Экологические проблемы двигателей внутреннего сгорания. Экологические проблемы, связанные с развитием энергетики. Экологическая проблема использования тепловых машин

Ступенчатое испарение является весьма эффективным методом повышения чистоты пара. Этот метод позволяет при заданном качестве питательной воды для одинаковых значений продувки получить более чистый пар, чем при одноступенчатом испарении. Оно позволяет также получить удовлетворительную чистоту пара при воде более низкого качества, что упрощает и удешевляет водоподготовку.

Метод ступенчатого испарения заключается в том, что объем барабана делиться поперечными перегородками на несколько отсеков, к каждому из которых присоединена своя группа контуров циркуляции (ступень испарения). Вся питательная вода при этом подается в первый отсек, котловая вода из которого поступает в следующий отсек, далее в последующий и т.д.

Ступенчатое испарение позволяет повысить чистоту пара при заданном качестве питательной воды и данном значении продувки. Оно позволяет также получить удовлетворительную чистоту пара при воде более низкого качества, что упрощает и удешевляет водоподготовку

Уравнение солевого баланса

Д пв С пв = Д п С п + Д пр С пр

(Д п + Д пр)С пв = Д п С п + Д пр С пр

С пр = ((Д п + Д пр)С пв + Д п С п)/ Д пр, если С п = 0, то

С пр = С кв =(Д п + Д пр)С пв / Д пр

С кв =(100 + р)С пв / р, если р = 1%

С кв =(100 + 1)С пв / 1=101С пв

Уравнение солевого баланса для 1 отсека

С кв1 =(100 + р)С пв / (n 2 + р), если р = 1%

С кв1 =(100 + 1)С пв / (20+1) = 4,8 С пв

Уравнение солевого баланса для 2 отсека

С кв2 =(n 2 + р) С кв1 / р, если р = 1%

С кв2 =(20 + 1) С кв1 / 1 = 21 С кв1 =101С пв

38 Почему схема ступенчатого испарения с выносным циклоном лучше, чем при установке перегородки внутри барабана.

Ступенчатое испарение заключается в том, что в водном объеме барабана котла создаются зоны с различным содержанием солей в котловой воде. Это достигается разделением водяного объема барабана котла с его поверхностями нагрева на отдельные отсеки. Непрерывная продувка производится из отсека с наиболее высоким солесодержанием, а отбор пара с наименьшим. Верхний барабан разделен перегородкой с отверстием (переливной трубой) на два отсека – чистый и солевой. Питательная вода поступает в чистый отсек, а солевой питается из чистого отсека через переливную трубу. В чистом отсеке образуется примерно 80% пара, в солевом 20%. Следовательно, из чистого в солевой отсек поступает 20% котловой воды, которая для чистого отсека является продувочной. Поэтому продувка чистого отсека происходит без тепловых потерь, обеспечивая низкое солесодержание котловой воды в нем.

Существенным недостатком является возможность обратного перетока воды в чистый отсек при «вялой» циркуляции. Для устранения этого недостатка применяют ступенчатое испарение с выносными циклонами, которые являются солевыми отсеками (ДКВР-20). При использовании выносных циклонов в качестве сепарационного объема разность уровней в отсеках может быть выбрана достаточной по условиям предотвращения обратного перетока воды. Поэтому схемы с выносными циклонами предпочтительны, особенно при небольшой производительности солевого отсека.

Питательная вода поступает в барабан, который служит чистым отсеком. Продувочная вода из барабана поступает в циклоны, для которых эта вода является питательной. Циклон имеет отдельный контур циркуляции и выдает пар в барабан котла. Пар проходит через сепарационное устройство чистого отсека и дополнительно очищается. Непрерывная продувка осуществляется только из циклона, если он есть. При ступенчатом испарении уменьшаются потери тепла с продувкой и повышается качество пара

Эффективность ступенчатого испарения возрастает с увеличением числа ступеней испарения, однако это нарастание с ростом числа ступеней затухает. Наибольшее распространение получили двух- и трехступенчатые схемы. При этом вторая ступень испарения может быть организована либо внутри барабана, либо вне его - в выносных циклонах. В трехступенчатой схеме обычно первую и вторую ступени выполняют в барабане, а третью - в выносном циклоне.

Ступенчатое испарение позволяет повысить чистоту пара при заданном качестве питательной воды и данном значении продувки. Оно позволяет также получить удовлетворительную чистоту пара при воде более низкого качества, что упрощает и удешевляет водоподготовку. Ступенчатое испарение позволяет также повысить экономичность паротурбинной установки вследствие уменьшения продувки без заметного снижения качества пара.

С продувочной водой. Увеличение продувки котлов, вызванное невозвратом конденсата, зависит в первую очередь от количества добавляемой химически очищенной воды, а также от давления в котлах, типа водоподготовки, наличия ступенчатого испарения. 

Нормируемый показатель без ступенчатого со ступенчатым испарением более 8 до 40 бар ДО 8 бар 

Установки с барабанными парогенераторами давлением пара бар (в барабане) при регулировании температуры перегретого пара с использованием воды из общей питательной магистрали собственного конденсата парогенератора 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 3 4 5 6 7 8 9 7 8 9 7 8 9 Перечисленные схемы обессоливания воды применяют, когда при учете всего комплекса вопросов , связанных с подготовкой добавочной воды и водным режимом, использование магнезиального обескремнивания и Ма-катиони-рования (или Н-Ыа-катиони-рования) в сочетании со ступенчатым испарением оказывается неприемлемым 

Отсутствие ступенчатого испарения 

В ряде случаев тот же эффект уменьшения работы разделения может быть достигнут путем ступенчатой конденсации например, в узле деметанизации установок получения этилена) или ступенчатого испарения сырья (например, на установках первичной перегонки нефти) и ввода его в колонну в нескольких точках. 

Отмечается также заметное влияние третьих элементов, особенно натрия и калия при их содержании, превосходящем на порядок и более содержание определяемых. элементов. Наиболее существенное уменьшение интенсивности линий в присутствии Ма и К испытывают легколетучие примеси, испаряющиеся одновременно с ними для других примесей иногда удается заметно уменьшить это влияние при ступенчатом испарении путем отгонки влияющих элементов. 

Для котлов, питающихся водой с малым содержанием кремнекислоты, можно ограничиться применением промывки пара питательной водой , не прибегая одновременно к ступенчатому испарению. 

Следует отметить, что питание этих котлов химически очищенной водой вызывает дополнительные трудности , связанные с наличием избирательного уноса кремниевой кислоты . Однако и эти трудности в настоящее время устраняются путем частичного обескремнивания добавочной воды , а ступенчатого испарения и промывки пара. 

На одной ТЭЦ котлы ТП-230 (давление пара 110 ama) со ступенчатым испарением питались с добавкой химически очищенной воды (табл. 1). На этой электростанции наблюдалось прогрессирующее снижение мощности турбин высокого давления , при этом обычные промывки проточной 

НЫМ паром из котлов ТП-230 со ступенчатым испарением. Отбор проб пара производился из середины основного барабана (чистый отсек) и из правой и левой его сторон на границе выхода пара соленых отсеков из промежуточных камер в чистый отсек. Данные фиг. 6 показывают, что концентрация кремниевой кислоты в паре соленых отсеков несколько выше, чем в паре чистых отсеков. 

На тех электростанциях высокого давления , где добавкой к питательной воде служит дистиллат испарителей, целесообразно оборудовать котлы устройствами ступенчатого испарения с солеными отсеками в виде выносных циклонов . Пар этих циклонов целесообразно промывать котловой водой чистых отсеков

    Устройства отбора проб котловой воды устанавливают на линиях непрерывной продувки, а при наличии в котле ступенчатого испарения также и в чистом отсеке. При наличии в котлах с внутрибарабанными устройствами ступенчатого испарения низкой кратности концентрации солей 

Если во время опытов броски отсутствовали, но солесодержание пара оказалось выше допустимых норм , то чистоту пара определяют вновь при более низком солесодержании котловой воды . При этом может потребоваться проведение нескольких длительных опытов со снижением солесодержания котловой воды в каждом опыте ступенями на 60-.70 жг/кг в чистых отсеках котлов со ступенчатым испарением. 

Пример 3. Определить потери тепла с невозвращенным конденсатом в процентах тепла пара , расходуемого на теплопотребляющие агрегаты, для следующих условий насыщенный пар поступает из отопительно-производственной котельной , оборудованной котлами давлением в кгс1см без ступенчатого испарения тепло продувочной воды котлов используется в сепарато-ре и теплообменнике (i np=40 ккал1кг). 

Последуюш ее успешное применение паронромывочных устройств в однобарабанных котлах высокого давления типа ПК-19 и ПК-20 опровергло эти предположения. Котел ПК-19 снабжен барабаном внутренним диаметром 1500 мм и оборудован устройствами для ступенчатого испарения с выносными циклонами . Суммарная производительность соленых отсеков равна 20% (II ступень 12%, III ступень 8%). Весь вырабатываемый пар пропускается через паропромывочные устройства , расположенные в чистом отсеке барабана (см. фиг. 8). 

Применение на котле ТП-230 3-ступенчатого испарения и размыва пены (производительность соленых отсеков 17%) с

Беляков И. И., Новиков И. И., Тарасов Б. А.

Ступенчатое испарение было предложено в 30-е годы как метод получения чистого пара путем организации в барабане котла отсеков с различным солесодержанием котловой воды. При этом в “чистом” отсеке генерируется основное количество пара, содержание примесей в котором значительно меньше, чем в паре, полученном из солевого отсека, а после смешения обоих потоков обеспечивается качество пара, допустимое по условиям надежной работы пароперегревателей и турбин.
Данный способ достаточно эффективен в котлах низкого давления при наличии простейшей химводоподготовки и невысоких требований к качеству пара.
Имеется большое число литературных источников, где рассматриваются преимущества внут- рикотловых схем барабанных котлов со ступенчатым испарением только с точки зрения обеспечения требуемого качества пара.
В показано, что при наличии промывки пара, которая стала широко применяться в 50-е годы, влияние ступенчатого испарения на качестве пара практически не отражается. В связи с неизбежным повышением требований к качеству питательной воды с ростом давления вследствие увеличения примесей, особенно кремнекислоты в паре, в ряде работ рассматривался вопрос о целесообразности применения ступенчатого испарения в котлах высокого давления.
В настоящее время, даже при применении неполного обессоливания питательной воды, на ТЭС с котлами высокого давления (ВД) нет проблем по качеству пара как при ступенчатом, так и при одноступенчатом испарении (ТП-100, ВПГ-250, ТПЕ-214 и все зарубежные котлы, в том числе работающие в России котлы среднего давления).
Известно, что надежность испарительных поверхностей нагрева в значительной мере определяется интенсивностью формирования внутренних отложений. В связи с этим следует рассмотреть особенности организации водно-химического режима (ВХР) котловой воды барабанных котлов при наличии ступенчатого испарения.
Ежегодно отмечается значительное число повреждений экранных труб барабанных котлов (отдулины, коррозия) и в то же время нет таковых на прямоточных котлах высокого и сверхкритического давления (СКД). Это связано с тем, что при одинаковом качестве питательной воды в котловой воде барабанных котлов, охлаждающей экраны, содержится значительно большее количество растворимых примесей (при 1% продувки в 100 раз больше, чем в питательной воде), чем в прямоточных, что создает более благоприятные условия для образования отложений и коррозии.
Растворимые примеси солей Са, Mg, Na, S1O2 и других выводятся из барабанного котла с непрерывной продувкой. Поэтому требования к качеству котловой воды, а, следовательно, и питательной, по содержанию растворимых примесей для барабанных котлов могут быть значительно ниже,
чем для прямоточных, в которых все примеси остаются в тракте.
По содержанию оксидов железа закономерность иная, так как основная их часть осаждается на внутренней поверхности экранных труб, а не выводится с продувкой. С ростом давления ужесточаются требования к качеству котловой воды, а следовательно, и питательной, по условиям предотвращения коррозии металла и образования внутренних отложений в экранных трубах.
Тем не менее, при трехступенчатом обессоливании подпиточной или даже при установке блочных обессоливающих установок (БОУ), как на ТЭС с прямоточными котлами, в барабан котла вводится специальный реагент Na3РО4 для связывания солей жесткости и NaOH для поддержания pH = 9,5 -:- 11,0.
При применении котлов со ступенчатым испарением единая норма поддержания избытка РО4 в котловой воде в принципе невозможна из-за наличия солевой кратности в 5 - 10 раз и более между чистым и солевым отсеками.
В течение последних 30 лет отмечается тенденция к всемерному снижению избытка фосфатов в чистом отсеке с 20 - 30 до 1 - 2 мг/кг Но даже при таком избытке фосфатов концентрация их в солевом отсеке может составлять более 10 - 15 мг/кг, а это способствует интенсификации образования внутренних железофосфатных отложений и возникновению “хайд-аута” (прятание солей). Переход на пониженное фосфатирование приводит к изменению химсостава отложений, повышается содержание железа в них до 80% и более (обычно 40 - 50%), отсутствуют фосфаты и натрий, что способствует повышению их теплопроводности и уменьшению химической агрессивности.
В отмечается повышенный вынос с паром хлоридов, в зависимости от концентрации фосфатов в котловой воде, что сказывается на повышении агрессивности первичного конденсата в проточной части турбин, а, следовательно, на снижении надежности их лопаточного аппарата и дисков. Данное обстоятельство также подтверждает целесообразность минимального фосфатирования котловой воды.
Существует также точка зрения, что при наличии трехступенчатого обессоливания питательной воды вообще возможен отказ от применения фосфатирования. Однако при отсутствии БОУ весьма проблематично поддерживать требуемую жесткость питательной воды (в основном из-за прососов в конденсаторах турбин), это может привести к образованию низкотеплопроводных кальциевых отложений и резкому возрастанию вероятности перегрева и внутренней коррозии экранных труб при отсутствии фосфатирования котловой воды.
Перевод котлов в порядке эксперимента на бесфосфатный режим приводил к массовым повреждениям экранных труб через 5-7 тыс. ч. Даже в режиме минимального фосфатирования вклад фосфатов в общее солесодержание котловой воды весьма значителен и практически равен количеству всех остальных примесей.
Поддержание избытка фосфатов выше стехиометрического значения может создать условия для образования на внутренней поверхности экранных груб железофосфатных отложений и интенсификации коррозии металла.
Применение ступенчатого испарения при одинаковой продувке котловой воды обеспечивает вывод такого же количества примесей из тракта котла, что и при одноступенчатом испарении, однако количество вводимых в барабан фосфатов в котле со ступенчатым испарением во много раз выше.
Вопрос о целесообразности применения в котлах ступенчатого испарения высокого давления неоднократно обсуждался в печати. Учитывая неоднозначность точек зрения различных организаций по данному вопросу на техническом совещании в РАО “ЕЭС России” было принято решение о проведении на ряде котлов испытаний по проверке эффективности перевода их на одноступенчатое испарение.
В течение 1999 - 2000 гг. НПО ЦКТИ совместно со Свердловэнерго проводил испытания котла ТГМ-96 Среднеуральской ГРЭС. Котел ТГМ-96 изготовления таганрогского завода “Красный котельщик” имеет параметры пара: давление в барабане 15,5 МПа, температура перегретого пара 560°С и проектная паропроизводительность 480 т/ч. Регулирование перегрева пара осуществляется впрыском собственного конденсата. Топочная камера оснащена шестью горелками, установленными в два яруса на фронтовой стене, внутренний диаметр барабана котла 1800 мм и длина цилиндрической части 17 700 мм.
Проектная внутрикотловая схема имеет двухступенчатое испарение и промывку пара, солевые отсеки выполнены путем установки в торцах барабана котла специальных перегородок, что позволяет простейшим способом осуществить перевод его на одноступенчатое испарение, удалив указанные перегородки.
Перевод котлов, имеющих солевые отсеки с выносными циклонами, также возможен, однако выполнить это несколько сложнее, так как для этого требуется произвести переключение водоопускных труб .
В процессе эксплуатации котлы ТГМ-96 неоднократно подвергались реконструкции в части изменения компоновки и конструкции горелок. В настоящее время паропроизводительность котла повышена до 520 т/ч.
За время эксплуатации котлов типа ТГМ-96 СУГРЭС практически не было случаев нарушения нормативных показателей качества пара, однако, в 70-е годы отмечались многочисленные коррозионные повреждения экранных труб чистых отсеков из-за неправильного регламента фосфатирования котловой воды, рекомендованного в то время наладочными организациями (применение кислых фосфатов, низкая щелочность котловой воды, несвоевременное проведение химических промывок).

Жесткость, мкг-экв/дм3

О 2, мкг/дм3

χ, мкСм/см

ΝΗ3, мкг/дм3

Си, мкг/дм3

Fe, мкг/дм3

SiО2, мкг/дм3

N2H2, мкг/дм3

На одноступенчатое испарение котел ТГМ-96 был переведен в декабре 1998 г. Показатели качества котловой воды: за 1999 г. приведены далее.
В таблице представлены среднегодовые данные за 1999 г. качества котловой воды и пара для котла ст. № 9, имеющего двухступенчатое испарение и ст. № 10, переведенного на одноступенчатое испарение.
В котле ст. № 10 данные по чистому (ч.о) и солевому отсекам (с.о) соответствуют отборам проб котловой воды из центра барабана (ч.о) и с торцов (с.о).
Как следует из данных таблицы, качество питательной воды по всем показателям соответствует нормам ПТЭ.
Содержание кремнекислоты SiО2 и натрия в паре значительно меньше нормативных значений (для SiО2 = 10 мкг/кг, Na = 10 мкг/кг) и практически одинаково для котлов с двухступенчатым, одноступенчатым испарением.
Таким образом, перевод котлов на одноступенчатое испарение не отражается на качестве пара при одинаковом значении непрерывной продувки. Концентрация фосфатов в продувочной воде котла с одноступенчатым испарением примерно в 8 раз меньше, чем в котле с двухступенчатым испарением при поддержании равных значений pH котловой воды чистого отсека и котловой воды в барабане котла с одноступенчатым испарением.
Так как дозировка смеси фосфатов и едкого натра осуществлялась из общего банка, возникли некоторые затруднения в обеспечении подачи насосом-дозатором щелочнофосфатной смеси в барабан котла с одноступенчатым испарением (ст. № 10).
В котле с одноступенчатым испарением обеспечивается оптимальное соотношение гидратной и общей щелочностей, равное Щфф/Щобщ = 0,5, что соответствует полной нейтрализации потенциально кислых соединений в котловой воде .
Эффект непропорционального соотношения солесодержания продувочной воды в котлах с одно- и двухступенчатым испарением свидетельствует о том, что наибольший вклад в ионный состав котловой воды вносит щелочнофосфатная смесь, вводимая в барабан, концентрация которой в котловой воде котла со ступенчатым испарением значительно больше, чем в котле с одноступенчатым испарением, так как в соответствии с солевым балансом солесодержание продувочной воды определяется только величиной продувки и должно быть одинаковым для котлов с любым числом ступеней испарения.
Таким образом, перевод котлов на одноступенчатое испарение позволяет упростить эксплуатацию, снизить расход фосфатов, что уменьшает потенциальную вероятность образования железо- фосфатных отложений, а, следовательно, и возникновения подшламовой коррозии. Пониженная концентрация фосфатов в котловой воде, по-видимому, способствует снижению агрессивности первичного конденсата , что, вероятно, вызвано уменьшением выноса хлоридов, о чем свидетельствует опыт эксплуатации турбин, работающих в блоке с барабанными котлами, имеющими одноступенчатое испарение.

Список литературы

  1. Ромм Э. И. Химический перекос и ступенчатое испарение в генераторах пара: Автореф. дис. на соиск. учен, степени доктора техн. наук. М., 1938.
  2. Маргулова Т. X. Методы получения чистого пара. - ГЭИ 1955’
  3. Стырикович М. А., Маргулова Т. X. О рациональной воднохимической схеме барабанных котлов 140 атм при конденсатном питании. - Электрические станции, 1965, № 2.
  4. Маргулова Т. X, Прохоров Ф. Т. Анализ ступенчатого испарения при давлении 155 кгс/см2. - Теплоэнергетика, 1973, №6.
  5. Маргулова Т. X, Карасева М. А. Опыт перевода котла ТП-100 на режим одноступенчатого испарения. - Теплоэнергетика, 1973, №6.
  6. Лукин С. В., Зройчикова Т. В., Козлов Ю. В. О целесообразности изменения внутрикотловой схемы барабанных котлов ТЭЦ. - Энергетик, 1966, № 3.
  7. Холщев В. В. Еще раз о ступенчатом испарении. - Энергетик, 1998, № 4.
  8. Мартынова О. И. Влияние водно-химического режима барабанных котлов на некоторые характеристики пара. - Теплоэнергетика, 1998, № 2.
  9. Беляков И. И. О ступенчатом испарении котлов высокого давления. - Энергосбережение и водоподготовка, 2001, №2.
  10. Василенко Г В., Сутоцкий Г. П. О некоторых показателях качества котловой воды барабанных котлов высокого давления. - Электрические станции, 2001, № 2.

Cтраница 2


В настоящее время высокосернистые нефти перегоняют на установках АВТ, запроектированных для переработки сернистых нефтей. Атмосферная перегонка их производится по схеме двухкратного испарения. Ниже дается краткая характеристика перегонки высокосернистой нефти типа арланской.  

Схема атмосферной части комбинированной установки ГК-3.  

Наряду с числом тарелок и их конструкцией существенное влияние на фракционирующую способность колонны оказывает кратность орошения в отдельных ее секциях, а также схема перегонки. Опыт эксплуатации показал, что применение схемы двухкратного испарения целесообразно при наличии в перерабатываемой нефти больших количеств растворенных газов (порядка 1 - 3 вес.  

Атмосферная часть установки на заводе АВТ в Уайтинге (США.  

Большой интерес представляет крупнейшая установка АВТ в Делавэре (США), на которой перерабатывают около 20000 т / сутки высокосернистой нефти и получают легкий бензин, лигроин, легкий и тяжелый газойль и остаток вакуумной колонны - гудрон. Атмосферная часть этой установки работает по схеме двухкратного испарения. В первой колонне выделяются наиболее легкие фракции, вторая колонна является основной для получения остальных компонентов светлых нефтепродуктов.  

На установках АВТ, работающих по схеме двухкратного испарения, количество тарелок в колоннах [ в первой 14 тарелок, во второй (основной) 23 ] не обеспечивало удовлетворительного фракционирования.  

Процесс осуществляют в первой ректификационной колонне. Как на всех установках АВТ, работающих по схеме двухкратного испарения, с верха первой ректификационной колонны отбирают фракции, выкипающие до 85 С.  

Отмечено, что композиционные конденсаты, полученные по схемам одновременного испарения нескольких разноименных катодов и испарения как одно -, так и многокомпонентных катодов, дают слоистые многокомпонентные системы. Конденсаты, полученные при испарении в вакуумное пространство только катодов с жесткой регламентацией элементов, входящих в их состав, обеспечивают монолитные покрытия с ярко выраженным столбчатым строением. Установлена качественная корреляционная связь между составами многокомпонентных сплавленных катодов и композиционных покрытий.  

С разделяется на узкие фракции в блоке вторичной перегонки широкой бензиновой фракции 14, работающем по схеме, аналогичной схеме предыдущей установки. Принципиально новым (в отличие от установки, работающей по схеме двухкратного испарения) является работа электродегидраторов при абсолютном давлении 16 кгс / см2 и 150 - 155 С.  

Топочная камера призматическая полностью экранирована трубами с наружным диаметром 60 мм, шаг которых 64 мм. Нижняя часть экранной поверхности образует так называемую холодную воронку, по откосам которой частички шлака в твердом виде скатываются вниз, в шлаковый комод. Схема испарения двухступенчатая, с промывкой пара питательной водой. Первая ступень испарения включена непосредственно в барабан котла, второй ступенью служат выносные паросепарационные циклоны, включенные в схему циркуляции средних боковых блоков экрана.  

В июне 1976 г. по этой причине на ТЭЦ целлюлозно-бумажного комбината произошла авария на паровом котле типа Б КЗ-220-100 ф паропроизводительно-стью 220 т / ч с параметрами пара 100 кгс / сма и 540 С, изготовленном на Барнаульском котлостроительном заводе в 1964 г. Котел однобарабанный с естественной циркуляцией, выполнен по П - образной схеме. Топочная камера призматическая полностью экранирована трубами с наружным диаметром 60 мм, шаг которых 64 мм. Нижняя часть экранной поверхности образует так называемую холодную воронку, по откосам которой частички шлака в твердом виде скатываются вниз, в шлаковый комод. Схема испарения двухступенчатая, с промывкой пара питательной водой. Первая ступень испарения включена непосредственно в барабан котла, второй ступепью служат выносные паросепарационные циклоны, включенные в схему циркуляции средних боковых блоков экрана.  

Вся серия котлоагрегатов ДКВр на давление пара 14 и 24 кгс / см2 имеет общую конструктивную схему - экранированную топочную камеру, продольное размещение барабанов и раз-зитый котельный пучок с коридорным рас-лоложением кипятильных труб. Котлоагрегаты разной производительности отличаются по длине и ширине. Движение газов в котлоагрегатах - горизонтальное поперечное с несколькими поворотами, за исключением котлоагрегатов ДКВр-20, в которых применена пролетная схема движения газов. Схема испарения одноступенчатая с внутрибарабанными сепарационными устройствами; у ДКВр-10-39 и ДКВр-20 - двухступенчатая (первая ступень испарения - внутрибарабанные сепарационные устройства, вторая - выносные циклоны) с питанием контуров испарения второй ступени из нижнего барабана. Котлоагрегаты ДКВр могут работать на всех видах твердого топлива, включая фрезерный торф и древесные отходы, а также на жидком и газообразном топливе.  

Первоначальная проектная мощность этой установки была определена в 1 млн. т / год малосернистой нефти. Однако в начале строительства было принято решение об увеличении ее мощности до 1 5 млн. т / год без существенного изменения размеров основной аппаратуры. Установка работает по схеме двухкратного испарения - с предварительным выделением легких бензиновых компонентов. Перепад температур в колонне регулируется снятием избыточного тепла тремя циркулирующими потоками. Схема атмосферной перегонки на данной установке аналогична схеме типовой установки АВТ производительностью 2 млн. т / год.  

Обезвоженная и обессоленная нефть из емкости двумя потоками прокачивается в тешюобменные аппараты, где она нагревается за счет горячих потоков атмосферной и вакуумной части и крекинга соответственно до 134 и 172 С. Затем оба потока соединяются и при 150 С поступают в теплообменники котельного топлива. Выходя из них при 210 С, нефть подается в первую ректификационную колонну. Блок атмосферно-ва-куумной перегонки нефти и мазута работает по схеме двухкратного испарения. Балансовый избыток верхнего продукта первой ректификационной колонны направляется в блок стабилизации, работающий при абсолютном давлении 5 кгс / см2 и температуре низа 124 и верха 60 С. В основной ректификационной колонне с верха отбирается фракция 85 - 140 С; в виде боковых погонов выводятся фракции 140 - 180, 180 - 240, 240 - 300 и 300 - 350 С. Для получения четырех боковых фракций колонна оборудована 51 тарелкой и оснащена четырьмя отпарными колоннами.  

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

«Саратовский государственный технический университет им.Ю.А.Гагарина»

Профессионально-педагогический колледж.

Реферат на тему: «Проблемы экологии, связанные с использованием тепловых машин»

Работу выполнила

студентка группы ЗЧС-912

Петрова Олеся

Введение

5. Охрана окружающей среды от тепловых выбросов

Заключение

выброс тепловой атмосфера топливо

Введение

Существует неразрывная взаимосвязь и взаимозависимость условий обеспечения теплоэнергопотребления и загрязнения окружающей среды. Взаимодействие этих двух факторов жизнедеятельности человека и развитие производственных сил привлекает постепенное внимание к проблеме взаимодействия теплоэнергетики и окружающей среды.

На ранней стадии развития теплоэнергетики основным проявлением этого внимания был поиск в окружающей среде ресурсов, необходимых для обеспечения теплоэнергопотребления и стабильного теплоэнергоснабжения предприятий и жилых зданий. В дальнейшем границы проблемы охватили возможности более полного использования природных ресурсов путём изыскания и рационализации процессов и технологии, добычи и обогащения, переработки и сжигания топлива, а также совершенствования теплоэнергетических установок.

С ростом единичных мощностей блоков, теплоэнергетических станций и теплоэнергетических систем, удельных и суммарных уровней теплоэнергопотребления, возникла задача ограничения загрязняющих выбросов в воздушный бассейн, а также более полного использования их естественной рассеивающей способности.

На современном этапе проблема взаимодействия теплоэнергетики и окружающей среды приобрела новые черты, распространяя своё влияние на громадные объемы атмосферы Земли.

Ещё более значительные масштабы развития теплоэнергопотребления в обозримом будущем предопределяют дальнейший интенсивный рост разнообразных воздействий на атмосферу.

Принципиально новые стороны проблемы взаимодействия теплоэнергетики и окружающей среды возникли в связи с развитием ядерной теплоэнергетики.

Важнейшей стороной проблемы взаимодействия теплоэнергетики и окружающей среды в новых условиях является всё более возрастающее обратное влияниеопределяющая роль условий окружающей среды в решении практических задач теплоэнергетики (выбор типа теплоэнергетических установок, дислокация предприятий, выбор единичных мощностей энергетического оборудования и многое другое).

1. Общая характеристика теплоэнергетики и её выбросов

Теплоэнергетика является одной из основных составляющих энергетики и включает в себя процесс производства тепловой энергии, транспортировки, рассматривает основные условия производства энергии и побочные влияния отрасли на окружающую среду, организм человека и животных.

Как отмечает Ю.В. Новиков, по суммарным выбросам вредных веществ в атмосферу теплоэнергетика занимает первое место среди отраслей промышленности.

Если паровой котёл - «сердце» электростанции, то вода и водяной пар - её «кровь». Они циркулируют внутри установок, крутят лопатки турбин. Так вот эту «кровь» удалось сделать суперкритической, в несколько раз увеличив её температуру и давление. Благодаря этому КПД электростанций существенно вырос. В таких экстремальных условиях обычные металлы выжить не могли. Потребовалось создать принципиально новые, так называемые конструкционные материалы для сверхкритических температур.

Львиная доля электроэнергии вырабатывается в мире на тепловых и атомных станциях, где рабочим телом служит водяной пар. Переход на его сверхкритические параметры (температуру и давление) позволил повысить КПД с 25 до 40%, что дало огромную экономию первичных энергоресурсов - нефти, угля, газа - и в короткий срок многократно повысило энерговооружённость нашей страны. Это стало реальным во многом благодаря основополагающим исследованиям А.Е. Шейндлина теплофизических свойств водяного пара в сверхкритических состояниях. Параллельно с ним многие учёные мира вели разработки в этом направлении, но решение удалось найти отечественному энергетику. Им разработаны не имевшие аналогов в мире методики и экспериментальные установки. Результаты расчётов А.Е. Шейндлина стали основой для строительства электростанций во многих странах. В 1961 г. Шейндлин создал Институт высоких температур, который стал одним из ведущих научных центров РАН.

Международный комитет по присуждению премии «Глобальная энергия» определил трёх лауреатов. Премиальный фонд 2004 г. в размере 900 тыс. долларов был поделен между ними. Премия «За разработку физико-технических основ и создание энергетических реакторов на быстрых нейтронах» присуждена академику РАН Федору Нитенкову и профессору Леонарду Дж. Коху (США). Премии «За фундаментальные исследования теплофизических свойств веществ при предельно высоких температур для энергетики» удостоен академик РАН Александр Шейндлин.

2. Воздействие на атмосферу при использовании твердого топлива

Предприятия угольной промышленности оказывают существенное отрицательное влияние на водные и земельные ресурсы. Основные источники выброса вредных веществ в атмосферу - промышленные, вентиляционные и аспирационные системы шахт и обогатительных фабрик и др.

Загрязнение воздушного бассейна в процессе открытой и подземной добычи угля, транспортировки и обогащения каменного угля вызвано буровзрывными работами, работой двигателей внутреннего сгорания и котельных, пылением угольных складов и породных отвалов и другими источниками.

В 2002 году объём выбросов вредных веществ в атмосферу от предприятий отрасли возрос относительно 1995 года на 30 процентов, главным образом, из-за вновь учитываемых выбросов метана от вентиляционных и дегазационных установок на шахтах.

По объёму выбросов вредных веществ угольная отрасль занимает шестое место в промышленности Российской Федерации (вклад на уровне 5%). Степень улавливания и обезвреживания загрязняющих веществ крайне низка (9,1%), при этом не улавливаются углеводороды и ЛОС.

В 2002 году выросли выбросы углеводородов (на 45,5 тыс. т), метана (на 40,6 тыс. т.), сажи (на 1,7 тыс. т), ряда других веществ; отмечено снижение выбросов ЛОС (на 5,2 тыс. т), диоксида серы (на 2,8 тыс. т), твёрдых веществ (на 2,2 тыс. т).

Зональность угля, поступающего от отдельных поставщиков на ТЭС, превышает 79% (в Великобритании она в соответствии с законодательством - 22%, в США - 9%). И увеличение выброса летучей золы в атмосферу продолжается. Между тем электрофильтры для золоулавливания производит лишь один Семибратовский завод, удовлетворяя ежегодные потребности в них не более чем на 5%.

ТЭС, работающие на твёрдом топливе, интенсивно выбрасывают в атмосферу продукты угля и сланцев, содержащих до 50% негорючей массы и вредных примесей. Удельный вес ТЭС в электробалансе страны составляет 79%. Они потребляют до 25% добываемого твёрдого топлива и сбрасывают в среду обитания человека более 15 млн. т золы, шлаков и газообразных веществ.

В США каменный уголь продолжает оставаться основным видом топлива для электростанций. К концу столетия все электростанции там должны стать экологически чистыми, предстоит повысить КПД до 50% и более (сейчас 35%). Чтобы ускорить внедрение технологий очистки угля, ряд угольных, энергетических и машиностроительных компаний при поддержке федерального правительства разработал программу, на реализацию которой потребуется 3,2 млрд. долларов. В течение 20 лет только в США новые технологии будут внедрены на существующих электростанциях общей мощностью 140 тыс. МВт и на новых переоборудуемых электростанциях общей мощностью 170 тыс. кВт.

Экологические технологии сжигания топлива . Традиционный диффузионный способ сжигания даже высококачественных углеводородных топлив приводит к загрязнению окружающей атмосферы главным образом оксидами азота и канцерогенными веществами. В связи с этим необходимы экологически чистые технологии сжигания этих видов топлива: с высоким качеством распыления и смешения с воздухом до зоны горения и интенсивным сжиганием обедненной, предварительно перемешанной, топливно-воздушной смеси, оптимальная с термохимической точки зрения камера сжигания (КС) должна обеспечивать предварительное испарение топлива, полное и равномерное перемешивание его паров с воздухом и устойчивое сжигание обедненной горючей смеси при минимальном времени её пребывания в зоне горения.

В этом плане гораздо эффективнее традиционного диффузного гибридный способ сжигания, представляющий комбинацию диффузной зоны с каналом для предварительного испарения и перемешивания топлива с воздухом.

Разработаны технологии сжигания угля в котлах с циркулирующим кипящим слоем, где достигается эффект связывания экологически опасных примесей серы. Эта технология внедрена при реконструкции Шатурской, Черепетской и Интинской ГРЭС. В Улан-Удэ строится ТЭЦ с современными котлами. Институтом «Теплоэлектропроект» разработана технология газификации угля: сжигается не сам уголь, а выделенный из него газ. Это экологически чистый процесс, но пока он, как и любая новая технология, дорог. В будущем будут внедрены технологии газификации даже нефтяного кокса.

При сжигании угля в псевдосжиженном слое выброс в атмосферу соединений серы уменьшается на 95%, а окислов азота - на 70%.

Очистка дымовых газов. Для очистки дымовых газов применяется известково-каталитический двухступенчатый метод с получением гипса, основанный на поглощении диоксида серы известняковой суспензией в две ступени контакта. Подобная технология, как свидетельствует мировой опыт, наиболее распространена на тепловых электростанциях, сжигающих жидкое и твёрдое топливо с различным содержанием серы в нём, и обеспечивает степень очистки газов от окислов серы не ниже 90-95%. Большое количество отечественных электростанций работают на топливе со средним и высоким содержанием серы в нем, поэтому этот метод должен получить широкое распространение в отечественной энергетике. У нас в стране практически отсутствовал опыт очистки дымовых газов от сернистого ангидрида мокрым известняковым способом.

На долю ТЭС приходится около 70% выбросов оксидов азота в атмосферу. В США и Японии методы очистки дымовых газов от оксидов азота нашли широкое применение, в этих странах работает более 100 установок, в которых используется метод селективного каталитического восстановления оксидов азота аммиаком на платино-ванадиевом катализаторе, правда, стоимость этих установок очень высока, а срок службы катализатора - незначителен.

В последние годы в США фирмой «Genesis Research of Arizona» разработана технология получения так называемого самоочищающегося угля. Такой уголь лучше горит, и при его использовании в дымовых газах оказывается на 80% меньше диоксида серы, дополнительны же расходы составляют лишь часть затрат на установку скрубберов. Технология получения самоочищающегося угля включает две стадии. Первоначально от угля посредством флотации отделяются примеси, затем уголь размалывается в порошок и добавляется в шлам, при этом уголь всплывает и примеси тонут. На первой стадии удаляется почти вся неорганическая сера, а органическая остается. На второй стадии порошкообразный уголь соединяется с химическими веществами, название которых является коммерческой тайной, а затем уплотняется в комки величиной с виноградину. При сгорании эти химические вещества вступают в реакцию с органической серой, причем сера надежно изолирована, что исключает ее попадание в атмосферу. Комки такого модифицированного угля можно транспортировать, хранить и применять как обычный уголь.

Парогазовые системы. Эффективная комплексная система, обеспечивающая не только улавливание вредных примесей из дымовых газов ТЭС, но и одновременно снижающих примерно на 20% удельный расход топлива на производство электроэнергии, разработана в Энергетическом институте Г.Н. Кржижановского. Суть ее в том, что перед сжиганием в топке паровых котлов ТЭС уголь газифицируют, очищают от твердых (содержащих вредные вещества) примесей и направляют в газовые турбины, где продукты сгорания с температурой 400-500 градусов Цельсия сбрасываются в обычные паровые котлы. Подобные парогазовые системы широко используют энергетики ряда стран для уменьшения выброса в атмосферу.

Глубокая комплексная переработка угля. За рубежом интенсивно ведутся работы по отработке технологий и оборудования газификации угля для полного обеспечения промышленности в горючих газах, синтез-газе и водороде. В Нидерландах введена в действие демонстрационная установка кислородной газификации угля для энергоблока мощностью 250 МВт. Намечен ввод четырех подобных установок от 175 до 330 МВт в Европе, десяти установок от 100 до 500 МВт в США и одной установки мощностью 400 МВт в Японии. Процессы газификации при высоких температурах и давлениях дают возможность перерабатывать угли широкого ассортимента. Известны исследования по высокоскоростному пиролизу и каталитической газификации, реализация которых сулит огромные выгоды.

Необходимость углубления переработки угля продиктована предшествующим ходом развития тепло- и электроэнергетики: наилучшие результаты достигаются при комбинированной переработке угля в электричество и тепло. Качественный скачок в использовании угля связан с его комплексной переработкой в рамках гибких технологий. Решение этой сложной проблемы потребует новых технологических установок для энергохимических комплексов, которые обеспечат повышение экономичности ТЭС, снижение капитальных удельных затрат и кардинальное решение вопросов экологии.

3. Влияние на атмосферу при использовании жидкого топлива

В своё время нефть потеснила уголь и вышла на первое место в мировом энергетическом балансе. Однако это чревато определёнными экологическими проблемами.

Так, в 2002 году российские предприятия отрасли выбросили в атмосферу 621 тыс. т загрязняющих веществ (твёрдые вещества, диоксид серы, оксид углерода, оксиды азота и др.). Сточные воды в объёме до 1302.6 млн мі сбрасываются в поверхностные водные объекты и на рельеф.

При сжигании жидких топлив (мазута) с дымовыми газами в атмосферный воздух поступают сернистый и серный ангидриды, оксиды азота, газообразные и твёрдые продукты неполного сгорания топлива, соединения ванадия, солей натрия, а также вещества, удаляемые с поверхности котлов при чистке. С экологических позиций жидкое топливо обладает более «гигиеническими» свойствами: отпадает проблема золоотвалов, которые занимает значительные территории, исключают их полезное использование и являются источником постоянных загрязнений атмосферы и районе станции из-за уноса золы с ветрами. В продуктах сгорания жидких видов топлива отсутствует летучая зола. Применение двухтопливных гибридных камер сгорания вместо традиционных однозонных диффузионных КС с использованием частичного замещения части углеводородного топлива водородом (6% от массы углеводородного топлива) снижает расход нефтяного топлива на 17-20%, уровни выброса частиц сажи - на порядок, бензопирена - в 10-15 раз, оксидов азота - в 5 раз).

В большинстве стран запрещено сжигание нефтяного топлива с сернистостью выше 0,5%, в России же половина солярки не укладывается в этот норматив, а сернистость котельного топлива достигает 3%.

Сжигать нефть, говоря словами Д.И. Менделеева, все равно, что топить печь ассигнациями. Поэтому доля использования жидкого топлива в энергетике за последние годы существенно снижается. Зарождающаяся тенденция будет в дальнейшем усиливаться в связи с существенным расширением использования жидкого топлива в других областях народного хозяйства: на транспорте, в химической промышленности, в том числе в производстве пластмасс, смазочных материалов, предметов бытовой химии и т.д. К сожалению, используется нефть не лучшим образом. В 1984 году при мировом производстве нефтепродуктов 2750 млн. т бензина получено 600 млн. т керосина и реактивного топлива - 210, дизельного топлива - 600, мазута - 600 млн. т. Хороший пример ресурсосбережения показала Япония, которая стремится максимально снизить зависимость страны от импорта нефти. Для решения этой важной экономической задачи на протяжении последних 20 лет прилагались просто гигантские усилия. Приоритетное внимание получила энергосберегающая технология. И как итог проделанной работы - для производства того же объёма валового национального продукта Японии сегодня требуется в два раза меньше нефти, чем в 1974 году. Несомненно, нововведения благоприятно сказались на улучшении экологической обстановки.

4. Влияние на атмосферу при использовании природного газа

По экологическим критериям природный газ - наиболее оптимальное топливо. В продуктах сгорания отсутствуют зола, копоть и такие канцерогены, как бензопирен.

При сжигании газа единственным существенным загрязнителем атмосферы остаются окислы азота. Однако выброс окислов азота при сжигании на ТЭС природного газа в среднем на 20 процентов ниже, чем при сжигании угля. Это объясняется не свойствам самого топлива, а особенностями процессов их сжигания. Коэффициент избытка воздуха при сжигании угля ниже, чем при сжигании природного газа. Таким образом, природный газ - наиболее экологически чистый вид энергетического топлива и по выделению оксидов азота в процессе горения.

Изменения в окружающей среде при транспортировке газа. Современный магистральный трубопровод представляет собой сложное инженерное оборудование, которое помимо линейной части (собственно трубопровода) включает в себя установки для подготовки нефти или газа к перекачке, насосные и компрессорные станции, резервуарные парки, линии связи, систему электрохимической защиты, дороги, идущие вдоль трассы, и подъезды к ним, а также временные жилые посёлки эксплуатационников.

Например, общая протяженность газопроводов в России составляет примерно 140 тыс. км. Например, на территории Удмуртской Республики проходят 13 магистральных трубопроводов, доля выбросов которых составляет более 30% от соответствующего объёма по республике. Выбросы, главным образом метана, распределены по длине газопроводов, в основном вне пределов населённых пунктов.

Существенному загрязнению подвергается атмосферный воздух вследствие потерь от больших и малых «дыханий» резервуаров, утечек газа и т.д.

Загрязнение атмосферы в результате аварийного выброса газа или сжигания нефти и нефтепродуктов, различных на поверхности при аварии, характеризуется значительно меньшим периодом воздействия, и его можно отнести к кратковременному.

Атмосферный воздух загрязняется также в результате утечки газа через негерметичные соединения трубопровода, утечки и испарения в процессе хранения и выполнения сливно-наливных операций, потерь на газонефте- и нефтепродуктопроводах и т.д. В результате может подавляться рост растительности и повышаться предельно допустимые концентрации в воздухе.

5. Охрана атмосферы от тепловых выбросов

Решение проблемы охраны окружающей среды от вредного воздействия предприятий тепловой энергетики требует комплексного подхода.

Размещение ТЭС. Ряд ограничений и технических требований при выборе площадке под строительство диктуется экологическими соображениями.

Во-первых, так называемый фон загрязнений, который возникает в связи с работой в этой зоне ряда промышленных предприятий, а иногда и уже существующих электростанций. Если величина загрязнений в месте предполагаемого строительства уже достигла предельных значений или близка к ним, размещение, например, тепловой станции не должно разрешаться.

Во-вторых, при наличии определённого, но недостаточно высокого фона загрязнений должны быть проведены подробные оценки, позволяющие сопоставить значения возможных выбросов от проектируемой тепловой станции с уже существующими в данном районе. При этом нужно учитывать различные по характеру и содержанию факторы: направленность, силу и периодичность ветров в этой местности, вероятность осадков, абсолютные выбросы станции при работе на предполагаемом виде топлива, инструкции топочных устройство, показатели систем очистки и улавливания выбросов и т.д. После сопоставления полученной суммарной (с учётом воздействия от проектируемой тепловой станции) величины выбросов с предельно допустимой и должен быть сделан окончательный вывод о целесообразности строительства ТЭС.

При сооружении электростанций, прежде всего ТЭЦ, в городах или пригородах предусматривается создание лесных полос между станцией и жилыми массивами. Они уменьшают воздействие шума на близлежащие районы, способствуют задержанию пыли при ветрах в направлении жилых массивов.

При проектировании и строительстве ТЭС необходимо планировать их оснащение высокоэффективными средствами очистки и утилизации отходов, сбросов и выбросов загрязняющих веществ, использование экологически безопасных видов топлива.

Защита воздушного бассейна. Защита атмосферы от основного источника загрязнений ТЭС - диоксида серы - происходит прежде всего путём его рассеивания в более высоких слоях воздушного бассейна. Для этого сооружаются дымовые трубы высотой 180, 250 и даже 420 м. Более радикальное средство сокращения выбросов диоксида серы - выделение серы из топлива до его сжигания на ТЭС.

Наиболее эффективный способ снижения выбросов сернистого газа - сооружение на ТЭС известняковых сероулавливающих установок и внедрение на обогатительных фабриках установок по извлечению из угля пиритной серы.

Одним из важных документом в охране атмосферы от тепловых выбросов на территории Республики Беларусь является Закон Республики Беларусь «Об охране атмосферного воздуха». В Законе подчёркивается, что атмосферный воздух является одним из основных жизненно важных элементов окружающей среды, благоприятное состояние которого составляет естественную основу устойчивого социально-экономического развития республики. Закон направлен на сохранение и улучшение качества атмосферного воздуха, его восстановление для обеспечения экологической безопасности жизнедеятельности человека, а также предотвращение вредного воздействия на окружающую среду. Закон устанавливает правовые и организационные основы норм хозяйственной и иной деятельности в области использования и охраны атмосферного воздуха.

Заключение

Главная опасность теплоэнергетики для атмосферы заключается в том, что сжигание углеродсодержащих топлив приводит к появлению двуокиси углерода CO2, которая выбрасывается в атмосферу и способствует созданию парникового эффекта.

Наличие в сжигаемом угле добавок серы приводит к появлению окислов серы, они поступают в атмосферу и после реакции с парами воды в облаках создают серную кислоту, которая с осадками падает на землю. Так возникают кислотные осадки с серной кислотой.

Другим источником кислотных осадков являются окислы азота, которые возникают в топках ТЭС при высоких температурах (при обычных температурах азот не взаимодействует с кислородом атмосферы). Далее эти окислы поступают в атмосферу, вступают в реакцию с парами воды в облаках и создают азотную кислоту, которая вместе с осадками попадает на землю. Так возникают кислотные осадки с азотной кислотой.

ТЭС на угле, вырабатывающая электроэнергию мощностью 1 ГВт = 10" Вт, ежегодно потребляет 3 млн. угля, выбрасывая в окружающую среду 7 млн. т СО2, 120 тыс. т двуокиси серы, 20 тыс. т оксидов азота NО2, и 750 тыс. т золы.

В каменном угле и летучей золе содержатся значительные количества радиоактивных примесей. Годовой выброс в атмосферу в районе расположения ТЭС мощностью 1 ГВт приводит к накоплению на почве радиоактивности, в 10-20 раз превышающей радиоактивность годовых выбросов АЭС такой же мощности.

Таким образом, защита атмосферы от тепловых выбросов должна быть направлена на снижение объёмов газовых выбросов и их очистку и включать следующие мероприятия:

Контроль за состоянием окружающей среды;

Применение методов, способов и средств, ограничивающих объёмы выбросов газа и подачи его в промысловую газосборочную сеть;

Использование в аварийных случаях факельных устройств, обеспечивающих полное сгорание сбрасываемого газа;

Обеспечение соблюдения экологических нормативов проектируемыми объектами и сооружениями;

Применение системы автоматических блокировок технологических потоков в нефтепереработке, позволяющей герметизировать опасные участки в аварийных ситуациях и осуществить разрядку этого звена в факельную систему;

Максимально возможное изменение топливных режимов тепловых энергетических установок в пользу экологически чистых видов топлива и режимов его снижения;

Достижение основного объёма снижения газовых выбросов в нефтепереработке путём строительства установок по подготовке попутного и нефтяного газа и систем газопроводов, обеспечивающих утилизацию.

Снижение объёмов вредных выбросов и нефтепереработке достигается в процессе реконструкции и модернизации нефтеперерабатывающего производства, сопровождаемых строительством природоохранных объектов.

Размещено на Allbest.ru

Подобные документы

    Общая характеристика теплоэнергетики и её выбросов. Воздействие предприятий на атмосферу при использовании твердого, жидкого топлива. Экологические технологии сжигания топлива. Влияние на атмосферу использования природного газа. Охрана окружающей среды.

    контрольная работа , добавлен 06.11.2008

    Общая характеристика внешней среды промышленного предприятия. Статистика расходов на охрану окружающей среды. Проблемы воздействия теплоэнергетики на атмосферу. Загрязнители атмосферы, образующиеся при сжигании топлива. Инвентаризация источников выбросов.

    курсовая работа , добавлен 19.07.2013

    Актуальность очистки выбросов тепловых электростанций в атмосферу. Токсичные вещества в топливе и дымовых газах. Преобразование вредных выбросов ТЭС в атмосферном воздухе. Типы и характеристики золоуловителей. Переработка сернистых топлив перед сжиганием.

    курсовая работа , добавлен 05.01.2014

    Расчет выбросов твердых частиц летучей золы и несгоревшего топлива, выбрасываемых в атмосферу с дымовыми газами котлоагрегатов при сжигании твердого топлива и мазута. Принцип расчёта величины предельно допустимого выброса. Расчет опасной скорости ветра.

    контрольная работа , добавлен 07.02.2013

    Отрицательное влияние тепловых двигателей, выбросы вредных веществ в атмосферу, производство автомобилей. Авиация и ракетоносители, применение газотурбинных двигательных установок. Загрязнение окружающей среды судами. Способы очистки газовых выбросов.

    реферат , добавлен 30.11.2010

    Расчет выбросов загрязняющих веществ в атмосферу по результатам измерений на технологических участках и складе топлива. Определение категории опасности предприятия. Разработка плана-графика контроля за выбросами предприятием вредных веществ в атмосферу.

    реферат , добавлен 24.12.2014

    Вещества, загрязняющие атмосферу, их состав. Платежи за загрязнение окружающей среды. Методы расчетов выбросов загрязняющих веществ в атмосферу. Характеристика предприятия как источника загрязнения атмосферы, расчет выбросов на примере ЛОК "Радуга".

    курсовая работа , добавлен 19.10.2009

    Основные компоненты, выбрасываемые в атмосферу при сжигании различных видов топлива в энергоустановках. Расчет суммарного расхода топлива и высоты дымовой трубы. Анализ зависимости концентрации вредных примесей от расстояния до источника выбросов.

    контрольная работа , добавлен 10.04.2011

    Загрязнение атмосферы при испытании и эксплуатации энергетических установок. Влияние на характер вредных выбросов в атмосферу вида топлива. Атомные электростанции и экологические проблемы при их эксплуатации. Мероприятия по защите окружающей среды.

    реферат , добавлен 04.03.2010

    Перспективные воздухоохранные технологии в энергетике. Сокращение выбросов твёрдых частиц в атмосферу. Эффектные методы снижения выбросов оксидов азота в атмосферу газомазутными котлами ТЭС. Рассеивание и трансформация некоторых веществ в атмосфере.