 2013 … Словарь синонимов

    Состояние вещества, когда слагающие его частицы (атомы, ионы, молекулы) занимают строго фиксированные положения по геометрическим законам пространственных гр. и соответственных решеток. Геологический словарь: в 2 х томах. М.: Недра. Под редакцией … Геологическая энциклопедия

    СОСТОЯНИЕ - (1) аморфное (рентгеноаморфное) состояние твёрдого вещества, в котором нет кристаллической структуры (атомы и молекулы расположены беспорядочно), оно изотропно, т. е. имеет одинаковые физ. свойства по всем направлениям и не имеет чёткой… … Большая политехническая энциклопедия

    В Викисловаре есть статья «состояние» Состояние абстрактный термин, обозначающий множество стабильных значений переменных … Википедия

    У этого термина существуют и другие значения, см. Стекло (значения). Основная статья: Стекло Стеклообразное состояние твёрдое аморфное метастабильное состояние вещества, в котором нет выраженной кристаллической решётки, условные элементы… … Википедия

    - (от греч. а отрицательная частица и morphē форма) твёрдое состояние вещества, обладающее двумя особенностями: его свойства (механические, тепловые, электрические и т. д.) в естественных условиях не зависят от направления в веществе… … Большая советская энциклопедия

). В кристаллическом состоянии существует и ближний порядок, к-рый характеризуется постоянными координац. числами, и длинами хим. связей. Инвариантность характеристик ближнего порядка в кристаллическом состоянии приводит к совпадению структурных ячеек при их трансляционном перемещении и образованию трехмерной периодичности структуры (см. . ). Вследствие своей макс. упорядоченности кристаллическое состояние в-ва характеризуется миним. внутр. энергией и является термодинамически равновесным состоянием при данных параметрах -давлении, т-ре, составе (в случае ) и др. Строго говоря, полностью упорядоченное кристаллическое состояние реально не м. б. осуществлено, приближение к нему имеет место при стремлении т-ры к О К (т. наз. идеальный ). Реальные тела в кристаллическом состоянии всегда содержат нек-рое кол-во , нарушающих как ближний, так и дальний порядок. Особенно много наблюдается в твердых р-рах, в к-рых отдельные частицы и их группировки статистически занимают разл. положения в пространстве. Вследствие трехмерной периодичности атомного строения основными признаками являются однородность и св-в и , к-рая выражается, в частности, в том, что при определенных условиях образования приобретают форму многогранников (см. ). Нек-рые св-ва в-ва на пов-сти и вблизи от нее существенно отличны от этих св-в внутри , в частности из-за нарушения . Состав и, соотв., св-ва меняются по объему из-за неизбежного изменения состава среды по мере роста . Т. обр., однородность св-в так же, как и наличие дальнего порядка, относится к характеристикам "идеального" кристаллическоего состояния. Большинство тел в кристаллическом состоянии является поликристаллическими и представляет собой сростки большого числа мелких кристаллитов (зерен) - участков размером порядка 10 -1 -10 -3 мм, неправильной формы и различно ориентированных. Зерна отделены друг от друга межкристаллитными слоями, в к-рых нарушен порядок расположения частиц. В межкристаллитных слоях происходит также концснтрирование примесей в процессе . Из-за случайной ориентации зерен поликристаллич. тело в целом (объем, содержащий достаточно много зерен) м. б. изотропным, напр. полученное при кристаллич. с послед. . Однако обычно в процессе и особенно пластич. возникает текстура - преимуществ, ориентация кристаллич. зерен в определенном направлении, приводящая к св-в. На однокомпонентной системы вследствие кристаллическое состояние может отвечать неск. полей, расположенных в области сравнительно низких т-р и повыш. . Если имеется лишь одно состояния и в-во химически не разлагается при повышении т-ры, то состояния граничит с полями и по линиям и - соотв., причем и () могут находиться в метастабильном (переохлажденном) состоянии в состояния, тогда как кристаллическое состояние не может находиться в поле или , т. е. кристаллич. в-во нельзя перегреть выше т-ры или . Нек-рые в-ва (мезогены) при нагреве переходят в жидкокристаллич. состояние (см. ). Если на диаграмме однокомпонентной системы имеются два и более состояния, эти поля граничат по линии полиморфных превращений. Кристаллич. в-во можно перегреть или переохладить ниже т-ры полиморфного превращения. В этом случае рассматриваемое кристаллическое состояние в-ва может находиться в поле др. кристаллич. модификации и является метастабильным. В то время как и благодаря существованию критич. точки на линии можно непрерывно перевести друг в друга, вопрос о возможности непрерывного взаимного превращ. кристаллического состояния и окончательно не решен. Для нек-рых в-в можно оценить критич. параметры -давление и т-ру, при к-рых D H пл и D V пл равны нулю, т. е. кристаллическое состояние и термодинамически неразличимы. Но реально такое превращ. не наблюдалось ни для одного в-ва (см. ). В-во из кристаллического состояния можно перевести в неупорядоченное состояние (аморфное или стеклообразное), не отвечающее минимуму своб. энергии, не только изменением ( , т-ры, состава), но и воздействием или тонким . Критич. размер частиц, при к-ром уже не имеет смысла говорить о кристаллическом состоянии, примерно 1 нм, т.е. того же порядка, что и размер элементарной ячейки. К ристаллическое состояние отличают обычно от др. разновидностей твердого состояния (стеклообразного, аморфного) по рентгенограммам в-ва.
===
Исп. литература для статьи «КРИСТАЛЛИЧЕСКОЕ СОСТОЯНИЕ» : Шаскольская М. П., Кристаллография, М., 1976; Современная кристаллография, под ред. Б. К. Вайнштeйна. т. I. М., 1979. П. И. Федоров.

Страница «КРИСТАЛЛИЧЕСКОЕ СОСТОЯНИЕ» подготовлена по материалам .