Что там произошло грамматическая основа. Как найти грамматическую основу предложения. Зависимость грамматической основы от вида предложения

1.3 Передвижение воды по растению

Вода, поглощенная клетками корня, под влиянием разности водных потенциалов, которые возникают благодаря транспирации, а также силе корневого давления, передвигается до проводящих путей ксилемы. Согласно современным представлениям, вода в корневой системе передвигается не только по живым клеткам. Еще в 1932 г. немецкий физиолог Мюнх развил представление о существовании в корневой системе двух относительно не зависимых друг от друга объемов, по которым передвигается вода, - апопласта и симпласта. Апопласт – это свободное пространство корня, в которое входят межклетные промежутки, оболочки клеток, а также сосуды ксилемы. Симпласт – это совокупность протопластов всех клеток, отграниченных полупроницаемой мембраной. Благодаря многочисленным плазмодесмам, соединяющим между собой протопласт отдельных клеток, симпласт представляет единую систему. Апопласт, по-видимому, не непрерывен, а разделен на два объема. Первая часть апопласта расположена в коре корня до клеток эндодермы, вторая – по другую сторону клеток эндодермы, и включает в себя сосуды ксилемы. Клетки эндодермы благодаря пояскам Каспари представляют как бы барьер для передвижения воды по свободному пространству (межклетникам и клеточным оболочкам). Для того чтоб попасть в сосуды ксилемы, вода должна пройти через полупроницаемую мембрану и главным образом по апопласту и лишь частично по симпласту. Однако в клетках эндодермы передвижение воды идет, по-видимому, по симпласту. Далее вода поступает в сосуды ксилемы. Затем передвижение воды идет по сосудистой системе корня, стебля и листа.

Из сосудов стебля вода движется через черешок или листовое влагалище в лист. В листовой пластинке водопроводящие сосуды расположены в жилках. Жилки, постепенно разветвляясь, становятся более мелкими. Чем гуще сеть жилок, тем меньшее сопротивление встречает вода при передвижении к клеткам мезофилла листа. Иногда мелких ответвлений жилок листа так много, что они подводят воду почти к каждой клетке. Вся вода в клетке находится в равновесном состоянии. Иначе говоря, в смысле насыщенности водой, имеется равновесие между вакуолью, цитоплазмой и клеточной оболочкой, их водные потенциалы равны. Вода передвигается от клетки к клетке благодаря градиенту сосущей силы.

Вся вода в растении представляет единую взаимосвязанную систему. Поскольку между молекулами воды имеются силы сцепления (когезия), вода поднимается на высоту значительно большую 10 м. сила сцепления увеличивается, так как молекулы воды обладают большим сродством друг к другу. Силы сцепления обладают и между водой и стенками сосудов.

Степень натяжения водных нитей в сосудах зависит от соотношения процессов поглощения и испарения воды. Все это позволяет растительному организму поддерживать единую водную систему и не обязательно восполнять каждую каплю испаряемой воды.

В том случае, если в отдельные членики сосудов попадает воздух, они, по-видимому, выключается из общего тока проведения воды. Таков путь передвижения воды по растению (рис. 2).


Рис.2. Путь воды в растении.

Скорость перемещения воды по растению в течение суток изменяется. В дневные часы она на много больше. При этом разные виды растений различаются по скорости передвижения воды. Изменение температуры, введение метаболических ингибиторов не влияют на передвижение воды. Вместе с тем этот процесс, как и следовало ожидать, очень сильно зависит от скорости транспирации и от диаметра водопроводящих сосудов. В более широких сосудах вода встречает меньшее сопротивление. Однако надо учитывать, что в более широкие сосуды могут попасть пузырьки воздуха или произойти какие-либо иные нарушения тока воды.


2.Транспирация: физиологические механизмы

В основе расходования воды растительным организмом лежит физиологический процесс испарения – переход воды из жидкого в парообразное состояние, происходящей при соприкосновении органов растения с не насыщенной водой атмосферой. Однако этот процесс осложнен физиологическими и анатомическими особенностями растения, и его называют транспирацией

2.1 Назначение транспирации

В обычно протекающих процессах транспирация не является необходимой. Так если выращивать растения в условиях высокой и низкой влажности воздуха, то, естественно, в первом случае транспирация будет идти сознательно меньшей интенсивностью. Однако рост растений будет одинаков или даже лучше там, где влажность воздуха выше, а транспирация меньше. Известно, что большая часть всей поглощенной энергии тратится на транспирацию, которая в определенном объеме полезна растительному организму.

1.Транспирация спасает растение от перегрева, который ему грозит на прямом солнечном свете. Температура сильно транспирирующего листа может быть примерно 7`C ниже температуры листа завязающего, не транспирирующего. Это особенно важно в связи с тем, что перегрев, разрушая хлоропласты, резко снижает процесс фотосинтеза (оптимальная температура для процесса фотосинтеза около 30-33`C). Именно благодаря высокой транспирирующей способности многие растения хорошо переносят повышенную температуру.

2.Транспирация создает непрерывный ток воды из корневой системы к листьям, который связывает все органы растения в единое целое.

3. С транспирационным током передвигаются растворимые минеральные и частично органические питательные вещества, при этом, чем интенсивнее транспирация, тем быстрее идет процесс передвижения.

2.2 Лист как орган транспирации

Основным транспортирующим органом является лист. Средняя толщина листа составляет 100-200 мкм. Паренхимных клетки листа расположены рыхло, между ними имеется система межклетников, составляющая в общей сложности от 15 до 25% объема листа. Лист окружен покровной тканью- эпидермисом, состоящим из компактно расположенных клеток, наружные стенки которых утолщены. Листья большинства растений покрыта кутикулой, в состав которой входит оксимонокарбоновые кислоты, содержащие по 16-18 атомов углерода и по 2-3 гидроксильных группы. Эти кислоты соединены друг с другом в цепочки с помощью эфирных связей. Кутикула варьирует как по составу, так и по толщине. Более развитой кутикулой характеризуются листья светолюбивых растений по сравнению с влаголюбивыми. Кутикула вместе с клетками эпидермиса образует как бы барьер на пути испарения паров воды. При этом особенно значительную преграду составляет кутикула. Удаление кутикулы во много раз повышает интенсивность испарения. Сопротивление выходу паров оказывают в определенной мере и утолщенные стенки клетки эпидермиса. Все эти особенности выработались в процессе эволюции как приспособление к сокращению испарения. Для соприкосновения листа с атмосферой имеются устьица. Устьица – одно из оригинальных приспособлений листа, обладающее способностью открываться и закрываться. Обычно устьичные отверстия ограничены двумя замыкающими клетками, стенки которых не равномерно утолщены. У двудольных растений замыкающие клетки бобовидной, или полулунной, формы, при этом их внутренние прилегающие друг к другу стенки долее толстые, а внешние – более тонкие. Когда воды мало, замыкающие клетки плотно прилегают друг к другу и устьичная щель закрыта. Когда воды в замыкающих клетках много, то она давит на стенки и более тонкие стенки растягиваются сильнее, а более толстые втягиваются внутрь, между замыкающими клетками появляется щель. У однодольных растений строение замыкающих клеток несколько иное. Они представлены двумя удлинёнными клетками, на концах которых стенки более тонкие. При насыщении водой более тонкие стенки на концах растягиваются и раздвигают замыкающие клетки, благодаря чему образуется щель. (рис.3)

Рис.3 Структура устьиц у двудольных (А) и однодольных (Б) растений:

1-устьичная щель; 2-ядро; 3-хлоропласты; 4-толстая клеточная стенка; 5-замыкающие клетки устьиц; 6-побочные клетки; 7-клетки эпидермиса с многочисленными порами.

Число устьичных отверстий колеблется в зависимости от вида растения от 1 до 60 тыс. на 1 кв.см. листа. Большая часть устьиц расположена на нижней стороне листа. Диаметр устьичных щелей составляет всего 3-12 мкм.

Устьица соединяют внутренние пространство листа с внешней средой. Вода проступает в лист через сеть жилок, в которых расположены сосудистые элементы. Возможны два пути испарения: 1) через наружные стенки клеток эпидермиса в атмосферу; 2) через стенки клеток мезофилла в межклеточное пространство листа и далее в парообразном состоянии через устьица. В связи с этим различают устьичную и кутикулярную транспирацию. В том, что действительно испарение идет не только через устьица, но и через кутикулу, легко убедиться. Так, если взять листья, у которых устьица расположены только с нижней стороны (например, листья яблони), и замазать эту сторону вазелином, то испарение воды будет продолжаться, хотя и в значительно уменьшенном размере. Следовательно, определенное количество воды испаряется через кутикулу.

Кутикулярная транспирация обычно составляет около 10% от общей потери воды листом. Однако в некоторых случаях у растений, листья которых характеризуются слабым развитием кутикулы, доля этого вида транспирации может повышаться до 30%. Имеет значение также возраст листа. Молодые листья, как правило, имеют слабо развитую кутикулу и, следовательно, более интенсивную кутикулярную транспирацию. Наименьшая Кутикулярная транспирация наблюдается у листьев, Закончивших свой рост. У старых листьев доля кутикулярной транспирации снова возрастает, так как, хотя кутикула и сохраняет достаточную толщину, в ней появляются трещины, через которые легко проходят пары воды.

Все же основная часть воды испаряется через устьица. Процесс устьичной транспирации можно подразделить на ряд этапов.

Первый этап – это переход воды из клеточных оболочек, где она находится в капельно-жидком состоянии, в межклетники (парообразное состояние). Это собственно процесс испарения. Важно подчеркнуть, что уже на этом этапе растение обладает способностью регулировать процесс транспирации (внеустьичная регулировка). Это связано с несколькими причинами: 1. Между всеми частями клетки существует водное равновесие. Чем меньше воды в клетке, тем выше становится концентрация клеточного сока. А это, в свою очередь, будет уменьшать интенсивность испарения. 2. Между микро- и макро- фибриллами целлюлозы, составляющими клеточные оболочки, имеются капиллярные промежутки. Вода испаряется именно из капилляров. Когда воды в клетках достаточно, клеточные оболочки насыщенны водой, мениски в капиллярах имеют выпуклую форму, силы поверхностного натяжения ослаблены. В этом случае молекулы воды легко отрываются и переходят в парообразное состояние, заполняя межклетники. При уменьшении содержания воды мениски в капиллярах становятся более вогнутыми, это увеличивает силы поверхностного натяжения, и вода с большей силой удерживается в клеточных оболочках. Чем более вогнут мениск, тем путь молекул воды до межклеточных пространств более длинен и извилист. В результате интенсивность испарения сокращается. Таким образом, уже на этом первом этапе растение испаряет тем меньше воды, чем меньше её содержит.

Второй этап – это выход паров воды из межклетников через устьичные щели. Поверхность всех клеточных стенок, соприкасающихся с межклетными пространствами, повышает поверхность листа примерно в 10-30 раз. Все же если устьица закрыты, то все это пространство быстро насыщается парами воды и переход воды из жидкого в парообразное состояние прекращается. Иная картина наблюдается при открытых устьицах. Как только часть паров воды выедет из межклетников через устьичные щели, так сейчас же этот недостаток восполняется за счет испарения воды с поверхности клеток. Поэтому степень открытости устьиц является основным механизмом, регулирующим интенсивность транспирации. При открытых устьицах общая поверхность устьичных щелей составляет всего 1-2% от площади листа. Казалось бы, это должно очень сильно уменьшать испарение по сравнению с испарением свободной водной поверхности той же площади, что и лист. Однако это не так. Сравнение испарения листа с испарением со свободной водной поверхности той же площади показало, что оно идет не в 100 раз, как это следовало бы, исходя из размеров открытой площади (1%), а всего в два раза медленнее. Объяснение этому явлению было дано в исследованиях английских физиологов Брауна и Эскомба, которые установили, что испарение из ряда мелких отверстий идет быстрее, чем из одного крупного той же площади. Это связано с так называемым явлением краевой диффузии. При диффузии из отверстий, отстоящих друг от друга на некотором расстоянии, молекулы воды, расположенные по краям, рассеиваются быстрее. Естественно, что таких краевых молекул значительно больше в ряде мелких отверстий по сравнению с одним крупным. В связи с этим для малых отверстий интенсивность испарения пропорциональна их диаметру, а не площади. Это видно из данных таблицы.

Диаметр пор,

Площадь пор,

В отн.ед. (пd 2)

Периметр,

Испарение воды,

Указанная закономерность проявляется в том случае, если мелкие поры расположены достаточно далеко друг от друга. Структура листа удовлетворяет указанным требованиям. Поры (устьица) имеют малый диаметр и достаточно удалены друг от друга. При открытых устьицах выход паров воды идет достаточно интенсивно, закрытие устьиц резко тормозит испарение. Именно на этом этапе вступает в действие устьичная регулировка транспирации. При недостатке воды в листе устьица автоматически закрываются.

Полное закрытие устьиц сокращает транспирацию примерно на 90%. Вместе с тем уменьшение диаметра устьичных щелей не всегда приводит к соответственному сокращению транспирационного процесса. Определения показали, что устьица должны закрываться больше чем на Ѕ, для того чтобы это сказалось на уменьшении интенсивности транспирации.

Третий этап транспирации – это диффузия паров воды от поверхности листа в более далекие слои атмосферы. Этот этап регулируется лишь условиями внешней среды.


3.Адаптация к дефициту воды

Вода является необходимым условием существования всех живых организмов на Земле. Значение воды в процессах жизнедеятельности определяется тем, что она является основной средой в клетке, где осуществляются процессы метаболизма, служит важнейшим исходным, промежуточным или конечным продуктом биохимических реакций. Особая роль воды для наземных организмов (особенно растений) заключается в необходимости постоянного пополнения ее, из-за потерь при испарении. Поэтому вся эволюция наземных организмов шла в направлении приспособления к активному добыванию и экономному использованию влаги. Наконец, для многих видов растений, животных, грибов и микроорганизмов вода является непосредственной средой их обитания.

Увлажненность местообитания и, как следствие, водообеснечение наземных организмов зависят, прежде всего, от количества атмосферных осадков, их распределения по временам года, наличия водоемов, уровня грунтовых вод, запасов почвенной влаги и тд. Влажность оказывает влияние на распространение растений и животных, как в пределах ограниченной территории, так и в широком географическом масштабе, определяя их зональность (смена лесов степями, степей - полупустынями и пустынями).

При изучении экологической роли воды учитывается не только количество выпадающих осадков, но и соотношение их величины и испаряемости. Области, в которых испарение превышает годовую величину суммы осадков, называются аридными (сухими, засушливыми). В аридных областях растения испытывают недостаток влаги в течение большей части вегетационного периода. В гумидпых (влажных) областях растения обеспечены водой в достаточной мере.

Экологические группы растений по отношению к влаге и их адаптации к водному режиму. Высшие наземные растения, ведущие прикрепленный образ жизни, в большей степени, чем животные, зависят от обеспеченности субстрата и воздуха влагой. По приуроченности к местообитаниям с разными условиями увлажнения и по выработке соответствующих приспособлений среди наземных растений различают три основные экологические группы: гигрофиты, мезофиты и ксерофиты. Условия водоснабжения существенно влияют на их внешний облик и внутреннюю структуру.

Гигрофиты - растения избыточно увлажненных местообитаний с высокой влажностью воздуха и почвы. Для них характерно отсутствие приспособлений, ограничивающих расход воды, и неспособность переносить даже незначительную ее потерю. Наиболее типичные гигрофиты - травянистые растения и эпифиты влажных тропических лесов и нижних ярусов сырых лесов в разных климатических зонах (чистотел большой, недотрога обыкновенная, кислица обыкновенная и др.), прибрежные виды (калужница болотная, плакун-трава, рогоз, камыш, тростник), растения сырых и влажных лугов, болот (белокрыльник болотный, сабельник болотный, вахта трехлистная, осоки), некоторые культурные растения.

Характерные структурные черты гигрофитов - тонкие листовые пластинки с небольшим числом широко открытых устьиц, рыхлое сложение тканей листа с крупными межклетниками, слабое развитие водопроводящей системы (ксилемы), тонкие слаборазветвленные корни, часто без корневых волосков. К физиологическим адаптациям гигрофитов следует отнести низкое осмотическое давление клеточного сока, незначительную водоудерживающую способность и, как следствие, высокую интенсивность транспирации, которая мало отличается от физического испарения. Избыточная влага удаляется также путем гуттации - выделения воды через специальные выделительные клетки, расположенные по краю листа. Избыточная влага затрудняет аэрацию, а следовательно, дыхание и всасывающую деятельность корней, поэтому удаление излишков влаги представляет собой борьбу растений за доступ воздуха.

Ксерофиты - растения сухих местообитаний, способные переносить продолжительную засуху, оставаясь физиологически активными. Это растения пустынь, сухих степей, саванн, сухих субтропиков, песчаных дюн и сухих, сильно нагреваемых склонов. Структурные и физиологические особенности ксерофитов нацелены на преодоление постоянного или временного недостатка влаги в почве или воздухе. Решение данной проблемы осуществляется тремя способами:

1) эффективным добыванием (всасыванием) воды

2) экономным ее расходованием

3) способностью переносить большие потери воды

Интенсивное добывание воды из почвы достигается ксерофитами благодаря хорошо развитой корневой системе. По общей массе корневые системы ксерофитов примерно в 10 раз, а иногда и в 300-400 раз превышают надземные части. Длина корней может достигать 10-15 м, а у саксаула черного - 30-40 м, что позволяет растениям использовать влагу глубоких почвенных горизонтов, а в отдельных случаях и грунтовых вод. Встречаются и поверхностные, хорошо развитые корневые системы, приспособленные к поглощению скудных атмосферных осадков, орошающих лишь верхние горизонты почвы.

Экономное расходование влаги ксерофитами обеспечивается тем, что листья у них мелкие, узкие, жесткие, с толстой кутикулой, с многослойным толстостенным эпидермисом, с большим количеством механических тканей, поэтому даже при большой потере воды листья не теряют упругости и тургора. Клетки листа мелкие, плотно упакованы, благодаря чему сильно сокращается внутренняя испаряющая поверхность. Кроме того, у ксерофитов повышенное осмотическое давление клеточного сока, благодаря чему они могут всасывать воду даже при больших водоотнимающих силах почвы.

К физиологическим адаптациям относится и высокая водоудерживающая способность клеток и тканей, обусловленная большой вязкостью и эластичностью цитоплазмы, значительной долей связанной воды в общем водном запасе и т. д. Это позволяет ксерофитам переносить глубокое обезвоживание тканей (до 75% всего водного запаса) без потери жизнеспособности. Кроме того, одной из биохимических основ засухоустойчивости растений является сохранение активности ферментов при глубоком обезвоживании.

Ксерофиты с наиболее ярко выраженными ксероморфными чертами строения листьев, перечисленными выше, имеют своеобразный внешний облик, за что получили название склерофиты.

К группе ксерофитов относятся и суккуленты - растения с сочными мясистыми листьями или стеблями, содержащими сильно развитую водоносную ткань. Различают листовые суккуленты (агавы, алоэ, молодило, очитки) и стеблевые, у которых листья редуцированы, а надземные части представлены мясистыми стеблями (кактусы, некоторые молочаи и др.). Фотосинтез у стеблевых суккулентов осуществляется периферическим слоем паренхимы стебля, содержащим хлорофилл. Длительные засушливые периоды преодолеваются ими путем накопления воды в водоносных тканях, связывания ее коллоидами клеток, экономного расходования, которое обеспечивается защитой эпидермиса растений восковым налетом, погруженными в ткань листа или стебля немногочисленными днем закрытыми устьицами. В результате транспирация у суккулентов чрезвычайно мала: в пустынях кактусы из рода Camegia транспирируют в сутки всего лишь I -3 мг воды на 1 г сырой массы.

Корневая система поверхностная, мало развитая, рассчитана на поглощение воды из верхних слоев почвы, увлажненных редко выпадающими дождями. В засуху корни могут отмирать, но после дождей быстро (за 2-4 дня) отрастают новые. Суккуленты приурочены главным образом к засушливым зонам Центральной Америки, Южной Африки, Средиземноморья.

Мезофиты - занимают промежуточное положение между гигрофитами и ксерофитами. Они распространены в умеренно влажных зонах с умеренно теплым режимом и достаточно хорошей обеспеченностью минеральным питанием. К мезофитам относятся растения лугов, травянистого покрова лесов, лиственные деревья и кустарники из областей умеренно влажного климата, а также большинство культурных растений и сорняки. Для мезофитов характерна высокая экологическая пластичность, позволяющая им адаптироваться к меняющимся условиям внешней среды.

Специфичные пути регуляции водообмена позволили растениям занять самые различные по экологическим условиям участки суши. Многообразие способов приспособления лежит, таким образом, в основе распространения растений на Земле, где дефицит влаги является одной из главных проблем экологической адаптации.


Заключение

Из всего выше перечисленного можно вывести общее заключение, что при дефиците влаги растения могут адаптироваться е.т. образование корневой системы, которая достигает влажных зон почвы; ограничение расхода воды на транспирацию; запасание воды в тканях растений.

Так как вода является основной составной частью растительных организмов. Вода- это та среда, в которой протекает все процессы обмена веществ.

Водный ток обеспечивает связь между отдельными органами растений. Питательные вещества передвигаются по растению в растворенном виде. Насыщенность водой (тургор) обеспечивает прочность тканей, сохранение структуры травянистых растений, определенную ориентировку организмов растений в пространстве. Рост клеток в фазе растяжения идет главным образом за счет накопления воды в вакуоли.

Таким образом, вода обеспечивает протекание процессов обмена, коррелятивные взаимодействия, связь организма со средой. Для нормальной жизнедеятельности клетка должна быть насыщенна водой.

Основным источником влаги является вода, находящаяся в почве, и основным органном поглощения воды является корневая система. Роль этого органа прежде всего заключается в том, что благодаря огромной поверхности обеспечивается поступление воды в растения из возможно большого объема почвы. Сформировавшаяся корневая система представляет собой сложный орган с хорошо дифференцированной внешней и внутренней структурой.


Литература

1.Якушкина Н.И. Физиология растений. М., Просвещение, 1980г.

2.Козловский Водный обмен растений. М., Колос. 1969г.

3.Сказкин Ф.Д. Критический период у растений к недостаточному водоснабжению. М., Наука. 1968г.

4.Радкевич В.А. Экология. Мин., Высшая школа. 1983г.

5.Генкель П.А. Физиология устойчивости растительных организмов. М., Изд-во МГУ. 1967г. т.3.

6. Жданов В.С. Аквариумные растения. / Под. ред. Коровина. -

М.: Лесн. пром-ть, 1981

7. Горышина Т.К. Экология растений. – М.: Высшая школа,1979

Часть накопленных в процессе фотосинтеза углеводов теряется. Однако все попытки искусственно ингибировать фотодыхание приводили к общему снижению интенсивности фотосинтеза. На современном этапе развития физиологии растений принято считать, что основное значение фотодыхания заключается в его защитной роли. Сбрасывая таким образом избыточную энергию, растение избегает разрушения фотосистем, ...

У засухоустойчивых растений эти показатели будут выше. В селекционной работе используют такой показатель, как содержание статолитного крахмала в кор­невом чехлике. Генетически обусловленным признаком засухо­устойчивости растений является способность их вегетативных органов (особенно листьев) накапливать во время засухи пролин. При этом концентрация пролина увеличивается в 10-100 раз. В пролине...

Вода, поглощенная клетками корня, под влиянием разности вод­ных потенциалов, которые возникают благодаря транспирации, а так­же силе корневого давления, передвигается до проводящих элемен­тов ксилемы. Согласно современным представлениям, вода в корне­вой системе передвигается не только по живым клеткам. В корневой системе существуют два относительно независимых друг от друга объема, по которым передвигается вода,- апопласт и симпласта. Апопласт - это свободное пространство корня, в которое вхо­дят межклетные промежутки, оболочки клеток, а также сосуды кси­лемы. Симпласт - это совокупность протопластов всех клеток, отграниченных полупроницаемой мембраной. Благодаря многочислен­ным плазмодесмам, соединяющим между собой протопласт отдель­ных клеток, симпласт представляет единую систему. Апопласт, по-видимому, не непрерывен, а разделен на два объема. Первая часть апопласта расположена в коре корня до клеток эндодермы, вторая - по другую сторону клеток эндодермы, и включает в себя сосуды кси­лемы. Клетки эндодермы благодаря пояскам Каспари представляют как бы барьер для передвижения воды по свободному пространству (межклетникам и клеточным оболочкам). Для того чтобы попасть в сосуды ксилемы, вода должна пройти через полупроницаемую мем­брану и протоплазму клеток эндодермы. Передвижение воды по коре корпя идет главным образом по апопласту и лишь частично по симпласту. Однако в клетках эндодермы передвижение воды идет, по-видимому, по симпласту. Далее вода поступает в сосуды ксилемы. Это, очевидно, вызвано противоположными изменениями в процессах обмена с разных сторон клеток. Согласно другой, это след­ствие секреции солей в сосуды ксилемы, в результате чего там соз­дается повышенное осмотическое давление. Дальнейшее передвиже­ние воды идет по сосудистой системе корня, стебля и листа. Прово­дящие элементы ксилемы состоят из сосудов (трахей) и трахеид.

Опыты с кольцеванием показали, что восходящий ток воды по растению движется в основном по ксилеме. В сосудах ксилемы вода встречает незначительное сопротивление, что, естественно, облегча­ет передвижение воды на большие расстояния. Правда, в настоящее время признается, что некоторое количество воды передвигается и вне сосудистой системы. Однако по сравнению с ксилемой сопротив­ление движению воды других тканей значительно больше (не менее чем на три порядка). Это приводит к тому, что вне ксилемы движет­ся всего от 1 до 10% общего потока воды.

Из сосудов стебля вода попадает в сосуды листа. Вода движется из стебля через черешок или листовое влагалище в лист. В листовой пластинке водопроводящие сосуды расположены в жилках. Жилки, постепенно разветвляясь, становятся все более мелкими. Чем гуще сеть жилок, тем меньшее сопротивление встречает вода при передви­жении к клеткам мезофилла листа. Именно поэтому густота жилко­вания листа считается одним из важнейших признаков ксероморфной структуры - отличительной чертой растений, устойчивых к засухе.

Иногда мелких ответвлений жилок листа так много, что они под­водят воду почти к каждой клетке. Вся вода в клетке находится в равновесном состоянии. Иначе говоря, в смысле насыщенности во­дой, имеется равновесие между вакуолью, цитоплазмой и клеточной оболочкой, их водные потенциалы равны. В связи с этим, как только в силу процесса транспирации возникает ненасыщенность водой клеточных стенок паренхимных клеток, она сейчас же передается внутрь клетки, водный потенциал падает, сосущая сила возрастает. Вода передвигается от клетки к клетке благодаря градиенту сосущей силы. По-видимому, передвижение воды от клетки к клетке в листо­вой паренхиме идет не по симпласту, а в основном по клеточным стенкам, где сопротивление значительно меньше.

Таким образом, по сосудам вода движется благодаря присасываю­щей силе транспирации и создающемуся в силу этого градиенту вод­ного потенциала. Однако ни один всасывающий насос не может под­нять воду на высоту больше 10 м (соответствующую 0,1 МПа нор­мального давления). Между тем есть деревья, у которых вода поднимается на высоту более 100 м. Объяснение этому дает теория сцепления между молекулами воды, которое в полной мере проявляет­ся при отсутствии воздуха.

Вся вода в растении представляет единую взаимосвязанную сис­тему. Поскольку между молекулами воды имеются силы сцепления (когезия), вода поднимается на высоту значительно большую 10 м. Сила сцепления увеличивается, так как молекулы воды обладают большим сродством друг к другу. Силы сцепления существуют и между водой и стенками сосудов. Стенки проводящих элементов кси­лемы эластичны. В силу этих двух обстоятельств даже при недостат­ке воды связь между молекулами воды и стенками сосудов не нару­шается. Это подтверждается исследованиями по изменению толщины стебля травянистых растений. Определения показали, что в полуден­ные часы толщина стебля травянистых растений уменьшается. Если перерезать стебель, то сосуды сразу расширяются и воздух врывает­ся в них. Степень натяжения водных нитей в сосудах зависит от соотноше­ния процессов поглощения и испарения воды. Все это позволяет рас­тительному организму поддерживать единую водную систему и не обязательно восполнять каждую каплю испаряемой воды.

В том случае, если в отдельные членики сосудов попадает воздух, они, по-видимому, выключаются из общего тока проведения воды. Таков путь воды по растению и его основные движущие силы. Современные методы исследования позволяют определить ско­рость передвижения воды по растению. Согласно полученным дан­ным, скорость движения воды в течение суток изменяется. В днев­ные часы она значительно больше. При этом разные виды растений отличаются по скорости передвижения воды. Если скорость передви­жения у хвойных пород обычно не превышает 0,5-1 см/ч, то у лиственных она значительно выше. У дуба, например, скорость передвижения составляет 43,6 см/ч. Скорость передвижения воды мало зависит от напряженности обмена. Изменение температуры, введение метаболических ингибиторов не влияют на передвижение воды. Вместе с тем этот процесс, как и следовало ожидать, очень сильно зависит от скорости транспирации и от диаметра водопроводящих сосудов. В более широких сосудах вода встречает меньшее со­противление. Однако надо учитывать, что в более широкие сосуды скорее могут попасть пузырьки воздуха или произойти какие-либо иные нарушения тока воды.


Основным источником влаги является вода, находящаяся в почве, и основным органом поглощения воды в растение - корневая система. Роль этого органа, прежде всего, заключается в том, что благодаря огромной поверхности обеспечивается поступление воды в растение из большего объема почвы.

Сформировавшаяся корневая система представляет собой сложный орган с хорошо дифференцированной внешней и внутренней структурой. Корневая система имеет поглощающую или всасывающую зону - это зона корневых волосков. Поступив в клетку корневого волоска, вода становится частью живой системы - клетки растения - и подчиняется закономерностям, действующим в живой клетке.

Передвижение по растению определяется двумя основными двигателями водного потока в растении: нижним двигателем водного потока или корневым давлением, верхним двигателем водного потока или присасывающим действием атмосферы.

Основной силой, вызывающей поступление и передвижение воды в растении, является процесс транспирации, в результате которого возникает градиент водного потенциала. Градиент водного потенциала между клеткой и окружающим пространством создает движущую силу потока воды через мембрану. Если окружающая клетку среда представляет собой гипертонические, более концентрированные, чем клеточный сок, растворы, то вода станет выходить из клетки наружу. Это приведет к потере тургора клеткой, отделению плазмалеммы от клеточной стенки и обособлению протопласта - явлению плазмолиза.

Механизм, обеспечивающий поднятие воды по растению за счет корневого давления, - носит название нижнего концевого двигателя водного тока.

Корневое давление создается при переходе воды из коры корня в сосудистую систему корня при прохождении воды через пропускные клетки перицикла, из которых вода под давлением как бы впрыскивается в сосуды ксилемы. Доказательством этого служат явления гуттации и «плача растений».

Вода, поглощенная корневыми волосками и другими клетками эпидермиса, из клеток внешней части корня перемещается к ксилеме, занимающей центральную часть корня. Главным путем диффузии воды во внешней части корня служит аполаст - непрерывная совокупность клеточных стенок. Однако в эндодерме (цилиндрическом слое клеток, окружающем проводящую ткань) свободная диффузия по клеточным стенкам наталкивается на преграду - водонепроницаемый пробковый слой пояска Каспари. Вода должна изменить здесь свой путь и пройти сквозь мембрану и протопласт клеток эндодермы, играющей, таким образом, роль осмотического барьера между корой корня и его центральным цилиндром. У однодольных пробковеют также и внутренние тангенциальные стенки клеток, но эти стенки пронизаны порами, по которым, как по каналам, может проходить вода.

По ксилеме вода поднимается в надземные части растения. Ксилема состоит из нескольких типов клеток. Вода движется в ней главным образом по сосудам и трахеидам. И те и другие клетки прекрасно приспособлены для этой цели: они вытянуты в длину, лишены живого содержимого и внутри полые, т. е. это как бы трубки для воды. Одревесневшие вторичные клеточные стенки достаточно прочны на разрыв, чтобы выдерживать огромную разность давлений, возникающую при подъеме воды к вершинам высоких деревьев. Торцевые, а иногда и боковые стенки члеников сосудов перфорированы; сосуды, состоящие из соединенных конец в конец члеников, образуют длинные трубки, по которым легко проходит вода с растворенными в ней минеральными веществами. В трахеидах нет перфораций, и вода, для того чтобы попасть из одной тра-хеиды в другую, должна пройти через их торцевые стенки; однако трахеиды - очень длинные клетки, а потому и эта конструкция достаточно хорошо приспособлена для проведения воды.

У цветковых растений есть и сосуды, и трахеиды; у более примитивных форм сосудов, как правило, нет.

Листовые жилки, состоящие из тяжей ксилемы и флоэмы, образуют в листе настолько густую сеть, что любая его клетка оказывается достаточно близко от источника воды. Из ксилемы вода диффундирует в стенки клеток мезофилла. Таким образом, вода в жидкой фазе заполняет весь путь от почвы - через корень и стебель - до клеток мезофилла в листе. Суммарный поток воды направлен всегда в сторону меньшего водного потенциала, т. е. максимален в почве, несколько ниже в клетках корня и самый низкий в клетках, примыкающих к эпидермису листа. Малая величина показателя в этих последних клетках объясняется главным образом испарением воды с поверхности листа.

Вода переходит из растения в окружающий воздух главным образом в парообразном состоянии. В мезофилле листа имеются обширные межклеточные пространства, и каждая клетка мезофилла хотя бы одной своей стороной граничит с таким межклетником. Вследствие испарения воды с влажных клеточных стенок воздух в межклетниках насыщен водяными парами, и часть этих паров теряется - выходит наружу. Поскольку у большинства растений клетки эпидермиса покрыты воскообразной водонепроницаемой кутикулой, водяные пары выходят из листа в атмосферу главным образом через устьица.

Гуттация - это выделение капельно-жидкой влаги листьями через гидатоды в условиях затрудненного испарения. Плач растения - это вытекание пасоки (воды с растворенными в ней минеральными веществами, находящейся в ксилеме) из стеблей растений со срезанными побегами. Гуттация обычно имеет место в условиях высокой влажности воздуха, когда «выключен»верхний концевой двигатель водного токатранспирация - физиологический процесс испарения воды надземными органами растений. Он осуществляется в основном из листьев через устьица и кутикулу.



Поглощение воды корневой системой идет благодаря работе двух концевых двигателей водного тока: верхнего концевого двигателя(транспирации), и нижнего концевого двигателя, или корневого двигателя. Основной силой, вызывающей поступление и передвижение воды в растении, является присасывающая сила транспирации, в результате которого возникает градиент водного потенциала. Водный потенциал – это мера энергии, используемой водой для передвижения. Водный потенциал и сосущая сила одинаковы по абсолютному значению, но противоположны по знаку. Чем меньше насыщенность водой данной системы, тем меньше (более отрицателен) ее водный потенциал. При потере воды растением в процессе транспирации создается ненасыщенность клеток листа водой, как следствие, возникает сосущая сила (водный потенциал падает). поступление воды идет в сторону большей сосущей силы, или меньшего водного потенциала.

Таким образом, верхний концевой двигатель водного тока в растении – это присасывающая сила транспирации листьев, и его работа мало связана с жизнедеятельностью корневой системы.

Кроме верхнего концевого двигателя водного тока, в растениях существует нижний концевой двигатель. Это хорошо доказывается на примере таких явлениях, как гуттация. Листья растений, клетки которых насыщены водой, в условиях высокой влажности воздуха, препятствующей испарению, выделяют капельно-жидкую воду с небольшим количеством растворенных веществ – гуттация. Выделение жидкости идет через специальные водные устьица – гидаторы. Выделяющаяся жидкость – гутта. Таким образом, процесс гуттации является результатом одностороннего тока воды, происходящего в отсутствие транспирации, и, следовательно, вызывается какой-то иной причиной.К такому же выводу можно прийти и при рассмотрении явления плач растенийЕсли срезать побеги растения и к срезанному концу присоединить стеклянную трубку, то по ней будет подниматься жидкость. Анализ показывает, что это вода с растворенными веществами – пасока. Все сказанное приводит к выводу, что плач, как и гуттация, связана с наличием одностороннего тока воды через корневые системы, не зависящего от транспирации. Силу, вызывающую односторонний ток воды по сосудам с растворенными веществами, не зависящую от процесса транспирации, называют корневым давлением . Наличие корневого давления позволяет говорить о нижнем концевом двигателе водного тока. Передвижение воды по растению Вода, поглощенная клетками корня, под влиянием разности водных потенциалов, которые возникают благодаря транспирации, а также силе корневого давления, передвигается до проводящих путей ксилем. В 1932 г. немецкий физиолог Мюнх развил представление о существовании в корневой системе двух относительно не зависимых друг от друга объемов, по которым передвигается вода, - апопласта и симпласта. Апопласт – это свободное пространство корня, в которое входят межклетные промежутки, оболочки клеток, а также сосуды ксилемы. Симпласт – это совокупность протопластов всех клеток, отграниченных полупроницаемой мембраной. Благодаря многочисленным плазмодесмам, соединяющим между собой протопласт отдельных клеток, симпласт представляет единую систему. Апопласт, по-видимому, не непрерывен, а разделен на два объема. Первая часть апопласта расположена в коре корня до клеток эндодермы, вторая – по другую сторону клеток эндодермы, и включает в себя сосуды ксилемы. Клетки эндодермы благодаря пояскам Каспари представляют как бы барьер для передвижения воды по свободному пространству. Для того чтоб попасть в сосуды ксилемы, вода должна пройти через полупроницаемую мембрану и главным образом по апопласту и лишь частично по симпласту. Однако в клетках эндодермы передвижение воды идет, по-видимому, по симпласту. Далее вода поступает в сосуды ксилемы. Затем передвижение воды идет по сосудистой системе корня, стебля и листа. Из сосудов стебля вода движется через черешок или листовое влагалище в лист. В листовой пластинке водопроводящие сосуды расположены в жилках. Жилки, постепенно разветвляясь, становятся более мелкими. Чем гуще сеть жилок, тем меньшее сопротивление встречает вода при передвижении к клеткам мезофилла листа. Вся вода в клетке находится в равновесном состоянии. Вода передвигается от клетки к клетке благодаря градиенту сосущей силы.