Синус острого угла трапеции изображенной на рисунке. Углы равнобедренной трапеции. Свойства прямоугольной трапеции

Если источник звука и наблюдатель движутся друг относительно друга, частота звука, воспринимаемого наблюдателем, не совпадает с частотой источника звука. Это явление, открытое в 1842 г., носит название эффекта Доплера .

Звуковые волны распространяются в воздухе (или другой однородной среде) с постоянной скоростью, которая зависит только от свойств среды. Однако, длина волны и частота звука могут существенно изменяться при движении источника звука и наблюдателя.

Рассмотрим простой случай, когда скорость источника υ И и скорость наблюдателя υ Н относительно среды направлены вдоль прямой, которая их соединяет. За положительное направление для υ И и υ Н можно принять направление от наблюдателя к источнику. Скорость звука υ всегда считается положительной.

Рис. 2.8.1 иллюстрирует эффект Доплера в случае движущегося наблюдателя и неподвижного источника. Период звуковых колебаний, воспринимаемых наблюдателем, обозначен через T Н. Из рис. 2.8.1 следует:

Принимая во внимание

Если наблюдатель движется в направлении источника (υ Н > 0), то f Н > f И, если наблюдатель движется от источника (υ Н < 0), то f Н < f И.

На рис. 2.8.2 наблюдатель неподвижен, а источник звука движется с некоторой скоростью υ И. В этом случае согласно рис. 2.8.2 справедливо соотношение:

Отсюда следует:

Если источник удаляется от наблюдателя, то υ И > 0 и, следовательно, f Н < f И. Если источник приближается к наблюдателю, то υ И < 0 и f Н > f И.

В общем случае, когда и источник, и наблюдатель движутся со скоростями υ И и υ Н, формула для эффекта Доплера приобретает вид:

Это соотношение выражает связь между f Н и f И. Скорости υ И и υ Н всегда измеряются относительно воздуха или другой среды, в которой распространяются звуковые волны. Это так называемый нерелятивистский Доплер-эффект .

В случае электромагнитных волн в пустоте (свет, радиоволны) также наблюдается эффект Доплера. Так как для распространения электромагнитных волн не требуется материальная среда, можно рассматривать только относительную скорость υ источника и наблюдателя.

Выражение для релятивистского Доплер-эффекта имеет вид

где c - скорость света. Когда υ > 0, источник удаляется от наблюдателя и f Н < f И, в случае υ < 0 источник приближается к наблюдателю, и f Н > f И.

Доплер-эффект широко используется в технике для измерения скоростей движущихся объектов («доплеровская локация» в акустике, оптике и радио).

Цель работы:

Исследование зависимости доплеровского сдвига частоты от частоты источника звука и от скорости движения отражающей поверхности.

Приборы и принадлежности:

    Генератор звуковой (ГЗ-44).

    Генератор звуковой школьный (ГЗШ-63).

    Осциллограф С-11 (138049).

    Источник тока ИЭПП-2.

    Регулятор напряжения (РНШ).

    Излучатель высокочастотный (2ГД-36, мощность 1-2Вт)

Двойной эффект Доплера.

В 1842г. К.Доплер (австрийский физик и астроном) установил, что частота воспринимаемого звука зависит как от скорости движения источника (относительно среды) так и от скорости движения наблюдателя: она выше частоты источника 0 , если наблюдатель и источник сближаются и ниже 0 , если они удаляются. В этом состоит эффект Доплера.

При одновременном движении источника и приемника звука частота, фиксируемая приемником , определяется по формуле:

(1)

где - скорость звука в среде,


- скорости движения приемника и источника,

,
- углы, образуемые векторами скорости источника и приемника с вектором, соединяющим приемник и источник.

Если перемещение источника и наблюдателя происходит вдоль соединяющей их прямой, то cos
и формула 1 принимает вид:

(2)

Верхние знаки в формулах (1) и (2) используются, когда приемник и источник сближаются, нижние - отдаляются.

Разновидностью эффекта Доплера является, так называемый, двойной эффект Доплера - изменение частоты волн при отражении их от движущихся тел, поскольку отражающий объект можно рассматривать как приемник, а затем как переизлучатель волн.

Определим частоту доплеровского сдвига, когда приемник (микрофон - мкр рис.1) и излучатель (изл) покоятся, а движется отражающая звук пластинка (пл) со скоростью
(сближение;cos
1). На первом этапе пластинка играет роль приемника, движущегося со скоростью (
) пр, а источник звука покоится (
). Используя формулу (2) получим частоту волн попадающих на пластинку (
) пр

)пр=
(3)

На втором этапе пластинка отражает принятые (
) пр волны и является источником звука, который перемещается со скоростью навстречу микрофону.

Частота волн (
) фиксируемая микрофоном, согласно формуле (2)

(4)

Подставляя в (4) формулу (3) получим

(5)

Теперь определим, на сколько изменилась частота (доплеровский сдвиг частот).

Если падающая на пластину и отраженная от пластины волны накладываются друг на друга (как в рассмотренном случае), то наблюдается суперпозиция волн, частоты которых мало отличаются друг от друга и это приводит к появлению биений. Частота биений равна разности частот падающей и отраженной волны (
). Т.о. определив частоту биений фиксируемых микрофоном и зная скорость движения отражающей пластинки, можно определить как доплеровский сдвиг частоты, так и частоту звуковых волн отраженных подвижной пластинкой и принятой микрофоном.

(6)

Экспериментальная установка.

Схема экспериментальной установки представлена на рисунке 2. Источником звука является излучатель высокочастотный 1, преобразующий электрические колебания, создаваемые звуковым генератором 2 в звуковые волны. Звук отражается от пластин 3, которые укреплены на вращающейся платформе 4. Частоту вращения платформы можно изменять в широких пределах, меняя напряжение, подаваемое на обмотки двигателя 5 от регулятора напряжения 6 (РНШ, 0-60В).

В микрофон 7, расположенный рядом с излучателем, поступают звуковые волны непосредственно от излучателя частотой и волны, отраженные от пластин 3. Поступающий в микрофон сигнал усиливается (источник постоянного тока). Причем звуковой сигнал, отраженный от вращающихся пластин, попадает на микрофон лишь в короткие (по сравнению с периодом вращения платформы) промежутки времени, соответствующие определенному относительному положению пластин, излучателя и микрофона.

Между излучателем и микрофоном устанавливается войлочная прокладка 9 для уменьшения мощности прямого звука, попадающего в микрофон непосредственно от излучателя.

Микрофон подключен к осциллографу 10. Скорость движения пластин невелика, поэтому доплеровский сдвиг частоты много меньше частоты. На экране осциллографа наблюдается периодически появляющаяся картина биений с частотой

, являющаяся результатом сложения двух звуковых волн, попадающих в микрофон в определенные моменты времени.

Скорость сближения пластин и громкоговорителя

где R - расстояние от оси вращения до середины пластин,

- частота вращения пластин.

Выполнение работы.

ВНИМАНИЕ: Приборы включать в электрическую сеть можно только после проверки электрической цепи преподавателем.

Известно, что при приближении к неподвижному наблюдателю быстро движущегося электропоезда его звуковой сигнал кажется более высоким, а при удалении от наблюдателя – более низким, чем сигнал того же электропоезда, но неподвижного.

Эффектом Доплера называют изменение частоты волн, регистрируемых приемником, которое происходит вследствие движения источника этих волн и приемника.

Источник, двигаясь к приемнику, как бы сжимает пружину – волну (рис. 5.6).

Данный эффект наблюдается при распространении звуковых волн (акустический эффект) и электромагнитных волн (оптический эффект).

Рассмотрим несколько случаев проявления акустического эффекта Доплера .

Пусть приемник звуковых волн П в газообразной (или жидкой) среде неподвижен относительно нее, а источник И удаляется от приемника со скоростью вдоль соединяющей их прямой (рис. 5.7, а ).

Источник смещается в среде за время, равное периоду его колебаний, на расстояние , где – частота колебаний источника.

Поэтому при движении источника длина волны в среде отлична от ее значения при неподвижном источнике:

,

где – фазовая скорость волны в среде.

Частота волны, регистрируемая приемником,

(5.7.1)

Если вектор скорости источника направлен под произвольным углом к радиус-вектору , соединяющему неподвижный приемник с источником (рис. 5.7, б ), то

(5.7.2)

Если источник неподвижен, а приемник приближается к нему со скоростью вдоль соединяющей их прямой (рис. 5.7, в ), то длина волны в среде . Однако, скорость распространения волны относительно приемника равна , так что частота волны, регистрируемая приемником

(5.7.3)

В том случае, когда скорость направлена под произвольным углом к радиус-вектору , соединяющему движущийся приемник с неподвижным источником (рис. 5.7, г ), имеем:

Эту формулу можно также представить в виде (если )

, (5.7.6)

где – скорость источника волны относительно приемника, а – угол между векторами и . Величина , равная проекции на направление , называется лучевой скоростью источника.

Оптический эффект Доплера

При движении источника и приемника электромагнитных волн относительно друг друга также наблюдается эффект Доплера , т.е. изменение частоты волны , регистрируемой приемником. В отличие от рассмотренного нами эффекта Доплера в акустике, закономерности этого явления для электромагнитных волн можно установить только на основе специальной теории относительности.

Соотношение, описывающее эффект Доплера для электромагнитных волн в вакууме, с учетом преобразований Лоренца, имеет вид:

. (5.7.7)

При небольших скоростях движения источника волн относительно приемника, релятивистская формула эффекта Доплера (5.7.7) совпадает с классической формулой (5.7.2).

Если источник движется относительно приемника вдоль соединяющей их прямой, то наблюдается продольный эффект Доплера .

В случае сближения источника и приемника ()

, (5.7.8)

а в случае их взаимного удаления ()

. (5.7.9)

Кроме того, из релятивистской теории эффекта Доплера следует существование поперечного эффекта Доплера , наблюдающегося при и , т.е. в тех случаях, когда источник движется перпендикулярно линии наблюдения (например источник движется по окружности, приемник в центре):

. (5.7.10)

Поперечный эффект Доплера необъясним в классической физике. Он представляет чисто релятивистский эффект.

Как видно из формулы (5.7.10), поперечный эффект пропорционален отношению , следовательно он значительно слабее продольного, который пропорционален (5.7.9).

В общем случае вектор относительной скорости можно разложить на составляющие: одна обеспечивает продольный эффект, другая – поперечный.

Существование поперечного эффекта Доплера следует непосредственно из замедления времени в движущихся системах отсчета.

Впервые экспериментальная проверка существования эффекта Доплера и правильности релятивистской формулы (5.7.7) была осуществлена американскими физиками Г. Айвсом и Д. Стилуэллом в 30-х гг. Они с помощью спектрографа исследовали излучение атомов водорода, разогнанных до скоростей м/с. В 1938 г. результаты были опубликованы. Резюме: поперечный эффект Доплера наблюдался в полном соответствии с релятивистскими преобразованиями частоты (спектр излучения атомов оказался сдвинут в низкочастотную область); вывод о замедлении времени в движущихся инерциальных системах отсчета подтвержден.

Эффект Доплера нашел широкое применение в науке и технике. Особенно большую роль это явление играет в астрофизике. На основании доплеровского смещения линий поглощения в спектрах звезд и туманностей можно определять лучевые скорости этих объектов по отношению к Земле: при по формуле (5.7.6)

. (5.7.11)

Американский астроном Э. Хаббл обнаружил в 1929 г. явление, получившее название космологического красного смещения и состоящее в том, что линии в спектрах излучения внегалактических объектов смещены в сторону меньших частот (больших длин волн). Оказалось, что для каждого объекта относительное смещение частоты ( – частота линии в спектре неподвижного источника, – наблюдаемая частота) совершенно одинаково по всем частотам. Космологическое красное смещение есть не что иное, как эффект Доплера. Оно свидетельствует о том, что Метагалактика расширяется, так что внегалактические объекты удаляются от нашей Галактики.

Под Метагалактикой понимают совокупность всех звездных систем. В современные телескопы можно наблюдать часть Метагалактики, оптический радиус которой равен . Существование этого явления было теоретически предсказано еще в 1922 г. советским ученым А.А. Фридманом на основе развития общей теории относительности.

Хаббл установил закон, согласно которому относительное красное смещение галактик растет пропорционально расстоянию до них .

Закон Хаббла можно записать в виде

, (5.7.12)

где H – постоянная Хаббла. По самым современным оценкам, проведенным в 2003 г., . (1 пк (парсек) – расстояние, которое свет проходит в вакууме за 3,27 лет ()).

В 1990 г. на борту шаттла «Дискавери» был выведен на орбиту космический телескоп имени Хаббла (рис. 5.8).

Рис. 5.8 Рис. 5.9

Астрономы давно мечтали о телескопе, который работал бы в видимом диапазоне, но находился за пределами земной атмосферы, сильно мешающей наблюдениям. «Хаббл» не только не обманул возлагавшихся на него надежд, но даже превзошел практически все ожидания. Он фантастически расширил «поле зрения» человечества, заглянув в немыслимые глубины Вселенной. За время своей работы космический телескоп передал на землю 700 тыс. великолепных фотографий (рис. 5.9). Он, в частности, помог астрономам определить точный возраст нашей Вселенной – 13,7 млрд. лет; помог подтвердить существование во Вселенной странной, но оказывающей огромное влияние, формы энергии – темной энергии; доказал существование сверхмассивных черных дыр; удивительно четко заснял падение кометы на Юпитер; показал, что процесс формирования планетных систем является широко распространенным в нашей Галактике; обнаружил небольшие протогалактики, зарегистрировав излучение, испущенное ими, когда возраст Вселенной составлял менее 1 млрд. лет.

На эффекте Доплера основаны радиолокационные лазерные методы измерения скоростей различных объектов на Земле (например автомобиля, самолета и др.). Лазерная анемометрия является незаменимым методом изучения потока жидкости или газа. Хаотическое тепловое движение атомов светящегося тела также вызывает уширение линий в его спектре, которое возрастает с увеличением скорости теплового движения, т.е. с повышением температуры газа. Это явление можно использовать для определения температуры раскаленных газов.

На простой вопрос «Как найти высоту трапеции?» существует несколько ответов, и все потому, что могут быть даны разные исходные величины. Поэтому и формулы будут различаться.

Эти формулы можно запомнить, но они несложно выводятся. Нужно только применять ранее изученные теоремы.

Принятые в формулах обозначения

Во всех приведенных ниже математических записях верны такие прочтения букв.

В исходных данных: все стороны

Для того чтобы найти высоту трапеции в общем случае потребуется воспользоваться такой формулой:

н = √(с 2 - (((а - в) 2 + с 2 - d 2)/(2(а - в))) 2). Номер 1.

Не самая короткая, но и встречается в задачах достаточно редко. Обычно можно воспользоваться другими данными.

Формула, которая подскажет, как найти высоту равнобедренной трапеции в той же ситуации, гораздо короче:

н = √(с 2 - (а - в) 2 /4). Номер 2.

В задаче даны: боковые стороны и углы при нижнем основании

Принимают, что угол α прилежит к боковой стороне с обозначением «с», соответственно угол β к стороне d. Тогда формула для того, как найти высоту трапеции, в общем виде будет такой:

н = с * sin α= d * sin β. Номер 3.

Если фигура равнобедренная, то можно воспользоваться таким вариантом:

н = с * sin α= ((а - в) / 2) * tg α. Номер 4.

Известны: диагонали и углы между ними

Обычно к этим данным присоединяются еще известные величины. Например, основания или средняя линия. Если даны основания, то для ответа на вопрос, как найти высоту трапеции, пригодится такая формула:

н = (d 1 * d 2 * sin γ) / (а + в) или н = (d 1 * d 2 * sin δ) / (а + в). Номер 5.

Это для общего вида фигуры. Если дана равнобедренная, то запись преобразится так:

н = (d 1 2 * sin γ) / (а + в) или н = (d 1 2 * sin δ) / (а + в). Номер 6.

Когда в задаче идет речь о средней линии трапеции, то формулы для поиска ее высоты становятся такими:

н = (d 1 * d 2 * sin γ) / 2m или н = (d 1 * d 2 * sin δ) / 2m. Номер 5а.

н = (d 1 2 * sin γ) / 2m или н = (d 1 2 * sin δ) / 2m. Номер 6а.

Среди известных величин: площадь с основаниями или средней линией

Это, пожалуй, самые короткие и простые формулы того, как найти высоту трапеции. Для произвольной фигуры она будет такой:

н = 2S / (а + в). Номер 7.

Она же, но с известной средней линией:

н = S / m. Номер 7а.

Как ни странно, но для равнобедренной трапеции формулы будут выглядеть так же.

Задачи

№1. На определение углов при нижнем основании трапеции.

Условие. Дана равнобедренная трапеция, боковая сторона которой 5 см. Ее основания равны 6 и 12 см. Требуется найти синус острого угла.

Решение. Для удобства следует ввести обозначение. Пусть левая нижняя вершина будет А, все остальные по часовой стрелке: В, С, Д. Таким образом, нижнее основание будет обозначено АД, верхнее — ВС.

Нужно провести высоты из вершин В и С. Точки, которые укажут концы высот будут обозначены Н 1 и Н 2 , соответственно. Поскольку в фигуре ВСН 1 Н 2 все углы прямые, то она является прямоугольником. Это означает, что отрезок Н 1 Н 2 равен 6 см.

Теперь нужно рассмотреть два треугольника. Они равны, так как являются прямоугольными с одинаковыми гипотенузами и вертикальными катетами. Отсюда следует, что и меньшие катеты у них равны. Поэтому их можно определить как частное от разности. Последняя получится от вычитания из нижнего основания верхнего. Делиться оно будет на 2. То есть 12 - 6 нужно поделить на 2. АН 1 = Н 2 Д = 3 (см).

Теперь из теоремы Пифагора нужно найти высоту трапеции. Она необходима для нахождения синуса угла. ВН 1 = √(5 2 - 3 2) = 4 (см).

Воспользовавшись знанием о том, как находится синус острого угла в треугольнике с прямым углом, можно записать такое выражение: sin α= ВН 1 / АВ = 0,8.

Ответ. Искомый синус равен 0,8.

№2. На нахождение высоты трапеции по известному тангенсу.

Условие. У равнобедренной трапеции нужно вычислить высоту. Известно, что ее основания равны 15 и 28 см. Дан тангенс острого угла: 11/13.

Решение. Обозначение вершин такое же, как в предыдущей задаче. Снова нужно провести две высоты из верхних углов. По аналогии с решением первой задачи нужно найти АН 1 = Н 2 Д, которые определятся как разность 28 и 15, деленная на два. После подсчетов получается: 6,5 см.

Поскольку тангенс — это отношение двух катетов, то можно записать такое равенство: tg α= АН 1 / ВН 1 . Причем это отношение равно 11/13 (по условию). Так как АН 1 известен, то можно вычислить высоту: ВН 1 = (11 * 6,5) / 13. Простые расчеты дают результат в 5,5 см.

Ответ. Искомая высота равна 5,5 см.

№3. На вычисление высоты по известным диагоналям.

Условие. О трапеции известно, что ее диагонали равны 13 и 3 см. Нужно узнать ее высоту, если сумма оснований составляет 14 см.

Решение. Пусть обозначение фигуры будет таким же, как раньше. Предположим, что АС — меньшая диагональ. Из вершины С нужно провести искомую высоту и обозначить ее СН.

Теперь потребуется выполнить дополнительное построение. Из угла С нужно провести прямую, параллельную большей диагонали и найти точку ее пересечения с продолжением стороны АД. Это будет Д 1 . Получилась новая трапеция, внутри которой начерчен треугольник АСД 1 . Он-то и нужен для дальнейшего решения задачи.

Искомая высота окажется еще и ей же в треугольнике. Поэтому можно воспользоваться формулами, изученными в другой теме. Высота треугольника определяется как произведение числа 2 и площади, деленное на сторону, к которой она проведена. А сторона оказывается равна сумме оснований исходной трапеции. Это исходит из правила, по которому выполнено дополнительное построение.

В рассматриваемом треугольнике все стороны известны. Для удобства введем обозначения х = 3 см, у = 13 см, z = 14 см.

Теперь можно сосчитать площадь, воспользовавшись теоремой Герона. Полупериметр будет равен р = (х + у + z)/ 2 = (3 + 13 + 14) / 2 = 15 (см). Тогда формула для площади после подстановки значений будет выглядеть так: S = √(15 * (15 - 3) * (15 - 13) * (15 - 14)) = 6 √10 (см 2).

Ответ. Высота равна 6√10 / 7 см.

№4. Для поиска высоты по сторонам.

Условие. Дана трапеция, три стороны которой равны 10 см, а четвертая 24 см. Нужно узнать ее высоту.

Решение. Поскольку фигура равнобедренная, то потребуется формула под номером 2. В нее нужно просто подставить все значения и сосчитать. Это будет выглядеть так:

н = √(10 2 - (10 - 24) 2 /4) = √51 (см).

Ответ. н = √51 см.