Metode interval untuk menyelesaikan persamaan logaritma. Karya Manov "ketidaksetaraan logaritmik dalam Unified State Examination". Apa yang diperlukan untuk menyelesaikan pertidaksamaan logaritma

Menjaga privasi Anda penting bagi kami. Karena alasan ini, kami telah mengembangkan Kebijakan Privasi yang menjelaskan cara kami menggunakan dan menyimpan informasi Anda. Harap tinjau praktik privasi kami dan beri tahu kami jika Anda memiliki pertanyaan.

Pengumpulan dan penggunaan informasi pribadi

Informasi pribadi mengacu pada data yang dapat digunakan untuk mengidentifikasi atau menghubungi orang tertentu.

Anda mungkin diminta untuk memberikan informasi pribadi Anda kapan saja saat Anda menghubungi kami.

Di bawah ini adalah beberapa contoh jenis informasi pribadi yang kami kumpulkan dan cara kami menggunakan informasi tersebut.

Informasi pribadi apa yang kami kumpulkan:

  • Saat Anda mengajukan permohonan di situs, kami dapat mengumpulkan berbagai informasi, termasuk nama, nomor telepon, alamat email, dll.

Cara kami menggunakan informasi pribadi Anda:

  • Informasi pribadi yang kami kumpulkan memungkinkan kami menghubungi Anda dengan penawaran unik, promosi, dan acara lainnya serta acara mendatang.
  • Dari waktu ke waktu, kami dapat menggunakan informasi pribadi Anda untuk mengirimkan pemberitahuan dan komunikasi penting.
  • Kami juga dapat menggunakan informasi pribadi untuk keperluan internal, seperti melakukan audit, analisis data, dan berbagai penelitian guna meningkatkan layanan yang kami berikan dan memberi Anda rekomendasi mengenai layanan kami.
  • Jika Anda berpartisipasi dalam undian berhadiah, kontes, atau promosi serupa, kami dapat menggunakan informasi yang Anda berikan untuk mengelola program tersebut.

Keterbukaan informasi kepada pihak ketiga

Kami tidak mengungkapkan informasi yang diterima dari Anda kepada pihak ketiga.

Pengecualian:

  • Jika diperlukan - sesuai dengan hukum, prosedur peradilan, dalam proses hukum, dan/atau berdasarkan permintaan publik atau permintaan dari otoritas pemerintah di wilayah Federasi Rusia - untuk mengungkapkan informasi pribadi Anda. Kami juga dapat mengungkapkan informasi tentang Anda jika kami menganggap bahwa pengungkapan tersebut diperlukan atau sesuai untuk keamanan, penegakan hukum, atau tujuan kepentingan publik lainnya.
  • Jika terjadi reorganisasi, merger, atau penjualan, kami dapat mentransfer informasi pribadi yang kami kumpulkan kepada pihak ketiga penerus yang berlaku.

Perlindungan informasi pribadi

Kami melakukan tindakan pencegahan - termasuk administratif, teknis, dan fisik - untuk melindungi informasi pribadi Anda dari kehilangan, pencurian, dan penyalahgunaan, serta akses, pengungkapan, perubahan, dan penghancuran tanpa izin.

Menghormati privasi Anda di tingkat perusahaan

Untuk memastikan informasi pribadi Anda aman, kami mengomunikasikan standar privasi dan keamanan kepada karyawan kami dan menegakkan praktik privasi secara ketat.

KETIMPANGAN LOGARITMA DALAM PENGGUNAAN

Sechin Mikhail Alexandrovich

Akademi Ilmu Pengetahuan Kecil untuk Pelajar Republik Kazakhstan “Iskatel”

MBOU "Sekolah Menengah Sovetskaya No. 1", kelas 11, kota. Distrik Sovetsky Sovetsky

Gunko Lyudmila Dmitrievna, guru dari Lembaga Pendidikan Anggaran Kota “Sekolah Menengah Sovetskaya No.1”

Distrik Soviet

Tujuan pekerjaan: mempelajari mekanisme penyelesaian pertidaksamaan logaritma C3 dengan menggunakan metode nonstandar, mengidentifikasi fakta menarik tentang logaritma.

Subyek studi:

3) Belajar menyelesaikan pertidaksamaan logaritma spesifik C3 dengan menggunakan metode nonstandar.

Hasil:

Isi

Pendahuluan………………………………………………………………………………….4

Bab 1. Sejarah Masalah…………………………………………………...5

Bab 2. Kumpulan pertidaksamaan logaritma…………………………7

2.1. Transisi ekuivalen dan metode interval umum…………… 7

2.2. Metode rasionalisasi................................................................................................ 15

2.3. Substitusi non-standar………................................................ ............ ..... 22

2.4. Tugas dengan jebakan………………………………………………27

Kesimpulan………………………………………………………………………………… 30

Literatur……………………………………………………………………. 31

Perkenalan

Saya duduk di kelas 11 dan berencana masuk universitas yang mata pelajaran intinya adalah matematika. Itu sebabnya saya banyak mengerjakan soal di bagian C. Dalam tugas C3, saya perlu menyelesaikan pertidaksamaan non-standar atau sistem pertidaksamaan, biasanya terkait dengan logaritma. Saat mempersiapkan ujian, saya dihadapkan pada masalah kurangnya metode dan teknik untuk menyelesaikan pertidaksamaan logaritma ujian yang ditawarkan di C3. Metode yang dipelajari dalam kurikulum sekolah tentang topik ini tidak memberikan dasar untuk menyelesaikan tugas C3. Guru matematika menyarankan agar saya mengerjakan tugas C3 secara mandiri di bawah bimbingan beliau. Selain itu, saya tertarik dengan pertanyaan: apakah kita menemukan logaritma dalam hidup kita?

Berdasarkan hal tersebut, topik yang dipilih adalah:

“Ketidaksetaraan logaritmik dalam Ujian Negara Bersatu”

Tujuan pekerjaan: mempelajari mekanisme penyelesaian masalah C3 dengan menggunakan metode non-standar, mengidentifikasi fakta menarik tentang logaritma.

Subyek studi:

1) Temukan informasi yang diperlukan tentang metode non-standar untuk menyelesaikan pertidaksamaan logaritma.

2) Temukan informasi tambahan tentang logaritma.

3) Belajar memecahkan masalah C3 tertentu dengan menggunakan metode non-standar.

Hasil:

Signifikansi praktisnya terletak pada perluasan peralatan untuk memecahkan masalah C3. Materi ini dapat digunakan dalam beberapa pelajaran, untuk klub, dan kelas pilihan matematika.

Produk proyeknya adalah kumpulan “Ketidaksetaraan Logaritma C3 dengan Solusi.”

Bab 1. Latar Belakang

Sepanjang abad ke-16, jumlah perhitungan perkiraan meningkat pesat, terutama di bidang astronomi. Memperbaiki instrumen, mempelajari pergerakan planet, dan pekerjaan lainnya membutuhkan perhitungan yang sangat besar, terkadang bertahun-tahun. Astronomi berada dalam bahaya tenggelam dalam perhitungan yang tidak terpenuhi. Kesulitan muncul di bidang lain, misalnya dalam bisnis asuransi diperlukan tabel bunga majemuk untuk berbagai tingkat suku bunga. Kesulitan utama adalah perkalian dan pembagian bilangan multidigit, khususnya besaran trigonometri.

Penemuan logaritma didasarkan pada sifat-sifat barisan yang terkenal pada akhir abad ke-16. Archimedes berbicara tentang hubungan antara suku-suku barisan geometri q, q2, q3, ... dan barisan aritmatika eksponennya 1, 2, 3,... dalam Mazmur. Prasyarat lainnya adalah perluasan konsep derajat menjadi eksponen negatif dan pecahan. Banyak penulis telah menunjukkan bahwa perkalian, pembagian, eksponensial, dan ekstraksi akar dalam deret geometri bersesuaian dalam aritmatika - dalam urutan yang sama - penjumlahan, pengurangan, perkalian, dan pembagian.

Inilah gagasan logaritma sebagai eksponen.

Dalam sejarah perkembangan doktrin logaritma telah melewati beberapa tahapan.

Tahap 1

Logaritma ditemukan paling lambat tahun 1594 secara independen oleh Baron Napier dari Skotlandia (1550-1617) dan sepuluh tahun kemudian oleh mekanik Swiss Bürgi (1552-1632). Keduanya ingin menyediakan cara perhitungan aritmatika yang baru dan mudah digunakan, meskipun mereka mendekati masalah ini dengan cara yang berbeda. Napier secara kinematis menyatakan fungsi logaritmik dan dengan demikian memasuki bidang teori fungsi baru. Bürgi tetap berdasarkan pertimbangan perkembangan yang terpisah. Namun definisi logaritma keduanya tidak sama dengan definisi modern. Istilah "logaritma" (logaritmus) milik Napier. Itu muncul dari kombinasi kata Yunani: logos - "hubungan" dan ariqmo - "angka", yang berarti "jumlah hubungan". Awalnya, Napier menggunakan istilah yang berbeda: numeri artificiales - "bilangan buatan", sebagai lawan dari numeri naturalts - "bilangan asli".

Pada tahun 1615, dalam percakapan dengan Henry Briggs (1561-1631), seorang profesor matematika di Gresh College di London, Napier menyarankan untuk menggunakan nol sebagai logaritma satu, dan 100 sebagai logaritma sepuluh, atau, berapa jumlahnya. hal, hanya 1. Ini adalah bagaimana logaritma desimal dan tabel logaritma pertama dicetak. Belakangan, tabel Briggs dilengkapi oleh penjual buku Belanda dan penggila matematika Adrian Flaccus (1600-1667). Napier dan Briggs, meskipun mereka sampai pada logaritma lebih awal dari orang lain, menerbitkan tabel mereka lebih lambat dari yang lain - pada tahun 1620. Tanda log dan Log diperkenalkan pada tahun 1624 oleh I. Kepler. Istilah "logaritma natural" diperkenalkan oleh Mengoli pada tahun 1659 dan diikuti oleh N. Mercator pada tahun 1668, dan guru London John Speidel menerbitkan tabel logaritma natural angka dari 1 hingga 1000 dengan nama "Logaritma Baru".

Tabel logaritma pertama diterbitkan dalam bahasa Rusia pada tahun 1703. Namun pada semua tabel logaritma terdapat kesalahan perhitungan. Tabel bebas kesalahan pertama diterbitkan pada tahun 1857 di Berlin, diproses oleh ahli matematika Jerman K. Bremiker (1804-1877).

Tahap 2

Perkembangan lebih lanjut dari teori logaritma dikaitkan dengan penerapan geometri analitik dan kalkulus yang sangat kecil. Pada saat itu, hubungan antara kuadratur hiperbola sama sisi dan logaritma natural telah terbentuk. Teori logaritma periode ini dikaitkan dengan nama sejumlah ahli matematika.

Matematikawan, astronom, dan insinyur Jerman Nikolaus Mercator dalam sebuah esai

"Logarithmotechnics" (1668) memberikan deret yang memberikan perluasan ln(x+1) dalam

pangkat x:

Ungkapan ini sangat sesuai dengan alur pemikirannya, meskipun tentu saja ia tidak menggunakan tanda d, ..., melainkan simbolisme yang lebih rumit. Dengan ditemukannya deret logaritma, teknik penghitungan logaritma berubah: deret tersebut mulai ditentukan menggunakan deret tak hingga. Dalam kuliahnya “Matematika Dasar dari Sudut Pandang Tinggi”, yang diberikan pada tahun 1907-1908, F. Klein mengusulkan penggunaan rumus sebagai titik awal untuk membangun teori logaritma.

Tahap 3

Definisi fungsi logaritma sebagai fungsi invers

eksponensial, logaritma sebagai eksponen dari basis tertentu

tidak segera dirumuskan. Esai oleh Leonhard Euler (1707-1783)

"Pengantar Analisis Infinitesimals" (1748) berfungsi lebih jauh

pengembangan teori fungsi logaritma. Dengan demikian,

134 tahun telah berlalu sejak logaritma pertama kali diperkenalkan

(dihitung dari tahun 1614), sebelum ahli matematika sampai pada definisinya

konsep logaritma yang kini menjadi dasar mata pelajaran sekolah.

Bab 2. Kumpulan pertidaksamaan logaritma

2.1. Transisi yang setara dan metode interval yang digeneralisasi.

Transisi yang setara

, jika > 1

, jika 0 < а < 1

Metode interval umum

Metode ini adalah yang paling universal untuk menyelesaikan hampir semua jenis kesenjangan. Diagram solusinya terlihat seperti ini:

1. Bawalah pertidaksamaan tersebut ke bentuk fungsi di ruas kiri
, dan di sebelah kanan 0.

2. Temukan domain dari fungsi tersebut
.

3. Temukan nol dari fungsi tersebut
, yaitu menyelesaikan persamaannya
(dan menyelesaikan persamaan biasanya lebih mudah daripada menyelesaikan pertidaksamaan).

4. Gambarkan domain definisi dan nol fungsi pada garis bilangan.

5. Tentukan tanda-tanda fungsi tersebut
pada interval yang diperoleh.

6. Pilih interval di mana fungsi tersebut mengambil nilai yang diperlukan dan tuliskan jawabannya.

Contoh 1.

Larutan:

Mari terapkan metode interval

Di mana

Untuk nilai-nilai ini, semua ekspresi di bawah tanda logaritma adalah positif.

Menjawab:

Contoh 2.

Larutan:

1 jalan . ADL ditentukan oleh ketimpangan X> 3. Mengambil logaritma untuk itu X ke basis 10, kita dapatkan

Ketimpangan terakhir dapat diatasi dengan menerapkan aturan perluasan, yaitu. membandingkan faktor-faktornya dengan nol. Namun, dalam kasus ini mudah untuk menentukan interval tanda konstan dari fungsi tersebut

oleh karena itu, metode interval dapat diterapkan.

Fungsi F(X) = 2X(X- 3.5)lg X- 3ǀ kontinu di X> 3 dan menghilang pada titik tertentu X 1 = 0, X 2 = 3,5, X 3 = 2, X 4 = 4. Jadi, kita menentukan interval tanda konstan dari fungsi tersebut F(X):

Menjawab:

metode ke-2 . Mari kita terapkan langsung gagasan metode interval pada pertidaksamaan awal.

Untuk melakukan ini, ingatlah ekspresi itu A B- A c dan ( A - 1)(B- 1) memiliki satu tanda. Kemudian ketimpangan kita di X> 3 setara dengan ketimpangan

atau

Pertidaksamaan terakhir diselesaikan dengan menggunakan metode interval

Menjawab:

Contoh 3.

Larutan:

Mari terapkan metode interval

Menjawab:

Contoh 4.

Larutan:

Sejak 2 X 2 - 3X+ 3 > 0 untuk semua nyata X, Itu

Untuk menyelesaikan pertidaksamaan kedua kita menggunakan metode interval

Pada pertidaksamaan pertama kita melakukan penggantian

lalu kita sampai pada pertidaksamaan 2y 2 - kamu - 1 < 0 и, применив метод интервалов, получаем, что решениями будут те kamu, yang memenuhi pertidaksamaan -0,5< kamu < 1.

Dari mana, karena

kita mendapatkan ketidaksetaraan

yang dilakukan kapan X, untuk yang 2 X 2 - 3X - 5 < 0. Вновь применим метод интервалов

Sekarang, dengan mempertimbangkan solusi pertidaksamaan kedua dari sistem tersebut, kita akhirnya memperolehnya

Menjawab:

Contoh 5.

Larutan:

Ketimpangan setara dengan kumpulan sistem

atau

Mari kita gunakan metode interval atau

Menjawab:

Contoh 6.

Larutan:

Ketimpangan sama dengan sistem

Membiarkan

Kemudian kamu > 0,

dan ketimpangan pertama

sistem mengambil bentuk

atau, sedang berlangsung

faktor trinomial kuadrat,

Menerapkan metode interval pada pertidaksamaan terakhir,

kami melihat bahwa solusinya memenuhi kondisi tersebut kamu> 0 akan menjadi segalanya kamu > 4.

Jadi, pertidaksamaan awal ekuivalen dengan sistem:

Jadi, solusi terhadap ketimpangan itu adalah segalanya

2.2. Metode rasionalisasi.

Sebelumnya, ketimpangan tidak diselesaikan dengan metode rasionalisasi; Ini adalah “metode baru yang efektif dan modern untuk menyelesaikan pertidaksamaan eksponensial dan logaritmik” (kutipan dari buku karya S.I. Kolesnikova)
Dan bahkan jika gurunya mengenalnya, ada ketakutan - apakah ahli USE mengenalnya, dan mengapa mereka tidak memberikannya di sekolah? Ada situasi ketika guru berkata kepada siswanya: “Di mana kamu mendapatkannya?
Sekarang metode ini sedang dipromosikan dimana-mana. Dan bagi para ahli terdapat pedoman yang terkait dengan metode ini, dan dalam “Edisi Opsi Standar Terlengkap...” di Solusi C3 metode ini digunakan.
METODE INDAH!

"Meja Ajaib"


Di sumber lain

Jika a >1 dan b >1, lalu log a b >0 dan (a -1)(b -1)>0;

Jika a >1 dan 0

jika 0<A<1 и b >1, lalu log ab<0 и (a -1)(b -1)<0;

jika 0<A<1 и 00 dan (a -1)(b -1)>0.

Penalaran yang dilakukan sederhana, namun sangat menyederhanakan penyelesaian pertidaksamaan logaritma.

Contoh 4.

catatan x (x 2 -3)<0

Larutan:

Contoh 5.

log 2 x (2x 2 -4x +6)≤log 2 x (x 2 +x )

Larutan:

Menjawab. (0; 0,5)kamu.

Contoh 6.

Untuk menyelesaikan pertidaksamaan ini, alih-alih penyebutnya, kita menulis (x-1-1)(x-1), dan sebagai ganti pembilangnya, kita menulis hasil perkaliannya (x-1)(x-3-9 + x).


Menjawab : (3;6)

Contoh 7.

Contoh 8.

2.3. Substitusi non-standar.

Contoh 1.

Contoh 2.

Contoh 3.

Contoh 4.

Contoh 5.

Contoh 6.

Contoh 7.

catatan 4 (3 x -1)catatan 0,25

Mari kita lakukan penggantian y=3 x -1; maka ketimpangan ini akan terwujud

Log 4 log 0,25
.

Karena mencatat 0,25 = -catatan 4 = -(log 4 y -log 4 16)=2-log 4 y , maka pertidaksamaan terakhir kita tulis ulang menjadi 2log 4 y -log 4 2 y ≤.

Mari kita lakukan penggantian t =log 4 y dan dapatkan pertidaksamaan t 2 -2t +≥0 yang penyelesaiannya adalah interval - .

Jadi, untuk mencari nilai y kita mempunyai himpunan dua pertidaksamaan sederhana
Penyelesaian himpunan ini adalah interval 0<у≤2 и 8≤у<+.

Oleh karena itu, pertidaksamaan asal setara dengan himpunan dua pertidaksamaan eksponensial,
yaitu agregat

Penyelesaian pertidaksamaan pertama himpunan ini adalah interval 0<х≤1, решением второго – промежуток 2≤х<+. Jadi, pertidaksamaan awal terpenuhi untuk semua nilai x dari interval 0<х≤1 и 2≤х<+.

Contoh 8.

Larutan:

Ketimpangan sama dengan sistem

Penyelesaian pertidaksamaan kedua yang menentukan ODZ adalah himpunan pertidaksamaan tersebut X,

untuk itu X > 0.

Untuk menyelesaikan pertidaksamaan pertama kita melakukan substitusi

Lalu kita mendapatkan ketidaksetaraan

atau

Himpunan penyelesaian pertidaksamaan terakhir dicari dengan metode

interval: -1< T < 2. Откуда, возвращаясь к переменной X, kita mendapatkan

atau

Banyak sekali X, yang memenuhi pertidaksamaan terakhir

milik ODZ ( X> 0), oleh karena itu, merupakan solusi sistem,

dan karenanya ketidaksetaraan aslinya.

Menjawab:

2.4. Tugas dengan jebakan.

Contoh 1.

.

Larutan. ODZ pertidaksamaan tersebut adalah semua x yang memenuhi kondisi 0 . Oleh karena itu, semua x berasal dari interval 0

Contoh 2.

log 2 (2 x +1-x 2)>log 2 (2 x-1 +1-x)+1.. ? Intinya angka kedua jelas lebih besar dari

Kesimpulan

Tidak mudah untuk menemukan metode khusus untuk memecahkan masalah C3 dari berbagai sumber pendidikan. Selama pekerjaan yang dilakukan, saya dapat mempelajari metode non-standar untuk menyelesaikan pertidaksamaan logaritma yang kompleks. Ini adalah: transisi setara dan metode interval umum, metode rasionalisasi , substitusi non-standar , tugas dengan jebakan di ODZ. Metode-metode ini tidak termasuk dalam kurikulum sekolah.

Dengan menggunakan metode yang berbeda, saya menyelesaikan 27 pertidaksamaan yang diajukan pada Unified State Examination bagian C, yaitu C3. Pertidaksamaan dengan solusi dengan metode ini menjadi dasar kumpulan “Ketidaksetaraan Logaritmik C3 dengan Solusi”, yang menjadi produk proyek kegiatan saya. Hipotesis yang saya ajukan di awal proyek terbukti: Masalah C3 dapat diselesaikan secara efektif jika Anda mengetahui metode ini.

Selain itu, saya menemukan fakta menarik tentang logaritma. Menarik bagi saya untuk melakukan ini. Produk proyek saya akan bermanfaat bagi siswa dan guru.

Kesimpulan:

Dengan demikian, tujuan proyek telah tercapai dan masalah telah terpecahkan. Dan saya mendapatkan pengalaman kegiatan proyek yang paling lengkap dan beragam di semua tahapan pekerjaan. Saat mengerjakan proyek, dampak perkembangan utama saya adalah pada kompetensi mental, aktivitas yang berkaitan dengan operasi mental logis, pengembangan kompetensi kreatif, inisiatif pribadi, tanggung jawab, ketekunan, dan aktivitas.

Jaminan keberhasilan saat membuat proyek penelitian untuk Saya memperoleh: pengalaman sekolah yang signifikan, kemampuan memperoleh informasi dari berbagai sumber, memeriksa keandalannya, dan mengurutkannya berdasarkan kepentingan.

Selain pengetahuan mata pelajaran langsung matematika, saya memperluas keterampilan praktis saya di bidang ilmu komputer, memperoleh pengetahuan dan pengalaman baru di bidang psikologi, menjalin kontak dengan teman sekelas, dan belajar bekerja sama dengan orang dewasa. Selama kegiatan proyek, keterampilan pendidikan umum organisasi, intelektual dan komunikatif dikembangkan.

literatur

1. Koryanov A. G., Prokofiev A. A. Sistem pertidaksamaan dengan satu variabel (tugas standar C3).

2. Malkova A. G. Persiapan Ujian Negara Terpadu Matematika.

3. Samarova S. S. Menyelesaikan pertidaksamaan logaritmik.

4. Matematika. Kumpulan karya pendidikan yang diedit oleh A.L. Semenov dan I.V. Yashchenko. -M.: MTsNMO, 2009. - 72 hal.-

Suatu pertidaksamaan disebut logaritma jika mengandung fungsi logaritma.

Cara menyelesaikan pertidaksamaan logaritma tidak ada bedanya, kecuali dua hal.

Pertama, ketika berpindah dari pertidaksamaan logaritma ke pertidaksamaan fungsi sublogaritma, kita harus melakukannya ikuti tanda pertidaksamaan yang dihasilkan. Itu mematuhi aturan berikut.

Jika basis fungsi logaritma lebih besar dari $1$, maka ketika berpindah dari pertidaksamaan logaritma ke pertidaksamaan fungsi sublogaritma, tanda pertidaksamaannya tetap, tetapi jika kurang dari $1$, maka berubah menjadi sebaliknya .

Kedua, penyelesaian setiap pertidaksamaan adalah sebuah interval, dan oleh karena itu, pada akhir penyelesaian pertidaksamaan fungsi sublogaritma, perlu dibuat sistem dua pertidaksamaan: pertidaksamaan pertama dari sistem ini adalah pertidaksamaan fungsi sublogaritma, dan yang kedua adalah interval domain definisi fungsi logaritma yang termasuk dalam pertidaksamaan logaritma.

Praktik.

Mari kita selesaikan kesenjangan:

1. $\log_(2)((x+3)) \geq 3.$

$D(y): \x+3>0.$

$x \dalam (-3;+\infty)$

Basis logaritmanya adalah $2>1$, jadi tandanya tidak berubah. Dengan menggunakan definisi logaritma, kita memperoleh:

$x+3 \geq 2^(3),$

$x\dalam\)

Sangat penting! Dalam pertidaksamaan apa pun, transisi dari bentuk \(\log_a(⁡f(x)) ˅ \log_a⁡(g(x))\) ke ekspresi perbandingan dalam logaritma hanya dapat dilakukan jika:


Contoh . Selesaikan pertidaksamaan: \(\log\)\(≤-1\)

Larutan:

\(\catatan\) \(_(\frac(1)(3))⁡(\frac(3x-2)(2x-3))\)\(≤-1\)

Mari kita tuliskan ODZ-nya.

ODZ: \(\frac(3x-2)(2x-3)\) \(>0\)

\(⁡\frac(3x-2-3(2x-3))(2x-3)\)\(≥\) \(0\)

Kami membuka tanda kurung dan membawanya.

\(⁡\frac(-3x+7)(2x-3)\) \(≥\) \(0\)

Kita kalikan pertidaksamaan dengan \(-1\), jangan lupa membalik tanda perbandingannya.

\(⁡\frac(3x-7)(2x-3)\) \(≤\) \(0\)

\(⁡\frac(3(x-\frac(7)(3)))(2(x-\frac(3)(2)))\)\(≤\) \(0\)

Mari kita buat garis bilangan dan tandai titik \(\frac(7)(3)\) dan \(\frac(3)(2)\) di atasnya. Harap dicatat bahwa titik dihilangkan dari penyebutnya, meskipun pertidaksamaannya tidak tegas. Faktanya, titik ini tidak akan menjadi solusi, karena jika disubstitusikan ke dalam pertidaksamaan akan membawa kita pada pembagian dengan nol.


\(x∈(\)\(\frac(3)(2)\) \(;\)\(\frac(7)(3)]\)

Sekarang kita memplot ODZ pada sumbu numerik yang sama dan menuliskan sebagai respons interval yang termasuk dalam ODZ.


Kami menuliskan jawaban akhirnya.

Menjawab: \(x∈(\)\(\frac(3)(2)\) \(;\)\(\frac(7)(3)]\)

Contoh . Selesaikan pertidaksamaan: \(\log^2_3⁡x-\log_3⁡x-2>0\)

Larutan:

\(\log^2_3⁡x-\log_3⁡x-2>0\)

Mari kita tuliskan ODZ-nya.

ODZ: \(x>0\)

Mari kita cari solusinya.

Solusi: \(\log^2_3⁡x-\log_3⁡x-2>0\)

Di sini kita mempunyai pertidaksamaan logaritma kuadrat yang khas. Ayo lakukan.

\(t=\log_3⁡x\)
\(t^2-t-2>0\)

Kami memperluas sisi kiri pertidaksamaan menjadi .

\(D=1+8=9\)
\(t_1= \frac(1+3)(2)=2\)
\(t_2=\frac(1-3)(2)=-1\)
\((t+1)(t-2)>0\)

Sekarang kita perlu kembali ke variabel awal - x. Untuk melakukan ini, mari kita pergi ke , yang memiliki solusi yang sama, dan melakukan substitusi terbalik.

\(\kiri[ \begin(berkumpul) t>2 \\ t<-1 \end{gathered} \right.\) \(\Leftrightarrow\) \(\left[ \begin{gathered} \log_3⁡x>2\\\log_3⁡x<-1 \end{gathered} \right.\)

Transformasi \(2=\log_3⁡9\), \(-1=\log_3⁡\frac(1)(3)\).

\(\kiri[ \mulai(berkumpul) \log_3⁡x>\log_39 \\ \log_3⁡x<\log_3\frac{1}{3} \end{gathered} \right.\)

Mari beralih ke membandingkan argumen. Basis logaritma lebih besar dari \(1\), sehingga tanda pertidaksamaan tidak berubah.

\(\kiri[ \mulai(berkumpul) x>9 \\ x<\frac{1}{3} \end{gathered} \right.\)

Mari kita gabungkan solusi pertidaksamaan dan ODZ dalam satu gambar.


Mari kita tuliskan jawabannya.

Menjawab: \((0; \frac(1)(3))∪(9;∞)\)