Что такое закон Мура? Intel готовится к эре «после закона Мура»

Строение и рецепторы кожи

контрольная работа

4. Рецепторы кожи

Различные виды рецепторов кожи (схема) 1 -- свободные нервные окончания из роговицы глаза; 2 -- осязательные пластинки Меркеля; 3 -- осязательные тельца Мейсснера; 4 -- нервное сплетение волосяной луковицы; 5 -- концевая колба Краузе; 6 -- тельце Гольджи--Маццони

Болевые рецепторы (ноцицепторы) - свободные нервные окончания. Кожные нервные сплетения состоят из двух слоев и из верхнего слоя к клеткам эпидермиса отходят в виде четок тонкие конечные волоконца. Ветви одного нервного волокна образуют в коже сеть площадью в 1 см2. Сети, возникшие при ветвлении разных волокон, настолько тесно друг с другом переплетаются, что сигналы осязания и боли идут сразу по нескольким нервным путям. Подобные сплетения встречаются всюду -- в коже, слизистых оболочках, во внутренних органах. Наибольшее количество ноцицепторов удается обнаружить в коже и роговице. В подмышечной и паховых областях, а также в надпочечных ямках число болевых точек равно 200 на 1 см2. На коже и на слизистых оболочках можно найти участки, не воспринимающие боли при уколе, щипке, сильном давлении.

Болевые рецепторы и нервные волокна кожи человека (схема)

В последние годы удалось обнаружить тонкие волоконца, связывающие свободные нервные окончания с рецепторами прикосновения, тепла и холода. Они получили название волокон Тимофеева. Наличием этих волокон можно объяснить тот факт, что усиление давления может вызвать чувство боли. Для того чтобы вызвать чувство прикосновения в осязательной точке, надо приложить давление 2--3 г на 1 мм2. А для того чтобы в той же точке вызвать боль, необходимо давление в 200 г на 1 мм2.

Тельца Фатер-Пачини (пластинчатые тельца) -- капсулированные рецепторы давления (барорецепторы) в округлой многослойной капсуле. Располагаются в дерме, чаще - на границе дермы и гиподермы. Являются быстроадаптирующимися (реагируют только в момент начала воздействия), то есть регистрируют силу давления. Обладают большими рецептивными полями, то есть представляют грубую чувствительность. Распределены в коже области пальцев, наружных половых органов (кроме того присутствуют в стенке мочевого пузыря, капсуле внутренних органов и др.) Пластинчатые тельца - самые крупные из всех инкапсулированных нервных окончаний. Они овальные, достигают 3-4 мм в длину и 2 мм в толщину. Для них характерно наличие многослойной пластинчатой соединительнотканной оболокой (наружной колбы), богатой гемокапиллярами. Под соединительнотканной оболочкой лежит наружная луковица, состоящая из 10­60 концентрических пластинок, образованных уплощенными гексагональными периневральными эпителиоидными клетками. Войдя в тельце, нервное волокно теряет миелиновую оболочку. Внутри тельца оно окружено лимфоцитами, которые формируют внутреннюю луковицу.

Тельца Мейсснера -- рецепторы давления (барорецепторы), расположенные в дерме. Представляют собой слоистую структуру с нервным окончанием, проходящим между слоями. Являются быстроадаптирующимися. Обладают малыми рецептивными полями, то есть представляют тонкую чувствительность. Расположены в сосочковом слое кожи пальцев, губ, век, половых органов. Они имеют диаметр около 100 мкм, снаружи окружены соединительнотканной капсулой. В составе этих телец нейроглиальные клетки образуют внутреннюю колбу вокруг концевого утолщения чувствительного нервного волокна, которое располагается параллельно поверхности кожи.

Тельца Гольджи-Маццони (луковицеобразные тельца) - рецепторы давления (барорецепторы) - инкапсулированные чувствительные нервные окончания, состоящие из разветвления чувствительного нервного волокна, глиальной внутренней колбы и соединительнотканной капсулы; встречается в коже, соединительной оболочке глазного яблока, брюшине, клиторе, головке полового члена, коже губ и краев рта, а также в других покровах тела.

Тельца (клетки) Меркеля -- некапсулированные рецепторы давления (барорецепторы). Являются медленноадаптирующимися (реагируют на всей продолжительности воздействия), то есть регистрируют продолжительность давления. Обладают малыми рецептивными полями. Они принимают участие в восприятии прикосновений, поскольку тесно связаны с сетевидными концевыми разветвлениями чувствительных нервов. Кроме того, клетки Меркеля синтезируют специфические для нервных клеток маркеры (нейрофиламенты, нейрональные клеточные адгезионные молекулы и др.). На основании присутствия в цитоплазме клеток нейропептидов они относятся к диффузной эндокринной системе. Мет-энкефалин, вырабатываемый клетками Меркеля, стимулирует иммунные реакции организма.

Рецепторы волосяных луковиц -- реагируют на отклонение волоса.

Окончания Руффини -- рецепторы растяжения. Являются медленноадаптирующимися, обладают большими рецептивными полями. Реагируют на смещение кожи, тепло (терморецепторы) и на давление. Лежат в глубоких слоях кожи, например, подошвы стопы. Диаметр -- до 1 мм. Афферентное волокно образует наподобие кустика из немиелинизированных веточек, которые оканчиваются колбообразными терминалями (вздутиями, окруженными леммоцитами). Окончания плотно прилегают к фибробластам и коллагеновым волокнам, формирующим основу тельца. Соединительнотканная капсула хорошо выражена.

Концевые колбы Краузе - рецепторы, реагирующий на холод (терморецепторы). Обнаруживаются в конъюнктиве, языке, наружных половых органах. Диаметр -- до 150 мкм. Сферические по форме, имеют тонкую капсулу, многочисленные разветвления афферентного окончания располагаются в виде колбы.

Общее число температурных точек на поверхности кожи взрослого человека равно приблизительно 280 тыс., причем 30 тыс. приходится на долю точек, воспринимающих тепло. На поверхности тела температурные точки распределены весьма неравномерно. Наиболее чувствительны к температурным раздражениям веки глаза, грудные железы, спина. Область лба мало чувствительна к теплу и очень восприимчива к холоду. Мало чувствительны к резким тепловым раздражениям кожа головы, нижних конечностей, слизистая оболочка полости рта и языка.

BNP – мозговой натрийуретический пептид

Действие НП проявляется за счет связывания со специфическими рецепторами, обладающими гуанилатциклазной активностью. Натрийуретические пептиды являются лигандами трех типов рецепторов: А (NPR-A), В (NPR-B) и С (NPR-C)...

Адаптация организма к воздействию различных температур

Важное значение для температурной адаптации человека имеют температурные рецепторы. Вообще, рецептор - это анатомическое образование (чувствительное нервное окончание или специализированная клетка)...

Анализаторы: виды, структура. Сенсорные системы человека

Сенсорные рецепторы - специфические клетки, настроенные на восприятие различных раздражителей внешней и внутренней среды организма и обладающие высокой чувствительностью к адекватному раздражителю...

Антиадренергические средства

Рецепторы представляют собой специализированные образования, воспринимающие определенные виды раздражений . Рецепторы обладают наибольшей чувствительностью к адекватным для них раздражениям. Рецепторы делят на четыре группы: механо-...

В-лимфоциты. Характеристика субпопуляций. Рецепторы и маркеры. Участие в иммунном ответе

Антигенраспознающие рецепторы В-лимфоцитов представляют собой молекулы иммуноглобулинов. Циркулирующие антитела структурно подобны основной части B-клеточных рецепторов, но лишены их трансмембранных и цитоплазматических сегментов...

Влияние гамма-аминомасляной кислоты на процессы, протекающие в организме

ГОМК и морфин обладают сходными клиническим эффектами, включая эйфорию, угнетение дыхания, и потенциальную возможность развития зависимости. Эффекты ГОМК частично блокируются введением налоксона...

Онкотическое давление плазмы крови. Свертывание крови. Системное артериальное давление

Интенсивность окислительных процессов в организме не является постоянной: во время покоя она относительно невелика, во время умственной и физической работы значительно возрастает...

Организм человека и охрана здоровья

Жир, пот, выделяемый кожей, остаются на ее поверхности. Пыль, попадая на кожу, загрязняет ее. Поэтому нужно постоянно заботиться о чистоте кожи: не менее одного раза в неделю мыть все тело горячей водой с мылом...

Препараты данной группы (ондансетрон, гранисетрон, трописетрон) являются конкурентные антагонисты серотониновых 5НТ3-рецепторов в периферических тканях и ЦНС и устраняют рвоту, индуцируемую химиотерапией...

Рвотные и противорвотные препараты

3.1 Димедрол 3.2 Дипразин 3.3 Прометазин 4. М-холиноблокаторы 4.1 Скополамин 4. Механизм биологической активности РВОТНЫХ И ПРОТИВОРВОТНЫХ ЛЕКАРСТВЕННЫХ СРЕДСТВ 4.1 Лекарственные средства...

Рвотные и противорвотные препараты

4.3.1 Дифенгидрамин (димедрол). Является одним из основных представителей группы противогистаминных препаратов, блокирующих Н1-рецепторы . Он обладает весьма выраженной противогистаминной активностью. Кроме того...

Физиология анализаторов (рецепторов)

Рецепторы -- это воспринимающие раздражители нервные окончания, или специализированные клетки, или специализированные органы. Рецепторы отличаются разнообразием. Им присущи следующие свойства: высокая возбудимость (чувствительность)...

Хорея Гентингтона

ГАМК действует на две основные группы молекулярных рецепторов - ионотропные рецепторы типа ГАМКa/ГАМКc (рис. 6) и метаботропные рецепторы типа ГАМКb ...

Эндогенные болеутоляющие системы мозга

Различают 4 антиноцицептивные системы: нейронную опиатную (энкефалиновую), гормональную опиатную (эндорфиновую), нейронную неопиатную (адренергическую, дофаминергическую, серотонинэргическую и пр.)...

Количество транзисторов на одном кристалле достигает миллиардов штук. Естественный способ их использовать – строить многопроцессорные системы. Для таких компаний как Intel вопрос создания многопроцессорных систем – это вопрос существования.

Г. Мур (G. Moor – создатель Intel) на основе развития технологии в компа

нии Intel в 1965 году выдвинул следующее положение, которое сейчас называ-

ют законом Мура:

Каждые 2 года количество транзисторов на кристалле удваивается

Этот закон и с некоторыми колебаниями сохраняется длительное время.

Число транзисисторов на кристалле увеличится в такой степени, что это позво-

ляет создавать многоядерные процессоры (МЯП), в которых на одном кристал-

ле размещены сотни и тысячи ядер, каждое из которых является полноценным

процессором.

Считается, что нанотехнологии начинаютя со 100 нм. Таким образом, можно сказать, что современные микропроцессоры – это область нанотехнологий.

До минимального размера порядка 10 нм транзистор сохраняет свои пере-

ключательные и усилительные свойства, что полностью определяет путь разви-

тия кремниевой наноэлектроники вплоть до 2020 г. Ниже 10 нм кремний теря-

ет проводимость. В диапазоне размеров 5-0.5 нм наступает эра мезоскопических структур и приборов. Мезоскопические структуры - электронные при-

боры, размеры активной области которых сопоставимы с параметрами электро-

на. При размерах 0.5 нм и менее - эра квантовых кристаллов.

Графен – это одиночный плоский лист, состоящий из атомов углерода, образующих решётку из шестиугольных ячеек. Нанотрубки состоят из тех же шестиугольных ячеек, имеют средний диаметр около 1 нм и длину до нескольких сантиметров. Но отдельный транзистор – это не процессор. Поэтому квантовые компьютеры могут оказаться ближе по времени, чем мезоскопические структуры.

Вопросы для самоконтроля

    В чем суть параллелизм независимых ветвей?

    Сформулируйте закон Амдала.

    Закон Мура и его перспективы.

Лекция 4. Основные этапы развития параллельной обработки

Идея параллельной обработки возникла одновременно с появлением первых вычислительных машин. В начале 50-х гг. американский математик Дж. Фон Нейман предложил архитектуру последовательной ЭВМ, которая приобрела классические формы и применяется практически во всех современных ЭВМ. Однако фон Нейман разработал также принцип построения процессорной матрицы, в которой каждый процессор был соединен с четырьмя соседними.

D825. Одной из первых полномасштабных многопроцессорных систем явилась система D825 фирмы “BURROUGHS”. Начиная с 1962 г. было выпущено большое число экземпляров и модификаций D825. Выпуск первых многопроцессорных систем, в частности D825, диктовался необходимостью получения не высокого быстродействия, а высокой живучести ЭВМ, встраиваемых в военные командные системы и системы управления. С этой точки зрения параллельные ЭВМ считались наиболее перспективными. Система D825 содержала до четырех процессоров и 16 модулей памяти, соединенных матричным коммутатором, который допускал одновременное соединение любого процессора с любым блоком памяти.

Практическая реализация основных идей параллельной обработки началась только в 60-х гг. 20 - го столетия. Это связано с появлением транзистора, который позволил строить машины, состоящие из большого количества логических элементов, что принципиально необходимо для реализации любой формы параллелизма.

CRAY. Основополагающим моментом для развития конвейерных ЭВМ явилось обоснование академиком С.А. Лебедевым в 1956 г. метода, названного

“принципом водопровода” (позже он стал называться конвейером ). Прежде все-

го был реализован конвейер команд, на основании которого практически одно-

временно были построены советская ЭВМ БЭСМ-6 (1957-1966 гг., разработка

Института точной механики и вычислительной техники АН СССР), и англий-

ская машина ATLAS (1957-1963 гг.). Конвейер команд предполагал наличие

многоблочной памяти и секционированного процессора, в котором на разных

этапах обработки находилось несколько команд.

Следующим заметным шагом в развитии конвейерной обработки, реализо

ванном в ЭВМ CDC-6600 (1964 г.), было введение в состав процессора не-

скольких функциональных устройств, позволяющих одновременно выполнять

несколько арифметико-логических операций: сложение, умножение, логические операции.

В конце 60-х гг. был введен в использование арифметический конвейер , который нашел наиболее полное воплощение в ЭВМ CRAY-1 (1972-1976 гг.).

Арифметический конвейер предполагает разбиение цикла выполнения арифме-

тико-логической операции на ряд этапов, для каждого из которых отводится

собственное оборудование. Таким образом, на разных этапах обработки нахо-

дится несколько чисел, что позволяет производить эффективную обработку

вектора чисел.

Сочетание многофункциональности, арифметического конвейера для каж

дого функционального блока и малой длительности такта синхронизации по-

зволяет получить быстродействие в десятки и сотни миллионов операций в се-

кунду. Такие ЭВМ называются супер ЭВМ.

ILLIAC-IV. Идея получения сверхвысокого быстродействия в первую очередь связывалась с процессорными матрицами (ПМ). Предполагалось, что,

увеличивая в нужной степени число процессорных элементов в матрице, можно

получить любое заранее заданное быстродействие.

Поскольку в 60-е гг. логические схемы с большим уровнем интеграции от

сутствовали, то напрямую реализовать принципы функционирования процес-

сорной матрицы, содержащей множество элементарных процессоров, не пред-

ставлялось возможным. Поэтому для проверки основных идей строились одно-

родные системы из нескольких больших машин. Так, в 1966 г. была построена

система Минск-222, разработанная Институтом математики Сибирского отде-

ления АН СССР и минским заводом ЭВМ им. Г.К.Орджоникидзе. Система со-

держала до 16 соединенных в кольцо ЭВМ Минск-2. Для нее было разработано

специальное математическое обеспечение.

Другое направление в развитии однородных сред, основанное на построе-

нии процессорных матриц, состоящих из крупных процессорных элементов с

достаточно большой локальной памятью, возникло в США и связано с именами

Унгера, Холланда, Слотника. Была создана ЭВМ ILLIAC-IV (1966-1975 гг.), ко-

торая надолго определила пути развития процессорных матриц. В машине ис-

пользовались матрицы 8×8 процессоров, каждый с быстродействием около 4

млн оп/с и памятью 16 кбайт. Для ILLIAC-IV были разработаны кроме Ассемб-

лера еще несколько параллельных языков высокого уровня. Особенно ценным

является опыт разработки параллельных алгоритмов вычислений, определив-

ший области эффективного использования подобных машин.

T ранспьютер . Совершенствование микроэлектронной элементной базы,

появление в 80-х годах БИС и СБИС позволили разместить в одной микросхеме

процессор с 4-мя внешними связями, который получил название транспьютер .

Теперь стало возможным строить системы с сотнями процессоров.

пошло широким потоком. Сначала строились монолитные многопроцессорные

системы, для которых все разрабатывалось специально для конкретной систе-

мы: элементная база, конструктивы, языки программирования, операционные

системы. Затем оказалось много дешевле строить вычислительные кластеры на

основе промышленные средства, появились многояденые процессора, Грид,

квантовые компьютеры.

Некоторые этапы развития параллельных ЭВМ качественно можно представить следующей таблицей:

НАЗВАНИЕ ЭВМ

ПРОГРАММЫ

D825 - одна из первых многопроцессорных систем

Доказана возможность построения многопроцессорных систем

Первая ОС для многопроцессорных систем - ASOR

Матричный процессор ILLIAC IV

Реализована ОКМД

Параллельный язык

Векторно- конвейерная ЭВМ CRAY

Предложены конвейерные вычисления

Предложен ЯВУ векторного типа

Транспьютер Т414

Разработан процессор на кристалле со связями для мультисистем

Язык описания параллелизма OCCAM

Кластер Beowulf

Сборка на серийном оборудовании

Использованы обыч

ные сетевые ОС

Неограниченная возможность расширения

GlobusToolkit, gLite

Многоядерные про-

Разработаны МЯ процессоры с общей и индивидуальной памятью

OpenMP и MPI. Нужны новые разработки

Квантовый компью-

тер Orion компании

Кубит, эспоненциальная скорость за счет суперпозиции

Алгоритмы Шора,

Гровера. Языки моделирования

Вопросы для самоконтроля.

    Основные этапы развития параллельной обработки. D825

    Основные этапы развития параллельной обработки. CRAY.

    Основные этапы развития параллельной обработки. ILLIAC-IV.

    Некоторые этапы развития параллельных ЭВМ.

Moore"s law ) - эмпирическое наблюдение, изначально сделанное Гордоном Муром , согласно которому (в современной формулировке) количество транзисторов , размещаемых на кристалле интегральной схемы, удваивается каждые 24 месяца. Часто цитируемый интервал в 18 месяцев связан с прогнозом Давида Хауса из Intel , по мнению которого, производительность процессоров должна удваиваться каждые 18 месяцев из-за сочетания роста количества транзисторов и увеличения тактовых частот процессоров .

Рост числа транзисторов на кристалле микропроцессора показан на графике справа. Точки соответствуют наблюдаемым данным, а прямая - периоду удвоения в 24 месяца.

История

Существует масса схожих утверждений, которые характеризуют процессы экспоненциального роста, также именуемых «законами Мура». К примеру, менее известный «второй закон Мура» , введённый в 1998 году Юджином Мейераном, который гласит, что стоимость фабрик по производству микросхем экспоненциально возрастает с усложнением производимых микросхем. Так, стоимость фабрики, на которой корпорация Intel производила микросхемы динамической памяти ёмкостью 1 Кбит, составляла $4 млн , а оборудование по производству микропроцессора Pentium по 0,6-микрометровой технологии с 5,5 млн транзисторов обошлось в $2 млрд . Стоимость же Fab32, завода по производству процессоров на базе 45-нм техпроцесса, составила $3 млрд .

По поводу эффектов, обусловленных законом Мура, в журнале «В мире науки » как-то было приведено такое интересное сравнение:

«Если бы авиапромышленность в последние 25 лет развивалась столь же стремительно, как промышленность средств вычислительной техники, то сейчас самолёт Boeing 767 стоил бы 500 долл. и совершал облёт земного шара за 20 минут, затрачивая при этом пять галлонов (~18,9 л) топлива. Приведенные цифры весьма точно отражают снижение стоимости, рост быстродействия и повышение экономичности ЭВМ».

В 2003 году Мур опубликовал работу «No Exponential is Forever: But „Forever“ Can Be Delayed!», в которой признал, что экспоненциальный рост физических величин в течение длительного времени невозможен, и постоянно достигаются те или иные пределы. Лишь эволюция транзисторов и технологий их изготовления позволяла продлить действие закона ещё на несколько поколений .

В 2007 году Мур заявил, что закон, очевидно, скоро перестанет действовать из-за атомарной природы вещества и ограничения скорости света .

Следствия и ограничения

Параллелизм и закон Мура

В последнее время, чтобы получить возможность задействовать на практике ту дополнительную вычислительную мощность, которую предсказывает закон Мура, стало необходимо задействовать параллельные вычисления . На протяжении многих лет производители процессоров постоянно увеличивали тактовую частоту и параллелизм на уровне инструкций, так что на новых процессорах старые однопоточные приложения исполнялись быстрее без каких-либо изменений в программном коде.

Вспомните, каким был ваш первый компьютер и сравните его со нынешним. Почему каждый следующий смартфон или компьютер получается более мощным и компактным, чем предыдущий? Ответ на этот вопрос вы найдёте в законе Мура, который гласит: «Количество транзисторов, размещаемых на кристалле интегральной схемы, удваивается каждые 24 месяца!». Готовы поспорить, что об этом законе многие слышат впервые и к тому же, совсем не понимают, о чём идёт речь. Между тем, он отметил свой 50-летний юбилей. И эти полстолетия электроника развивалась строго в соответствии с ним. Но будет ли так всегда?

Наблюдение, ставшее законом

Закон Мура известен любому, кто имеет отношение к производству микропроцессоров, разбирается в микроэлектронике и микросхемах или хорошо понимает, как устроен компьютер.Чтобы смысл закона Мура стала понятен и вам, мы сформулируем его по-другому, используя простые и понятные слова: Вычислительная мощность и производительность компьютера удваивается каждые 24 месяца.

Действительно, персональные , ноутбуки, смартфоны очень быстро устаревают. Вы, наверное, замечали: не успел купить новую модель, через некоторое время появляются более мощные, более быстрые, с большим объёмом памяти. При этом их цена остаётся прежней, а если повышается, то не на много. И все это благодаря развитию технологий.

Гордон Мур – один из тех, кто в 1968 году основал корпорацию Intel. В течение первых семи лет был исполнительным вице-президентом корпорации. Затем президентом и главным управляющим Intel. До 1997 года занимал пост председателя совета директоров. Ныне 87-летний Гордон Мур является почётным председателем совета директоров корпорации Intel и проживает на Гавайях.

Свой закон Гордон Мур вывел на основе наблюдений, а огласил его в 1965 году. Он заметил, что ежегодно стоимость одного транзистора уменьшается, а их количество на одном кристалле удваивается. Это объяснялось бурным развитием микроэлектроники и растущими потребностями в более мощных компьютерах. Но через десять лет Гордон Мур внёс в свой закон небольшие изменения: число транзисторов удваивается каждые два года.

Связано это было с тем, что разработка новинок стоит дополнительных денег и их необходимо окупить. Поэтому слишком частый выпуск новых продуктов не даёт компании достаточно времени заработать на них, а слишком редкий выпуск новых продуктов открывал бы дорогу конкурентам. Чтобы компания не осталась в убытках, нужна золотая середина, которую и нащупал Мур.

То, что изначально было интересным наблюдением, впоследствии стало правилом и законом для всей индустрии, которая жила и развивалась по ним все 50 лет. Однако теперь многие эксперты заявляют, что дни «закона Мура» сочтены. Чтобы разобраться, так ли это, нужно стать немножко специалистом. Попробуем?

Как работает транзистор

Итак, интегральная схема (синонимы: микросхема, чип) – это, как бы, мозг любого электронного устройства. Мы не зря использовали слово мозг, ведь у чипа тоже есть своя память и логика. Человеческий мозг получает информацию, перерабатывает, а потом передаёт её другим органам человека. Вернее, это делают нейроны головного мозга при помощи химических и электрических сигналов. Чип, как и мозг, также обрабатывает, хранит и передаёт информацию при помощи электрических сигналов. Но только роль нейронов играют транзисторы. Благодаря транзисторам, чип может выполнять наши команды. Например, банковские карты, удостоверения личности, SIM-карты имеют встроенные чипы, которые хранят разную информацию, обрабатывают её, а также выполняют разные операции.

Таким образом, транзисторы определяют работу всей интегральной схемы, потому что они усиляют, генерируют и преобразовывают электрические сигналы. Другими словами, транзистор – это усилительный элемент. Он позволяет с помощью слабого сигнала управлять гораздо более сильным.

Чтобы было понятно, приведём аналогию. При нажатии педали акселератора (педали газа) увеличивается скорость автомобиля. При этом на педаль нажимать приходится не очень сильно. Мощность нажатия на педаль ничтожна по сравнению с мощностью, которую развивает при этом двигатель. Чем больше угол нажатия на педаль, тем больше открываются специальные клапаны (заслонки в карбюраторе), которые регулируют количество подаваемой топливно-воздушной смеси в двигатель, где она и сгорает, увеличивая давление внутри двигателя. Как следствие, увеличивается частота вращения вала двигателя и скорость движения автомобиля.

То есть, акселератор можно назвать усилительным элементом, который при помощи слабой энергии, затрачиваемой человеком при нажатии на педаль, управляет и преобразовывает более мощную энергию, источником которой является бензин.

В транзисторе всё происходит также. Только через него проходит не бензин, а электрический ток.

Физический предел

Как вы помните, закон Мура есть результат наблюдательности господина Мура, который при его формулировке не задумывался о законах математики и физики. Поэтому, чтобы он работал и далее, нужно, чтобы производители каждые два года умудрялись «впихивать» в чип в два раза больше транзисторов.

К сожалению, этот процесс не может быть бесконечным, и уменьшение размеров транзисторов имеет свой предел. Связано это в первую очередь с физическими ограничениями: невозможно делать элементы бесконечно маленькими. Когда транзистор станет размером в несколько атомов, в силу вступят квантовые взаимодействия. Это означает, что предсказать движение электронов станет просто невозможным,а это сделает транзистор бесполезным.

Но проблемы на этом не закончатся. Чем больше количество транзисторов в чипе, тем больше тепловыделение. Как вы знаете, высокие температуры сильно влияют на проводимость тока, что опять же может сделать транзистор непригодным.

На данный момент самый маленький размер транзисторов – 22 нанометра – в процессоре Intel Haswell (1 нанометр равен одной миллиардной части метра, т. е. 10−9метра). У корпорации Intel ещё имеется потенциал дальнейшего уменьшения размеров транзистора. Так, 10-нанометровые чипы должны появиться на рынке во второй половине 2017 года.

С каждым годом удвоение транзисторов на кристалле уже не делает их дешевле. Иначе говоря, следовать закону Мура уже невыгодно для производителей. Ведь с каждым новым шагом на преодоление физических барьеров начинает уходить больше средств: сложные материалы, суперсовременное оборудование, огромный штат научных сотрудников и при этом – большое количество отбракованных микросхем, ведь при создание супертонкой кристаллической кремниевой пластинки с встроенными в неё микроскопическими транзисторами будет очень чувствительна даже к небольшим, незаметным человеку изменениям, например колебаниям земной коры.

Итак, рано или поздно, законы природы положат конец господству закона Мура. Окончание эры стремительного развития кремниевых транзисторов предсказывают на 2020-2025 годы. Что же ждёт компьютеры дальше? Эксперты предрекают, что появятся 3D- и молекулярные транзисторы, а в более далёкой перспективе – квантовые.

Размещаемых на кристалле интегральной схемы, удваивается каждые 24 месяца. Часто цитируемый интервал в 18 месяцев связан с прогнозом Давида Хауса из Intel , по мнению которого производительность процессоров должна удваиваться каждые 18 месяцев из-за сочетания роста количества транзисторов и быстродействия каждого из них.

Рост числа транзисторов на кристалле микропроцессора показан на графике справа. Точки соответствуют наблюдаемым данным, а прямая - периоду удвоения в 24 месяца.

Энциклопедичный YouTube

    1 / 3

    ✪ НАУКА ЗА МИНУТУ_Спинтроника

    ✪ Парадокс Мура

    ✪ Артем Оганов: Новые материалы

    Субтитры

    НАУКА ЗА МИНУТУ [ЗВУК ТИКАЮЩИХ ЧАСОВ] В 1965 году один из основателей Intel Гордон Мур обнаружил удивительную закономерность: количество транзисторов в микросхемах возрастает примерно вдвое за год. Мы называем это правило, с несущественными модификациями, законом Мура. Закон Мура – страшная сила. Посмотрите на небо. Все звезды, которые вы видите, входят в нашу галактику. А теперь вообразите, что сейчас за одну секунду в мире производится 25 таких галактик, но из транзисторов! Этот закон Мура - главный драйвер Индустрии 4.0. Но такой рост не может быть вечным. Такие люди, как вице-президент NVIDIA Билл Дэлли или физик-теоретик Мичио Каку, говорят, что закон Мура либо уже мертв, либо умрет в ближайшие 5 лет. Дело в том, что нельзя уменьшать размеры транзисторов до бесконечности. Когда они станут меньше 5 нанометров, рабочая температура чипов станет слишком высокой, и электроны начнут улетать. Неужели рост скоро замедлится? Нет! На смену приходит новая технология, называемая спинтроника. В устройствах спинтроники, в отличие от устройств обычной электроники, энергию или информацию переносит не электрический ток, а ток спинов! Сейчас в мире идет бум – спинтроника вместо электроники. Новые технологии наступают! Индустрия 4.0! Готовьтесь! НАУКА ЗА МИНУТУ МЕДИАЦЕНТР БФУ ИМЕНИ И. КАНТА Субтитры КАРИНЫ МОКИНОЙ

История

По поводу эффектов, обусловленных законом Мура, в журнале «В мире науки » как-то было приведено такое интересное сравнение:

«Если бы авиапромышленность в последние 25 лет развивалась столь же стремительно, как промышленность средств вычислительной техники, то сейчас самолёт Boeing 767 стоил бы 500 долл. и совершал облёт земного шара за 20 минут, затрачивая при этом пять галлонов (~18,9 л) топлива. Приведенные цифры весьма точно отражают снижение стоимости, рост быстродействия и повышение экономичности ЭВМ».

В 2003 году Мур опубликовал работу «No Exponential is Forever: But „Forever“ Can Be Delayed!», в которой признал, что экспоненциальный рост физических величин в течение длительного времени невозможен, и постоянно достигаются те или иные пределы. Лишь эволюция транзисторов и технологий их изготовления позволяла продлить действие закона еще на несколько поколений .

В 2007 году Мур заявил, что закон, очевидно, скоро перестанет действовать из-за атомарной природы вещества и ограничения скорости света .

Одним из физических ограничений на миниатюризацию электронных схем является также принцип Ландауэра , согласно которому логические схемы, не являющиеся. На протяжении многих лет, производители процессоров постоянно увеличивали тактовую частоту и параллелизм на уровне инструкций, так что на новых процессорах старые однопоточные приложения исполнялись быстрее без каких-либо изменений в программном коде. Сейчас по разным причинам производители процессоров предпочитают многоядерные архитектуры, и для получения всей выгоды от возросшей производительности ЦП программы должны переписываться в соответствующей манере. Однако, по фундаментальным причинам, это возможно не всегда.