Как звучит центральная предельная теорема теории вероятностей. Python для обучения научной информатике: Моделирование систем массового обслуживания. Эффективность программных решений и дальнейшие разработки

Кроме теорем, относящихся к закону больших чисел, существует еще одна группа теорем, которые образуют так называемую центральную предельную теорему. Эта группа теорем определяет условия, при которых возникает нормальный закон распределения. Такие условия достаточно часто встречаются на практике, что, по сути, и является объяснением того, что нормальный закон наиболее часто используется в случайных явлениях на практике. Различие форм центральной предельной теоремы состоит в формулировке разных условий, накладываемых на сумму рассматриваемых случайных величин. Важнейшее место среди всех этих форм принадлежит теореме Ляпунова.

Теорема Ляпунова. Если Х 1 , Х 2 , … , Х n – независимые случайные величины, имеющие конечные математические ожидания и дисперсии, при этом ни одна из величин по своему значению резко не отличается от всех остальных, т.е. оказывает на сумму этих величин ничтожно малое влияние, то при неограниченном увеличении числа случайных величин n , закон распределения их суммы неограниченно приближается к нормальному.

Следствие. Если все случайные величины Х 1 , Х 2 , … , Х n одинаково распределены, то закон распределения их суммы неограниченно приближается к нормальному при неограниченном увеличении числа слагаемых.

Теорема Ляпунова имеет большое практическое значение. Опытным путем было установлено, что приближение к нормальному закону идет достаточно быстро. При выполнении условий теоремы Ляпунова закон распределения суммы даже десяти слагаемых уже можно считать нормальным.

Существует более сложная и более общая форма теоремы Ляпунова.

Общая теорема Ляпунова. Если Х 1 , Х 2 , … , Х n – независимые случайные величины, имеющие математические ожидания а i , дисперсии σ 2 i , центральные моменты третьего порядка т i и

то закон распределения суммы Х 1 + Х 2 + … + Х n при n неограниченно приближается к нормальному с математическим ожиданием и дисперсией .

Смысл условия (2.1) состоит в том, чтобы в сумме случайных величин не было бы ни одного слагаемого, влияние которого на рассеивание суммы величин было бы подавляюще велико по сравнению с влиянием всех остальных случайных величин. Кроме этого, не должно быть большого числа слагаемых, влияние которых на рассеивание суммы очень мало по сравнению с суммарным влиянием остальных.

Одной из самых первых форм центральной предельной теоремы была доказана теорема Лапласа.

Теорема Лапласа. Пусть производится n независимых опытов, в каждом из которых событие А появляется с вероятностью р , тогда при больших n справедливо приближенное равенство

(2.2)

где Y n – число появлений события А в n опытах; q =1-p ; Ф(х ) – функция Лапласа.

Теорема Лапласа позволяет находить приближенно вероятности значений биномиально распределенных случайных величин при больших значениях величины n . Однако при этом, вероятность р не должна быть ни достаточно маленькой, ни достаточно большой.

Для практических задач часто используется другая форма записи формулы (2.2), а именно

(2.3)

Пример 2.1. Станок выдает за смену n =1000 изделий, из которых в среднем 3% дефектных. Найти приближенно вероятность того, что за смену будет изготовлено не менее 950 хороших (без дефекта) изделий, если изделия оказываются хорошими независимо друг от друга.

Решение . Пусть Y – число хороших изделий. По условию задачи р = 1-0,03=0,97; число независимых опытов n =1000. Применим формулу (2.3):

Пример 2.2, В условиях предыдущего примера выяснить сколько хороших изделий k должен вмещать ящик, чтобы вероятность его переполнения за одну смену не превысила 0,02.

Решение . Из условия ясно, что . Найдем из этого условия число k . Имеем
, т.е. .

По таблице функции Лапласа по значению 0,48 находим аргумент, равный 2,07. Получаем
. ■

Пример 2.3. В банке в определенную кассу за получением некоторых денежных сумм стоят 16 человек. В настоящее время в этой кассе имеется 4000 ден. ед. Суммы Х i , которые необходимо выплатить каждому из 20 человек – это случайные величины с математическим ожиданием т = 160 ден.ед. и средним квадратическим отклонением σ = 70 ден.ед. Найти вероятность того, что денег, имеющихся в кассе, не хватит для выплаты всем стоящим в очереди.

Решение . Применим теорему Ляпунова для одинаково распределенных случайных величин. Величину n = 20 можно считать достаточно большой, следовательно, общую сумму выплат Y = Х 1 + Х 2 + … + Х 16 можно считать случайной величиной распределенной по нормальному закону с математическим ожиданием т у = = 20 160= 3200 и среднеквадратическим отклонением .

План:

1. Понятие центральной предельной теоремы (теорема Ляпунова)

2. Закон больших чисел, вероятность и частота (теоремы Чебышева и Бернулли)

1. Понятие центральной предельной теоремы.

Нормальное распределение вероятностей имеет в теории вероят­ностей большое значение. Нормальному закону подчиняется вероят­ность при стрельбе по цели, в измерениях и т. п. В частности, оказывается, что закон распределения суммы достаточно большого чис­ла независимых случайных величин с произвольными законами распределения близок к нормальному распределению. Этот факт, называемый центральной предельной теоремой или теоремой Ляпунова.

Известно, что нормально распределенные случай­ные величины широко распространены на практике. Чем это объясняется? Ответ на этот вопрос был дан

Централь­ная предельная теорема. Если случайная величина X пред­ставляет, собой сумму очень большого числа взаимно неза­висимых случайных величин, влияние каждой из которых на всю сумму ничтожно мало, то X имеет распределение, близкое к нормальному распределению.

Пример. Пусть производится измерение некоторой физической величины. Любое измерение дает лишь приближенное значение изме­ряемой величины, так как на результат измерения влияют очень многие независимые случайные факторы (температура, колебания прибора, влажность и др.). Каждый из этих факторов порождает ничтожную "частную ошибку". Однако, поскольку число этих факторов очень велико, их совокупное действие порождает уже заметную «суммар­ную ошибку».

Рассматривая суммарную ошибку как сумму очень большого числа взаимно независимых частных ошибок, мы вправе заключить, что суммарная ошибка имеет распределение, близкое к нормальному распределению. Опыт подтверждает справедливость такого заключения.

Рассмотрим условия, при которых выполняется "централь­ная предельная теорема"

Х1, Х2, ...,Х n – последовательность независимых случайных величин,

M (Х1), M (Х2), ..., M n ) - конечные математические ожидания этих величин, соответственно равные М(Xk )= ak

D(Х1), D (Х2), ..., D n ) - конечные дисперсии их, соответственно равные D (X k )= bk 2

Введем обозначения: S= Х1+Х2 + ...+Хn;

A k= Х1+Х2 + ...+Хn=; B2= D(Х1)+ D (Х2)+ ...+ D n ) =

Запишем функцию распределения нормированной суммы:

Говорят, что к последовательности Х1, Х2, ...,Х n применима централь­ная предельная теорема, если при любом x функция распределения нормированной суммы при n ® ¥ стремится к нормальной функции распределения:

Right " style="border-collapse:collapse;border:none;margin-left:6.75pt;margin-right: 6.75pt">

Рассмотрим дискретную случайную величину X , задан­ную таблицей распределения:

Поставим перед собой задачу оценить вероятность того, что отклонение случайной величины от ее математического ожидания не превышает по абсолютной величине поло­жительного числа ε

Если ε достаточно мало, то мы оце­ним, таким образом, вероятность того, что X примет значения, достаточно близкие к своему математическому ожиданию. доказал неравенство, позволяю­щее дать интересующую нас оценку.

Лемма Чебышева. Дана случайная величина X, принимающая только неотрицательные значения с математическим ожиданием M(X). Для любого числа α>0 имеет место выражение:

Неравенство Чебышева. Вероятность того, что отклонение случайной величины X от ее математического ожидания по абсолютной величине меньше положитель­ного числа ε , не меньше, чем 1 – D(X) / ε 2:

Р (| X-M (X) | < ε ) ³ 1 - D (Х) / ε 2.

Замечание. Неравенство Чебышева имеет для практики огра­ниченное значение, поскольку часто дает грубую, а иногда и три­виальную (не представляющую интереса) оценку.

Теоретическое же значение неравенства Чебышева весьма велико. Ниже мы воспользуемся этим неравенством для вывода теоремы Чебышева.

2.2. Теорема Чебышева

Если Х1, Х2, ...,Хn..- попарно независимые случайные величины, причем диспер­сии их равномерно ограничены (не превышают постоян­ного числа С), то, как бы мало ни было положительное число ε , вероятность неравенства

÷ (Х1+Х2 + ...+Хn) / n - (M(Х1)+M(Х2)+ ...+M(Хn))/n | < ε

будет как угодно близка к единице, если число случайных величин достаточно велико.

P (÷ (Х1+Х2 + ...+Хn) / n - (M(Х1)+M(Х2)+ ...+M(Хn))/n | < ε )=1.

Теорема Чебышева утверждает:

1. Рассматривается достаточно большое число незави­симых случайных величин, имеющих ограниченные ди­сперсии,

Формулируя теорему Чебышева, мы предпола­гали, что случайные величины имеют различные матема­тические ожидания. На практике часто бывает, что слу­чайные величины имеют одно и то же математическое ожидание. Очевидно, что если вновь допустить, что диспер­сии этих величин ограничены, то к ним будет применима теорема Чебышева.

Обозначим математическое ожидание каждой из слу­чайных величин через а;

В рассматриваемом случае среднее арифметическое математических ожиданий, как легко видеть, также равно а.

Можно сформулировать тео­рему Чебышева для рассматриваемого частного случая.

"Если Х1, Х2, ...,Хn..- попарно независимые случай­ные величины, имеющие одно и то же математическое ожидание а, и если дисперсии этих величин равномерно ограничены, то, как бы мало ни было число ε > О, ве­роятность неравенства

÷ (Х1+Х2 + ...+Хn) / n - a | < ε

будет как угодно близка к единице, если число случай­ных величин достаточно велико".

Другими словами, в условиях теоремы

P (÷ (Х1+Х2 + ...+Хn) / n - a | < ε ) = 1.

2.3. Сущность теоремы Чебышева

Хотя от­дельные независимые случайные величины могут прини­мать значения, далекие от своих математических ожиданий, среднее арифметическое достаточно большого числа случай­ных величин с большой вероятностью принимает значе­ния, близкие к определенному постоянному числу, а именно к числу

(М (Xj ) + М (Х2) +... + М (Х„))/п или к числу а в частном случае.

Иными словами, отдельные случайные величины могут иметь значительный разброс, а их среднее арифметическое рассеянно мало.

Таким образом, нельзя уверенно предсказать, какое возможное значение примет каждая из случайных вели­чин, но можно предвидеть, какое значение примет их среднее арифметическое.

Итак, среднее арифметическое достаточно большого числа независимых случайных величин (дисперсии которых равномерно ограничены) утрачивает характер случайной, величины.

Объясняется это тем, что отклонения каждой из величин от своих математических ожиданий могут быть как положительными, так и отрицательными, а в среднем арифметическом они взаимно погашаются.

Теорема Чебышева справедлива не только для дискрет­ных, но и для непрерывных случайных величин; она является примером, подтверждающим справедли­вость учения о связи между случайностью и необходимостью.

2.4. Значение теоремы Чебышева для практики

Приведем примеры применения теоремы Чебышева к решению практических задач.

Обычно для измерения некоторой физической величины производят несколько измерений и их среднее арифме­тическое принимают в качестве искомого размера. При каких условиях этот способ измерения можно считать правильным? Ответ на этот вопрос дает теорема Чебы­шева (ее частный случай).

Действительно, рассмотрим результаты каждого из­мерения как случайные величины

Х1, Х2, ...,Хn

К. этим величинам можно применить теорему Чебышева, если:

1) Они попарно независимы.

2) имеют одно и то же ма­тематическое ожидание,

3) дисперсии их равномерно огра­ничены.

Первое требование выполняется, если результат каж­дого измерения не зависит от результатов остальных.

Второе требование выполняется, если измерения произ­ведены без систематических (одного знака) ошибок. В этом случае математические ожидания всех случайных величин одинаковы и равны истинному размеру а.

Третье требо­вание выполняется, если прибор обеспечивает определен­ную точность измерений. Хотя при этом результаты отдельных измерений различны, но рассеяние их огра­ничено.

Если все указанные требования выполнены, мы вправе применить к результатам измерений теорему Чебышева: при достаточно большом п вероятность неравенства

| (Х1 + Хя+...+Х„)/п - а |< ε как угодно близка к единице.

Другими словами, при достаточно большом числе измерений почти достоверно, что их среднее арифметическое как угодно мало отли­чается от истинного значения измеряемой величины.

Теорема Чебышева указывает условия, при ко­торых описанный способ измерения может быть приме­нен. Однако ошибочно думать, что, увеличивая число измерений, можно достичь сколь угодно большой точ­ности. Дело в том, что сам прибор дает показания лишь с точностью ± α , поэтому каждый из результатов изме­рений, а следовательно, и их среднее арифметическое будут получены лишь с точностью, не превышающей точности прибора.

На теореме Чебышева основан широко применяемый в статистике выборочный метод, суть которого состоит в том, что по сравнительно небольшой случайной выборке судят о всей совокупности (генеральной совокупности) исследуемых объектов.

Например, о качестве кипы хлопка заключают по небольшому пучку, состоящему из волокон, наудачу отобранных из разных мест кипы. Хотя число волокон в пучке значительно меньше, чем в кипе, сам пучок содержит достаточно большое количество волокон, исчисляемое сотнями.

В качестве другого примера можно указать на опре­деление качества зерна по небольшой его пробе. И в этом случае число наудачу отобранных зерен мало сравни­тельно со всей массой зерна, но само по себе оно доста­точно велико.

Уже из приведенных примеров можно заключить, что для практики теорема Чебышева имеет неоценимое значение.

2.5. Теорема Бернулли

Производится п независимых испытаний (не событий, а испытаний). В каждом из них вероятность появления события A равна р.

Возникает вопрос, какова примерно будет относительная частота появлений события? На этот вопрос отвечает теорема, доказанная Бернулли которая полу­чила название "закона больших чисел" и положила начало теории вероятностей как науке.

Теорема Бернулли. Если в каждом из п независимых испытаний вероятность р появления события А постоянна, то как угодно близка к единице вероятность того, что отклонение относительной частоты от вероятности р по абсолютной величине будет сколь угодно малым, если число испытаний достаточно велико.

Другими словами, если ε >0 сколь угодно малое число, то при соблюдении условий теоремы имеет место равенство

Р(| m / п - р| < ε)= 1

Замечание. Было бы неправильным на основании теоремы Бернулли сделать вывод, что с ростом числа испытаний относитель­ная частота неуклонно стремится к вероятности р; другими словами, из теоремы Бернулли не вытекает равенство (т/п) = р,

В теореме речь идет лишь о вероятности того, что при достаточно большом числе испытаний относительная частота будет, как угодно мало отличаться от постоянной вероятности появления события в каж­дом испытании.

Задание 7-1.

1. Оценить вероятность того, что при 3600 бросаниях кости число появления 6 очков будет не меньше 900.

Решение. Пусть x – число появления 6 очков при 3600 бросаниях монеты. Вероятность появления 6 очков при одном бросании равна p=1/6, тогда M(x)=3600·1/6=600. Воспользуемся неравенством (леммой) Чебышева при заданном α = 900

= P (x ³ 900) £ 600 / 900 =2 / 3

Ответ 2 / 3.

2. Проведено 1000 независимых испытаний, p=0,8. Найти вероятность числа наступлений события A в этих испытаниях отклонится от своего математического ожидания по модулю меньше, чем 50.

Решение. x –число наступлений события A в n – 1000 испытаниях.

М(Х)= 1000·0,8=800. D(x)=100·0,8·0,2=160

Воспользуемся неравенством Чебышева при заданном ε = 50

Р (| х-M (X) | < ε) ³ 1 - D (х) / ε 2

Р (| х-800 | < 50) ³ / 50 2 = 1-160 / 2500 = 0,936.

Ответ. 0,936

3. Используя неравенство Чебышева, оценить вероятность того, что |Х - М(Х)| < 0,1, если D (X) = 0,001. Ответ Р³0,9.

4. Дано: Р(|Х-М(Х)\ < ε) ³ 0,9; D (X )= 0,004. Используя неравенство Чебышева, найти ε. Ответ. 0,2.

Контрольные вопросы и задания

1. Назначение центральной предельной теоремы

2. Условия применимости теоремы Ляпунова.

3. Отличие леммы и теоремы Чебышева.

4. Условия применимости теоремы Чебышева.

5. Условия применимости теоремы Бернулли (закона больших чисел)

Требования к знаниям умениям и навыкам

Студент должен знать обще смысловую формулировку центральной предельной теоремы. Уметь формулировать частные теоремы для не зависимых одинаково распределенных случайных величин. Понимать неравенство Чебышева и закон больших чисел в форме Чебышева. Иметь представление о частоте события, взаимоотношениях между понятиями "вероятность" и "частота". Иметь представление о законе больших чисел в форме Бернулли.

(1857-1918), вы­дающийся русский математик

Простейший вариант Центральной предельной теоремы (ЦПТ) теории вероятностей таков.

(для одинаково распределенных слагаемых). Пусть X 1 , X 2 ,…, X n , …– независимые одинаково распределенные случайные величины с математическими ожиданиями M (X i ) = m и дисперсиями D (X i ) = , i = 1, 2,…, n ,… Тогда для любого действительного числа х существует предел

где Ф(х) – функция стандартного нормального распределения.

Эту теорему иногда называют теоремой Линдеберга-Леви .

В ряде прикладных задач не выполнено условие одинаковой распределенности. В таких случаях центральная предельная теорема обычно остается справедливой, однако на последовательность случайных величин приходится накладывать те или иные условия. Суть этих условий состоит в том, что ни одно слагаемое не должно быть доминирующим, вклад каждого слагаемого в среднее арифметическое должен быть пренебрежимо мал по сравнению с итоговой суммой. Наиболее часто используется теорема Ляпунова.

Центральная предельная теорема (для разнораспределенных слагаемых) – теорема Ляпунова . Пусть X 1 , X 2 ,…, X n , …– независимые случайные величины с математическими ожиданиями M (X i ) = m i и дисперсиями D (X i ) = , i = 1, 2,…, n ,… Пусть при некотором δ>0 у всех рассматриваемых случайных величин существуют центральные моменты порядка 2+δ и безгранично убывает «дробь Ляпунова»:

Тогда для любого действительного числа х существует предел

где Ф(х) – функция стандартного нормального распределения.

В случае одинаково распределенных случайных слагаемых

и теорема Ляпунова переходит в теорему Линдеберга-Леви.

История получения центральных предельных теорем для случайных величин растянулась на два века – от первых работ Муавра в 30-х годах 18-го века для необходимых и достаточных условий, полученных Линдебергом и Феллером в 30-х годах 20-го века.

Теорема Линдеберга-Феллера. Пусть X 1 , X 2 ,…, X n , …, – независимые случайные величины с математическими ожиданиями M (X i ) = m i и дисперсиями D (X i ) = , i = 1, 2,…, n ,… Предельное соотношение (1), т.е. центральная предельная теорема, выполнено тогда и только тогда, когда при любом τ>0

где F k (x ) обозначает функцию распределения случайной величины X k .

Доказательства перечисленных вариантов центральной предельной теоремы для случайных величин можно найти в классическом курсе теории вероятностей .

Для прикладной статистики и, в частности, для нечисловой статистики большое значение имеет многомерная центральная предельная теорема. В ней речь идет не о сумме случайных величин, а о сумме случайных векторов.

Необходимое и достаточное условие многомерной сходимости . Пусть F n обозначает совместную функцию распределения k -мерного случайного вектора , n = 1,2,…, и F λn . Необходимое и достаточное условие для сходимости F n к некоторой k -мерной функции распределения F состоит в том, что F λn имеет предел для любого вектора λ.

Приведенная теорема ценна тем, что сходимость векторов сводит к сходимости линейных комбинаций их координат, т.е. к сходимости обычных случайных величин, рассмотренных ранее. Однако она не дает возможности непосредственно указать предельное распределение. Это можно сделать с помощью следующей теоремы.

Теорема о многомерной сходимости. Пусть F n и F λn – те же, что в предыдущей теореме. Пусть F - совместная функция распределения k -мерного случайного вектора . Если функция распределения F λn сходится при росте объема выборки к функции распределения F λ для любого вектора λ, где F λ – функция распределения линейной комбинации , то F n сходится к F .

Здесь сходимость F n к F означает, что для любого k -мерного вектора такого, что функция распределения F непрерывна в , числовая последовательность F n сходится при росте n к числу F . Другими словами, сходимость функций распределения понимается ровно также, как при обсуждении предельных теорем для случайных величин выше. Приведем многомерный аналог этих теорем.

Многомерная центральная предельная теорема . Рассмотрим независимые одинаково распределенные k -мерные случайные вектора

где штрих обозначает операцию транспонирования вектора. Предположим, что случайные вектора U n имеют моменты первого и второго порядка, т.е.

М (U n ) = μ, D (U n ) = Σ,

где μ – вектор математических ожиданий координат случайного вектора, Σ – его ковариационная матрица. Введем последовательность средних арифметических случайных векторов:

Тогда случайный вектор имеет асимптотическое k -мерное нормальное распределение , т.е. он асимптотически распределен так же, как k -мерная нормальная величина с нулевым математическим ожиданием, ковариационной Σ и плотностью

Здесь |Σ| - определитель матрицы Σ. Другими словами, распределение случайного вектора сходится к k -мерному нормальному распределению с нулевым математическим ожиданием и ковариационной матрицей Σ.

Напомним, что многомерным нормальным распределением с математическим ожиданием μ и ковариационной матрицей Σ называется распределение, имеющее плотность

Многомерная центральная предельная теорема показывает, что распределения сумм независимых одинаково распределенных случайных векторов при большом числе слагаемых хорошо приближаются с помощью нормальных распределений, имеющих такие же первые два момента (вектор математических ожиданий координат случайного вектора и его корреляционную матрицу), как и исходные вектора. От одинаковой распределенности можно отказаться, но это потребует некоторого усложнения символики. В целом из теоремы о многомерной сходимости вытекает, что многомерный случай ничем принципиально не отличается от одномерного.

Пример. Пусть X 1 , … X n ,…– независимые одинаково распределенные случайные величины. Рассмотрим k -мерные независимые одинаково распределенные случайные вектора

Их математическое ожидание – вектор теоретических начальных моментов, а ковариационная матрица составлена из соответствующих центральных моментов. Тогда - вектор выборочных центральных моментов. Многомерная центральная предельная теорема утверждает, что имеет асимптотически нормальное распределение. Как вытекает из теорем о наследовании сходимости и о линеаризации (см. ниже), из распределения можно вывести распределения различных функций от выборочных начальных моментов. А поскольку центральные моменты выражаются через начальные моменты, то аналогичное утверждение верно и для них.

Предыдущая

Центральная предельная теорема (ЦПТ) представляет собой вторую группу предельных теорем, которые устанавливают связь между законом распределения суммы случайных величин и его предельной формой –нормальным законом распределения.

До сих пор мы часто говорили об устойчивости средних характеристик большого числа испытаний, говоря точнее, об устойчивости сумм вида

Однако следует обратить внимание, что величина
случайная, а значить, она имеет некоторый закон распределения. Оказывается этот замечательный факт, составляет содержание

другой группы теорем, объединяемых под общим названием центральная предельная теорема , что при досточно общих условиях закон распределенияблизок к нормальному закону.

Поскольку величина отличается от суммы

лишь постоянным множителем
то в общих чертах содержание ЦПТ может быть сформулировано следующим образом.

Распределение суммы большого числа независимых случайных величин при весьма

общих условиях близко к нормальному закону распределению.

Известно, что нормально распределенные случайные величины широко распространены на практике (не только в теории вероятностей, но и в её многочисленных приложениях). Чем такое явление объясняется? Ответ на такой «феномен» впервые был дан выдающимся русским математиком А.М. Ляпуновым в 1901году: «Центральная предельная теорема Ляпунова». Ответ Ляпунова заключается в его условии, при которых справедливо ЦПТ (см. далее).

В целях подготовки точной формулировки ЦПТ, поставим перед собой два вопроса:

1. Какой точный смысл содержит в себе утверждение о том, что «закон распределения суммы «близка» к нормальному закону?».

2. При каких условиях справедлива эта близость?

Чтобы ответить на эти вопросы, рассмотрим бесконечную последовательность случайных величин:
Составим «частичные суммы» нашей последовательности с.в.

(23)

От каждой случайных величин перейдём к «нормированной» случайной величине

(24)

Нами было установлено (см.Т.8., п.3, равенства (19)), что
.

Ответ на первый вопрос теперь можно сформулировать в виду предельного равенства

(25)
, (
,

означающего, что закон распределения с.в. с ростомприближается к нормальному закону с
. Разумеется, из того факта, что величинаимеет приближенно нормальное распределение, следует, что и величинараспределена приближенно нормально,

(26)

Формула для определения вероятности того, что сумма нескольких с.в. окажется в заданных пределах. Часто ЦПТ используют при

По поводу условий, которые следует наложить на величины
можно высказать следующие соображения. Рассмотрим разность
Получим отклонение с.вот её математического ожидания. Общий смысл накладываемых условий, на величины
заключается в том, что отдельные отклонения
должны быть равномерно малы по сравнению с суммарным отклонением
Точную формулировку этих условий, при которых справедливо предельное соотношение дал М.А. Ляпунов в 1901 году. Она заключается в следующем.

Пусть для каждой из величин
числаконечны, (заметим, чтоесть дисперсия с.в.
- «центральный момент третьего порядка» ).

Если при

,

то будем говорить, что последовательность
удовлетворяетусловию Ляпунова.

В частности, ЦПТ для случаев, когда в сумме случайных величин каждый слагаемый имеет одинаковое распределение, т.е. все и
то условие Ляпунова выполняется

Именно, на практике такой случай ЦПТ чаще всего используется. Потому, что в математической статистике любая случайная выборка с.в. имеют одинаковые распределения, поскольку «выборки» получены из одной и той же генеральной совокупности.

Сформулируем этот случай как отдельное утверждение ЦПТ.

Теорема 10.7 (ЦПТ). Пусть случайные величины
независимы, одинаково
распределены, имеют конечные математическое ожидание
и дисперсию

Тогда функция распределения центрированной и нормированной суммы этих с.в. при
стремится к функции распределения стандартной нормальной случайной величины:

(27)

На этом частном случае хорошо осмыслить, в чем находит своё проявление равномерная «малость» слагаемых,
где величинаимеет порядок, а величина
порядок
, тем самым отношение первой величины ко второй стремится, к 0.

Теперь мы в состоянии сформулировать центральную предельную теорему в форме А.М. Ляпунова.

Теорема 10.8. (Ляпунова). Если последовательность
независимых случайных величин удовлетворяет условию Ляпунова, то справедливо предельное соотношение

(28)
,

для любых
и, при этом (
.

Иными словами, в этом случае закон распределения нормированной суммы сходится к нормальному закону с параметрами

Следует отметить, что для доказательства ЦПТ А.М. Ляпунов разработал специальный метод, основанный на теорию так называемых характеристических функций. Этот метод оказался весьма полезным и в других разделах математики (см. доказательство ЦПТ например в кн. Бородин […]). В этой книге мы, о производящих функциях будем давать краткую информацию и некоторые применения к подсчёту числовых характеристик случайных величин.

Краткие сведения об ошибке измерений. Известно, что при повторении измерений одного и того же объекта, выполненными одним и тем же измерительным прибором с одинаковой тщательностью (при одинаковых условиях) не всегда достигаются одинаковые результаты. Разброс результатов измерения вызван тем, что на процесс измерения влияют многочисленные факторы, которые не возможно и не целесообразно учитывать. В этой ситуации ошибку, возникающую при измерении интересующей нас величины часто можно рассматривать как сумму большого числа независимых между собой слагаемых, каждое из которых даёт лишь незначительный вклад в образование всей суммы. Но такие случаи приводят нас как раз к условиям применимости теоремы Ляпунова и можно ожидать, что распределение ошибки измеряемой величины мало отличается от нормального распределения.

В более общем случае, ошибка является функцией большого числа случайных аргументов, каждый из которых лишь немного отличается от своего математического ожидания. Линеаризуя эту функцию, то есть, заменяя её линейной, опять приходят к предыдущему случаю. Накопленный опыт по статистической обработке результатов измерений действительно подтверждает этот факт в большинстве практических случаев.

Аналогичные рассуждения объясняют появление нормального распределения в отклонениях параметров, определяющих выпущенную готовую продукцию (изделия), от нормативных значений при массовом производстве.

Рассмотрим следующий пример.

Пример 5. Независимые случайные величиныраспределены равномерно на отрезке . Найти закон распределения с.в.
, а также вероятность того, что

Решение. Условия ЦПТ соблюдается, поэтому с.в.имеет приближенно плотность распределения

По известным формулам для м.о. и дисперсии в случае равномерного распределения находим: Тогда

На основании формулы (26), находим (с учётом табличных значений функции Лапласа)