В 1820 г а ампер установил. Закон Ампера. Взаимодействие двух параллельных бесконечных проводников с током. Воздействие магнитного поля на рамку с током. Единица измерения магнитного потока в СИ

Маринованные баклажаны быстрого приготовления - острая ароматная закуска, готовится очень легко и готова к употреблению уже через пару часов.

Ингредиенты:

  • 500 г баклажанов
  • зелень любая
  • 2-3 зубчика чеснока
  • 2 ст. л. растительного масла

маринад:

  • 500 мл воды
  • 1 ст. л. без верха соли
  • 1 ст. л. без верха сахара
  • 50 мл 6%-го яблочного или винного уксуса
  • 5-6 горошин душистого перца

На просторах интернета в рецептах маринованных баклажанов быстрого приготовления указывается разное количество уксуса для маринада, но опытным путем я пришла к выводу, что именно данное соотношение продуктов является оптимальным, закуска получается совершенно не кислая, и всего в ней в меру. Возможно, кто-то со мной и не согласится. 🙂

Приготовление:

Баклажаны моем, отрезаем хвостики и нарезаем кубиками со стороной примерно 2 см. Для этой закуски лучше использовать молоденькие баклажаны с плотной мякотью.

Затем готовим маринад. Наливаем в кастрюлю 0,5 л воды, добавляем соль, сахар, уксус и горошины перца. Доводим маринад до кипения, опускаем в него нарезанные баклажаны и с момента повторного закипания провариваем 5 минут. Во время кипения баклажаны периодически помешиваем, чтобы они равномерно пропитались маринадом.

После пяти минут кипения сливаем маринад через дуршлаг и остужаем баклажаны.

Пока баклажаны остывают, мелко режем зелень и отправляем ее в глубокий салатник. Туда же добавляем измельченный чеснок и растительное масло.

Зелень подойдет любая, но если вы любите кинзу, обязательно ее добавьте. На мой взгляд, никакая другая зелень не сочетается с баклажанами так, как кинза.
Выкладываем в салатник остывшие баклажаны и осторожно перемешиваем.

В принципе, маринованные баклажаны быстрого приготовления уже готовы, можно и пробовать, но все же лучше накрыть их пищевой пленкой и убрать на пару часов в холодильник. Настоявшись, они будут просто превосходны на вкус.
Хочу еще отметить, что закуска получится более нежная, если баклажаны предварительно очистить от шкурки. Конечно, вид при этом немного пострадает, но вкус, несомненно, выиграет.

Андре Мари Ампер

Ампер (Ampere) Андре Мари (AMPERE Andre-Marie) (1775-1836), французский ученый, иностранный член Петербургской АН (1830), один из основоположников электродинамики. Предложил правило, названное его именем, открыл (1820) механическое взаимодействие токов и установил закон этого взаимодействия (закон Ампера). Построил первую теорию магнетизма.

Ампер (Ampere Andre Marie) - знаменитый математик и естествоиспытатель, родившийся в Лионе 22 янв. 1775 г.; по смерти своего отца, гильотинированного в 1793 г., А. был сперва репетитором в политехнической школе в Париже, затем занимал сначала кафедру физики в Бурге, а с 1805 года кафедру математики в парижской политехнической школе, где он проявил себя и на литературном поприще, впервые выступив с сочинением: "Considerations sur la theorie mathematique dujeu" (Лион, 1802 г.). В 1814 г. он сделался членом академии наук, в 1824 г. - профессором экспериментальной физики в College ае France; умер 10-го июня 1836 г. в Марселе. Математика, механика и физика обязаны А. важными исследованиями; его электродинамическая теория стяжала ему неувядаемую славу. Его взгляд на единую первоначальную сущность электричества и магнетизма, в чем он по существу сходился с датским физиком Эрштедтом, превосходно изложен им в "Recueil d"observations lectrodynamiques" (Париж, 1822), в "Precis de la theorie des phenomenes electrodynamiques" (Париж, 1824 г.) и в "Theorio des phenomenes electrodynamiques". Разносторонний талант А. не остался безучастным и в истории развитая химии, которая отводить ему одну из почетных страниц и считает его, совместно с Авогадро автором важнейшего закона современной химии. В честь этого ученого единица силы гальванического тока названа "ампером", а измерительные приборы-"амперометрами". (Ср. Оствальд, "Klassiker der exacten Wissenschaften ј8". "Die Grnindlagen der Molekulartbeorie", Abhandlangen v. A. Avogadro und Ampere, 1889). Кроме этого Амперу принадлежит еще труд "Essais sui la philosophie des Sciences" (2 т., 1834-43; 2-е издание, 1857). Ср. Бартелеми и Сентилер, "Philosophie ае deux Amperes" (Париж, 1866 г.). .

Ф.А. Брокгауз, И.А. Ефрон Энциклопедический словарь.

Ампер, став позже воистину великим учёным, начинал свою карьеру репетитором. И нет в том ничего зазорного. И не только во времена Ампера, но тем более сегодня. Вообще мы живём во время странных и нездоровых парадоксов. Оказывается, что заказать контрольную у репетитора и сдать её учителю есть зло великое. И это в то самое время, когда на всю Ивановскую провозглашается, что государственные чиновники, медицинские работники и школьные учителя с вузовскими преподавателями - всего лишь работники, так сказать, сферы услуг! И возмущает вовсе тут не то, что это на самом деле не так (особенно, конечно, в части "услужливых" чиновников бюрократического аппарата). Возмущает, что всех нас заставляют поверить в эту ложь. Помогать школьникам и студентам за деньги это, видите ли, плохо. А с высокой трибуны, будучи госчиновником высокого уровня, врать, что "в России олигархов не существует" это нормально. Вот до чего доводит плюрализм в одной голове!

Ампер Андре Мари

Андре Мари Ампер родился 22 января 1775 года. Его отец Жан-Жак Ампер вместе со своими братьями торговал лионскими шелками. Мать Жанна Сарсе - дочь одного из крупных лионских торговцев. Детство Андре прошло в небольшом поместье Полемье, купленном отцом в окрестностях Лиона.

Он никогда не ходил в школу, но чтению и арифметике выучился очень быстро. Уже в 14 лет он прочитал все двадцать восемь томов французской "Энциклопедии". Особый интерес Андре проявлял к физико-математическим наукам. Андре начал посещать библиотеку Лионского колледжа, чтобы читать труды великих математиков.

В возрасте тринадцати лет, он представил в Лионскую академию свои первые работы по математике.

В 1793 году в Лионе вспыхнул мятеж, который вскоре был подавлен. За сочувствие мятежникам был обезглавлен Жан-Жак Ампер. По приговору суда почти все имущество было конфисковано. Ампер решил переселиться в Лион и давать частные уроки математики.

В 1802 году Ампера пригласили преподавать физику и химию в Центральную школу города Бурк-ан-Бреса, в шестидесяти километрах от Лиона.

В конце 1804 года Ампер покинул Лион и переехал в Париж, где он получил должность преподавателя Политехнической школы. Основная задача школы заключалась в подготовке высокообразованных технических специалистов с глубокими знаниями физико-математических наук.

В 1807 году Ампер был назначен профессором Политехнической школы. В 1808 году он получил место главного инспектора университетов. Время расцвета научной деятельности Ампера приходится на 1814-1824 годы и связано с Академией наук, в число членов которой он был избран 28 ноября 1814 года за свои заслуги в области математики.

Практически до 1820 года основные интересы ученого сосредоточивались на проблемах математики, механики и химии. Вопросами физики в то время он занимался очень мало. Ампер всегда рассматривал математику как мощный аппарат для решения разнообразных прикладных задач физики и техники. Не оставляет он и занятий химией. К его достижениям в области химии отнестится открытие, независимо от Авогадро, закона равенства молярных объемов различных газов.

В 1820 году физик Эрстед обнаружил, что вблизи проводника с током отклоняется магнитная стрелка. Так было открыто свойство электрического тока - создавать магнитное поле. Ампер подробно исследовал это явление и открыл взаимодействие токов.

Он установил, что два параллельных провода, по которым течет ток в одинаковом направлении, притягиваются друг к другу, а если направления токов противоположны, провода отталкиваются. Ампер объяснил это явление взаимодействием магнитных полей, которые создают токи. О полученных результатах Ампер сразу же сообщил в Академию. На заседании 25 сентября он развил эти идеи далее, демонстрируя опыты, в которых спирали, обтекаемые током (соленоиды), взаимодействовали друг с другом как магниты.

Ампер решил найти закон взаимодействия токов в виде строгой математической формулы и нашел этот закон, который носит теперь его имя. Так шаг за шагом в работах Ампера вырастала новая наука - электродинамика, основанная на экспериментах и математической теории. С 1820 по 1826 год Ампер публикует ряд теоретических и экспериментальных работ по электродинамике. В 1826 году выходит из печати "Теория электродинамических явлений, выведенная исключительно из опыта".

В 1824 году Ампер был избран на должность профессора Коллеж де Франс. Ему предоставили кафедру общей и экспериментальной физики.

В 1835 году он опубликовал работу, в которой доказал сходство между световым и тепловым излучениями и показал, что все излучения при поглощении превращаются в тепло. Ампер разработал систему классификации наук, которую намеревался изложить в двухтомном сочинении. В 1834 году вышел первый том "Опыты философии наук или аналитического изложения естественной классификации всех человеческих знаний". Ампер ввел такие слова, как "электростатика", "электродинамика", "соленоид". Ампер высказал мысль о том, что, вероятно, возникнет новая наука об общих закономерностях процессов управления. Он предложил именовать ее "кибернетикой".

Ампер умер от воспаления легких 10 июля 1836 года в Марселе во время инспекционной поездки. Там же он и был похоронен.

Андре-Мари Ампер (фр. Andre-Marie Ampere, 1775-1836) – известнейший французский ученый, прославившийся своими открытиями в области физики, математики и естествознания. Был избран членом многих Академий наук, в том числе Парижской и Петербургской. Ампер – автор теории, объясняющей связь электрических и магнитных явлений, выдвинул гипотезу о происхождении магнетизма и ввел в научный оборот термины «электрический ток» и «электродинамика». Ученому принадлежит открытие воздействия магнитного поля Земли на проводники с током, находящиеся в движении.

Андре Мари Ампер был рожден в Лионе 22 января 1775 года. Его родители были потомственными ремесленниками и несмотря на свое рабочее происхождение имели довольно высокий культурный уровень. Отец будущего ученого Жан Жак Ампер имел хорошее образование, говорил на нескольких древних языках, имел богатую библиотеку и увлекался трудами популярных в то время просветителей. Даже воспитание своих детей он выстраивал в духе педагогической теории Жан Жака Руссо.

Накануне Великой французской революции Жан Жак Ампер был назначен на высокую должность королевского прокурора и несмотря на последовавшее вскоре падение Бастилии и начавшееся гонение на роялистов поддержал революцию. Но ему сильно не повезло. Через несколько лет к власти пришли ультрарадикальные якобинцы, которые начали истреблять многих неугодных, в том числе приверженцев умеренных взглядов, коих придерживался и отец Андре Мари. В итоге арест и неутешительный приговор – казнь на гильотине. «Бритва революции» лишила жизни достойного гражданина Франции в ноябре 1793 года, что стало страшным потрясением для юноши и всех членов семьи. Молодой человек впал в уныние и почти 1,5 года не прикасался к книгам.

С раннего детства талантливый мальчик питал огромную тягу к знаниям. Он не посещал школу, однако смог самостоятельно освоить арифметику и чтение. Уже в 12 лет Ампера многие считали математическим гением, а его личный педагог больше ничему не мог его научить. К 14 годам он освоил всю французскую «Энциклопедию», но особый интерес вызывали физические явления. Андре стал завсегдатаем библиотеки лондонского колледжа, где активно осваивал имеющуюся там литературу. Чтобы читать книги Эйлера и Бернулли он специально выучил латынь.

Первые самостоятельные шаги

Из-за полного безденежья, вызванного конфискацией семейного имущества, Ампер приступает к преподаванию математики в частном пансионе Дюпра и Оливье, параллельно устроившись в школу небольшого городка Бурга, расположенного близ Лиона. В 1802 году он успешно прошел собеседование в комиссии, признавшей его годным к проведению занятий.

Убогая жизнь небогатого учителя только обострила тягу Ампера к науке. Именно в этот период молодой ученый высказал гипотезу, объясняющую магнитные и электрические явления схожими принципами. Причем однажды он озвучил свою догадку в присутствии самого на заседании Лионской академии.

Не остается без внимания и любимая математика, где Ампера привлекает теория вероятности. Вскоре он пишет эссе «Размышление на тему математической теории игр». В нём автор доказывает, что игрок всегда уступит сопернику, имеющему больше денег. Андре Мари сразу заметили в Академии наук и пригласили преподавать в Лионском лицее. Карьера шла в гору и в 1804 году Ампер переезжает в Париж в качестве репетитора местной Политехнической школы. До переезда в столицу случилось очередное горькое событие в его жизни – смерть любимой жены и начавшееся одиночество, которое подстегнуло к переезду.

После трех лет занятия репетиторством наступил период самостоятельных занятий, а вскоре Андре Мари становится профессором математического анализа и экзаменатором по механике. Вместе с этим он трудился в Консультативном бюро ремесел и искусств, а в 1808 году приступил к обязанностям главного инспектора университета, что вынуждало ездить в постоянные командировки.

В 1814 году Ампера избирают в члены Парижской Академии в секции геометрия, что вроде бы свидетельствовало о его сформировавшихся научных интересах. Но жизнь внесла в этот расклад свои коррективы.

Открытие электромагнетизма

В 1820 году Андре Мари посетил заседание Французской Академии наук, на котором была озвучена информация об открытии влияния электричества на магнитную стрелку. Большинство академиков восприняло это как рядовое событие, но только не Ампер. Он незамедлительно приступил к экспериментам, превратив свою маленькую комнату в мини-лабораторию, и даже сам смастерил столик, ставший настоящей реликвией. В течение двух недель он сформулировал свои выводы, которые оказали влияние на многие отрасли науки.

Еще со времен Ньютона утвердилось убеждение о параллельности электричества и магнетизма. Многие были уверены, что каждое из этих явлений живет по своим законам. Факты, полученные Эрстедом, трактовались следующим образом – намагничивание провода происходит в результате воздействия электричества, что и вызывало воздействие на стрелку. Ампер не согласился с общепринятой трактовкой и сформулировал смелую и в чем-то вызывающую идею – магнитных зарядов нет вообще, существуют лишь электрические, а явление магнетизма происходит от перемещения электрических зарядов.

По мнению ученого, магнетизм возникает от огромного количества мельчайших электрических атомных контуров. Каждый из них выступает в качестве своеобразного «магнитного листка» – простейшего магнитного двухполюсника. Поэтому становится ясно, почему магнитные монополя в природе не существуют, в отличие от электрических. Версию Ампера в столь смелой формулировке поддерживают не все ученые, но то что она стала важнейшей предпосылкой для утверждения мысли о единстве природы, сомнений не возникает. Это потребовало дать ответ на некоторые актуальные вопросы, в частности, представить законченную теорию взаимодействия токов. С поставленной задачей на отлично справился сам Ампер.

В 1820 году было сформулировано правило Ампера для определения воздействия магнитного поля на магнитную стрелку. Согласно этому выводу северный полюс будет на конце стержня, находящемся слева от человека, который движется по направлению тока и находится лицом к нему. Вскоре автор подтвердил наличие взаимодействия между электрическими токами, названное законом Ампера. Он показывает силу воздействия магнитного поля в отношении находящегося внутри его проводника. Француз эмпирически доказал, что параллельно находящиеся проводники начинают взаимно притягиваться при движении тока в одном направлении и отталкиваются при его пропускании в обратном.

Направление силы Ампера можно узнать согласно правилу левой руки. Размещаем руку таким образом, чтобы перпендикулярный вектор магнитной индукции умещался в ладони, а четыре пальца находились в вытянутом положении по направлению движения заряженных частиц в проводнике. При этом отставленный под углом 90° большой палец обозначает направление силы Ампера.

Правило левой руки

В 1822 году Андре Мари описал магнитный эффект соленоида. Как утверждал сам Ампер, любой электрический проводник создает рядом с собой магнитное поле. Его силовые линии образуют концентричные по отношению к центральной линии проводника круги, которые находятся в плоскостях, нормальных к элементам проводника. Ещё больший магнитный эффект электричества можно наблюдать при условии скручивания проводящей проволоки в ряд параллельных, взаимно изолированных колец.

Подобную форму проводника ученый назвал соленоидом. Проводя опыты со многими материалами, автор убедился, что железо полностью утрачивает магнитные свойства при нулевом токе, а сталь сохраняет магнетизм на протяжении длительного времени. Но самый большой эффект демонстрировали специально сконструированные электромагниты, по сути железные стержни в проволочной обмотке, по которой пропускали электроток.

Все полученные выводы Андре Мари изложил в собственном научном труде, увидевшем свет в 1826 году и названном «Теория электродинамических явлений, выведенная исключительно из опыта».

Телеграф Ампера

Первые осмысленные попытки создать устройство, способное транслировать некие сигналы на расстояние стали предприниматься в конце XVIII века. Первопроходцами в этом деле стал Ален-Рене Лесаж, создавший простейшую конструкцию из двух приемников и 24 изолированных проволок. Внес свой вклад в развитие этого направления и Ампер. В 1829 году он предложил идею телеграфа, которая основывалась на открытии Эрстеда. Ученый разработал передающее устройство, состоящее из полусотни проводов и 25 магнитных стрелок, прикрепленных к осям. Однако этот проект не нашёл широкого применения, так как был довольно непрактичен. Предполагалось, что для каждого знака будет предназначена отдельная проволока и стрелка.

Можно сказать, что Андре Мари смог опередить ход времени. Тогда еще не существовало устройств, которые бы могли распознавать электрический сигнал. Протягивать для каждой буквы, цифры или знака свой провод очень времязатратно и неэкономично. Однако польза от этого изобретения все же была – сегодня по этому принципу функционируют электромагнитные коммутаторы.

Кибернетика и кое-что ещё

В своей фундаментальной работе «Опыт о философии наук» Ампер дал понятие новой науке кибернетике. Он понимал ее как учение об управлении государством для обеспечения всеобщих благ. Её первая часть увидела свет в 1834 году, а вторая была издана уже после кончины автора в 1843 году. Важным элементом кибернетики Андре Мари называл теорию законов. По его мнению, она должна изучать происхождение законов, предвосхищая последствия, порождаемые ими. Автор подчеркивал принципиальное значение личности управленца, поэтому выступал за отбор лучших кандидатов, которым по силам справляться со своими обязанностями.

Также Ампер вывел необходимость существования ещё одного научного направления, как ответвления от кибернетики – ценольбологии, то есть науки об общественном счастье. Он ставил перед ней задачу определить лучшие условия жизни народов, чтобы создать оптимальную для этого экономическую систему. Фактически Андре Мари поднял вопрос о рациональности ведения хозяйства людьми, что должно способствовать всеобщему счастью.

Среди изобретений ученого были и вещи иного характера. Так, Ампер пытался создать новый язык международного общения, оптимизировал конструкции воздушных змеев и планировал написать эпическую поэму. Француз одним из первых стал рассматривать дифференциальные уравнения с частными производными, которые стали называть именем Монжа-Ампера. В химии независимо от Амедео Авогадро Ампер смог вывести закон молярных объемов газов. Кроме того, он предпринимал попытки систематизировать химические элементы по их свойствам.

Андре Мари Ампер скончался от осложнений, связанных с пневмонией 10 июня 1836 года, когда находился в очередной командировке в качестве главного инспектора.

  • Как и многие выдающиеся ученые, Ампер ввел в научный оборот ряд новых терминов, среди которых электродинамика, кибернетика и кинематика.
  • Помимо математики и физики, Андре Мари преуспел и в других научных областях. В частности, его заслуги отмечены в химии, ботанике, лингвистике и даже философии.
  • Во время чтения доклада Ампером о взаимодействии проводников с токами кто-то из ученых воскликнул, что ничего нового не услышал. Ведь если токи влияют на магнитную стрелку, то они способны воздействовать друг на друга. От такого наступления докладчик совсем растерялся, но положение спас его коллега Араго. Он достал из кармана два ключа и сказал, что каждый из них воздействует на стрелку, но не влияет друг на друга.
  • Ампер не учился в школе ни одного дня, но благодаря невероятной тяге к знаниям сумел стать одним из образованнейших людей своего времени.
  • Имя Андре Мари внесено в перечень самых великих ученых Франции, который находится на первом этаже Эйфелевой башни.
  • В 1881 году на первом Международном конгрессе электриков, который состоялся в Париже, в честь Ампера была названа единица силы тока.

Видео

Андре Мари Ампер и электромагнетизм.

В 1820 году Ампер установил, что сила с которой магнитное поле действует на элемент проводника с током dl, равна (3.4.1) где - вектор, совпадающий с направлением тока. Величина силы Ампера равна (3.4.2) В 1820 году Ампер установил, что сила с которой магнитное поле действует на элемент проводника с током dl, равна (3.4.1) где - вектор, совпадающий с направлением тока. Величина силы Ампера равна (3.4.2) 3.4 Закон Ампера


Направление силы Ампера определяется правилом левой руки: четыре пальца левой руки надо направить по направлению тока так, чтобы вектор магнитной индукции входил в ладонь, тогда отогнутый большой палец дает направление силы Ампера. Направление силы Ампера определяется правилом левой руки: четыре пальца левой руки надо направить по направлению тока так, чтобы вектор магнитной индукции входил в ладонь, тогда отогнутый большой палец дает направление силы Ампера.


На основе закона Ампера определим силу взаимодействия между двумя параллельными прямыми токами, расположенными на расстоянии d друг от друга. Рассмотрим сначала случай, когда токи текут в одном направлении. Ток I 1 создает магнитное поле B 1, которое действует на ток I 2 и наоборот. На расстоянии d магнитная индукция тока I 1 равна На основе закона Ампера определим силу взаимодействия между двумя параллельными прямыми токами, расположенными на расстоянии d друг от друга. Рассмотрим сначала случай, когда токи текут в одном направлении. Ток I 1 создает магнитное поле B 1, которое действует на ток I 2 и наоборот. На расстоянии d магнитная индукция тока I 1 равна


Угол между направлением тока I 2 и вектором магнитной индукции B 1 равен 90º. Поэтому согласно закону Ампера магнитное поле тока I 1 действует на единицу длины тока I 2 с силой (3.4.3) Размерность этой силы Угол между направлением тока I 2 и вектором магнитной индукции B 1 равен 90º. Поэтому согласно закону Ампера магнитное поле тока I 1 действует на единицу длины тока I 2 с силой (3.4.3) Размерность этой силы


Аналогично, магнитное поле тока I 2 действует на единицу длины тока I 1 с силой Сравнивая видим, что силы F 21 и F 12 совпадают по величине. Направления этих сил противоположны. Поэтому токи, текущие в одном направлении притягивают друг друга. Если направления токов противоположны, то изменятся направления сил F 21 () и F 12 (). Поэтому токи, текущие навстречу друг другу отталкиваются. Аналогично, магнитное поле тока I 2 действует на единицу длины тока I 1 с силой Сравнивая видим, что силы F 21 и F 12 совпадают по величине. Направления этих сил противоположны. Поэтому токи, текущие в одном направлении притягивают друг друга. Если направления токов противоположны, то изменятся направления сил F 21 () и F 12 (). Поэтому токи, текущие навстречу друг другу отталкиваются.


Формула для силы Ампера (3.4.3) используется для определения единицы силы тока – ампера. Ампер – это сила постоянного тока, который проходя по двум параллельным, прямолинейным проводникам бесконечной длины и расположенным на расстоянии 1 м друг от друга, вызывает между ними силу притяжения, равную 2·10 -7 Н на каждый метр длины. Подставляя в (3.4.3) токи I 1 = I 2 = 1 А, получаем откуда Формула для силы Ампера (3.4.3) используется для определения единицы силы тока – ампера. Ампер – это сила постоянного тока, который проходя по двум параллельным, прямолинейным проводникам бесконечной длины и расположенным на расстоянии 1 м друг от друга, вызывает между ними силу притяжения, равную 2·10 -7 Н на каждый метр длины. Подставляя в (3.4.3) токи I 1 = I 2 = 1 А, получаем откуда


Теперь можно определить и единицу магнитной индукции В. Пусть элемент проводника dl перпендикулярен вектору магнитной индукции. Тогда согласно (3.4.3) имеем Последняя формула и используется для определения единицы магнитной индукции. Единицей магнитной индукции является Тесла – это магнитная индукция такого однородного магнитного поля, которое действует с силой 1 Н на каждый метр длины прямолинейного проводника, перпендикулярного полю и по которому течет ток силой 1 А. Теперь можно определить и единицу магнитной индукции В. Пусть элемент проводника dl перпендикулярен вектору магнитной индукции. Тогда согласно (3.4.3) имеем Последняя формула и используется для определения единицы магнитной индукции. Единицей магнитной индукции является Тесла – это магнитная индукция такого однородного магнитного поля, которое действует с силой 1 Н на каждый метр длины прямолинейного проводника, перпендикулярного полю и по которому течет ток силой 1 А.


Найдем силу, действующую на движущийся в магнитном поле электрический заряд. Рассмотрим проводник с током I, находящийся в магнитном поле с индукцией В. Пусть за время dt через участок проводника dl проходит dn зарядов величиной q. Тогда ток, текущий через проводник равен Найдем силу, действующую на движущийся в магнитном поле электрический заряд. Рассмотрим проводник с током I, находящийся в магнитном поле с индукцией В. Пусть за время dt через участок проводника dl проходит dn зарядов величиной q. Тогда ток, текущий через проводник равен 3.5 Сила Лоренца


Согласно закону Ампера (3.4.2), на этот участок проводника со стороны магнитного поля действует сила Разделив на dn получим силу, действующую на один заряд Согласно закону Ампера (3.4.2), на этот участок проводника со стороны магнитного поля действует сила Разделив на dn получим силу, действующую на один заряд


Поскольку - скорость движения заряда, то Сила F Л называется силой Лоренца. Из формулы (3.4.1) следует, что сила Лоренца перпендикулярна к вектору скорости и вектору магнитной индукции. Поэтому можно записать ее в векторном виде (3.5.1) Направление силы Лоренца определяется правилом левой руки, как и сила Ампера. Поскольку - скорость движения заряда, то Сила F Л называется силой Лоренца. Из формулы (3.4.1) следует, что сила Лоренца перпендикулярна к вектору скорости и вектору магнитной индукции. Поэтому можно записать ее в векторном виде (3.5.1) Направление силы Лоренца определяется правилом левой руки, как и сила Ампера.


Так как сила Лоренца направлена перпендикулярно к вектору скорости, а следовательно и к вектору перемещения, то она не совершает работы над зарядом. Поэтому постоянное магнитное поле не меняет энергию заряженной частицы. Магнитное поле меняет лишь направление вектора скорости, но не меняет величину скорости. Из формулы (3.5.1) следует, что если заряд неподвижен, то сила Лоренца равна нулю. Поэтому постоянное магнитное поле не оказывает на покоящийся заряд никакого влияния. Так как сила Лоренца направлена перпендикулярно к вектору скорости, а следовательно и к вектору перемещения, то она не совершает работы над зарядом. Поэтому постоянное магнитное поле не меняет энергию заряженной частицы. Магнитное поле меняет лишь направление вектора скорости, но не меняет величину скорости. Из формулы (3.5.1) следует, что если заряд неподвижен, то сила Лоренца равна нулю. Поэтому постоянное магнитное поле не оказывает на покоящийся заряд никакого влияния.


При этом период обращения частицы по окружности не зависит от скорости. Это используют в ускорителях. А)В циклотроне – ускорение заряженных частиц происходит в переменном электрическом поле Е с напряжением между дуантами 10 5 В. Максимальная энергия ускоряемых частиц - 25 МэВ. Траектория частиц близка к спирали. Дальнейшему росту скорости и энергии частиц препятствует нарушение синхронизма, за счет релятивистского изменения массы частиц. При этом период обращения частицы по окружности не зависит от скорости. Это используют в ускорителях. А)В циклотроне – ускорение заряженных частиц происходит в переменном электрическом поле Е с напряжением между дуантами 10 5 В. Максимальная энергия ускоряемых частиц - 25 МэВ. Траектория частиц близка к спирали. Дальнейшему росту скорости и энергии частиц препятствует нарушение синхронизма, за счет релятивистского изменения массы частиц.


Б) В фазотроне (синхроциклотроне) – нарушение синхронизма компенсируется уменьшением частоты электрического поля Е В) В синхротроне – синхронизация обеспечивается за счет изменения магнитной индукции так, чтобы m/B = const. Его используют для ускорения только электронов. Г) В протонном синхротроне (синхрофазотроне) – синхронизация обеспечивается изменениями Е и В так, чтобы радиус оставался постоянным и траектория была не спиралью, а окружностью. Энергия протонов достигает 76 МэВ. В ТПУ электронный синхрофазотрон Сириус разгоняет электроны до скорости v = c, при этом они имеют энергию 950 МэВ. Б) В фазотроне (синхроциклотроне) – нарушение синхронизма компенсируется уменьшением частоты электрического поля Е В) В синхротроне – синхронизация обеспечивается за счет изменения магнитной индукции так, чтобы m/B = const. Его используют для ускорения только электронов. Г) В протонном синхротроне (синхрофазотроне) – синхронизация обеспечивается изменениями Е и В так, чтобы радиус оставался постоянным и траектория была не спиралью, а окружностью. Энергия протонов достигает 76 МэВ. В ТПУ электронный синхрофазотрон Сириус разгоняет электроны до скорости v = c, при этом они имеют энергию 950 МэВ.


В 1879 году Холл обнаружил, что в металлической пластине, находящейся в магнитном поле, возникает поперечное электрическое поле, перпендикулярное направлению тока и вектору магнитной индукции. Рассмотрим тонкую металлическую пластину толщиной а и шириной d. Пусть по пластине течет ток с плотностью j. Магнитное поле В направлено перпендикулярно к боковой грани. В 1879 году Холл обнаружил, что в металлической пластине, находящейся в магнитном поле, возникает поперечное электрическое поле, перпендикулярное направлению тока и вектору магнитной индукции. Рассмотрим тонкую металлическую пластину толщиной а и шириной d. Пусть по пластине течет ток с плотностью j. Магнитное поле В направлено перпендикулярно к боковой грани. 3.6 Эффект Холла


Электроны под действием силы Лоренцаприжимаются к верхней пластине, поэтому на ней возникает избыток отрицательного заряда. На нижней пластине, напротив, будет недостаток электронов. В результате появляется поперечное электрическое поле – поле Холла Е холл. Поле Холла действует на электроны противоположно силе Лоренца. Поэтому через короткое время устанавливается стационарное распределение зарядов в поперечном направлении – вдоль толщины (высоты) пластины. Этому равновесному состоянию отвечает равенство электрической силы со стороны поля Холла и силы Лоренца Электроны под действием силы Лоренцаприжимаются к верхней пластине, поэтому на ней возникает избыток отрицательного заряда. На нижней пластине, напротив, будет недостаток электронов. В результате появляется поперечное электрическое поле – поле Холла Е холл. Поле Холла действует на электроны противоположно силе Лоренца. Поэтому через короткое время устанавливается стационарное распределение зарядов в поперечном направлении – вдоль толщины (высоты) пластины. Этому равновесному состоянию отвечает равенство электрической силы со стороны поля Холла и силы Лоренца


Найдем разность потенциалов на нижней и верхней гранях Выразим ток через плотность тока где n – концентрация электронов. Исключая скорость, холловскую разность потенциалов можно представить в виде (3.6.1) где - постоянная Холла. По знаку R можно определить знак носителей заряда. Найдем разность потенциалов на нижней и верхней гранях Выразим ток через плотность тока где n – концентрация электронов. Исключая скорость, холловскую разность потенциалов можно представить в виде (3.6.1) где - постоянная Холла. По знаку R можно определить знак носителей заряда.


По аналогии с циркуляцией вектора напряженности электрического поля, циркуляцией вектора магнитной индукции по замкнутому контуру L называется интеграл (3.7.1) где - вектор элемента контура, направленный вдоль обхода контура, - проекция вектора магнитной индукции на направление вектора, - угол между векторами По аналогии с циркуляцией вектора напряженности электрического поля, циркуляцией вектора магнитной индукции по замкнутому контуру L называется интеграл (3.7.1) где - вектор элемента контура, направленный вдоль обхода контура, - проекция вектора магнитной индукции на направление вектора, - угол между векторами 3.7 Циркуляция вектора магнитной индукции


Найдем в качестве примера циркуляцию магнитного поля, создаваемого прямым током. Выберем вокруг тока замкнутый контур в плоскости, перпендикулярной к току. В каждой точке контура вектор магнитной индукции направлен по касательной к окружности c радиусом R и проходящей через выбранную точку. Поэтому можем записать Найдем в качестве примера циркуляцию магнитного поля, создаваемого прямым током. Выберем вокруг тока замкнутый контур в плоскости, перпендикулярной к току. В каждой точке контура вектор магнитной индукции направлен по касательной к окружности c радиусом R и проходящей через выбранную точку. Поэтому можем записать


Поскольку для прямого тока то Поэтому циркуляция вектора В по замкнутому контуру L равна На контуре L угол меняется от 0 до 2, поэтому (3.7.2) Поскольку для прямого тока то Поэтому циркуляция вектора В по замкнутому контуру L равна На контуре L угол меняется от 0 до 2, поэтому (3.7.2)


Полученная формула (3.7.2) справедлива для контура произвольной формы, охватывающего проводник с током. Знак циркуляции зависит от направления обхода. Если направление обхода образует с направлением тока правовинтовую систему, то циркуляция считается положительной, иначе – отрицательной. Знак циркуляции можно учесть, считая ток I алгебраической величиной: ток считается положительным, если его направление связано с направлением обхода по правилу правого винта, иначе – ток считается отрицательным. Полученная формула (3.7.2) справедлива для контура произвольной формы, охватывающего проводник с током. Знак циркуляции зависит от направления обхода. Если направление обхода образует с направлением тока правовинтовую систему, то циркуляция считается положительной, иначе – отрицательной. Знак циркуляции можно учесть, считая ток I алгебраической величиной: ток считается положительным, если его направление связано с направлением обхода по правилу правого винта, иначе – ток считается отрицательным.


Если контур не охватывает ток, то при обходе по контуру радиальная прямая сначала поворачивается по часовой стрелке (участок 1-2), а затем – против часовой стрелки (участок 2-1). Поэтому при полном обходе такого контура угол не меняется и значит циркуляция вектора В равна нулю. Если контур не охватывает ток, то при обходе по контуру радиальная прямая сначала поворачивается по часовой стрелке (участок 1-2), а затем – против часовой стрелки (участок 2-1). Поэтому при полном обходе такого контура угол не меняется и значит циркуляция вектора В равна нулю.


Если контур охватывает несколько токов, то в силу принципа суперпозиции магнитных полей имеем (3.7.3) Эта формула выражает собой закон полного тока для магнитного поля в вакууме (теорема о циркуляции вектора магнитной индукции) - циркуляция вектора магнитной индукции по произвольному замкнутому контуру равна произведению магнитной постоянной на алгебраическую сумму токов, охватываемых контуром. Применяя формулу (3.7.3), каждый ток надо учитывать столько раз, сколько раз он охватывается контуром. Формула (3.7.3) справедлива только для поля в вакууме. Если контур охватывает несколько токов, то в силу принципа суперпозиции магнитных полей имеем (3.7.3) Эта формула выражает собой закон полного тока для магнитного поля в вакууме (теорема о циркуляции вектора магнитной индукции) - циркуляция вектора магнитной индукции по произвольному замкнутому контуру равна произведению магнитной постоянной на алгебраическую сумму токов, охватываемых контуром. Применяя формулу (3.7.3), каждый ток надо учитывать столько раз, сколько раз он охватывается контуром. Формула (3.7.3) справедлива только для поля в вакууме.


Сравнивая (3.7.3) с формулой для циркуляции вектора напряженности электрического поля видим, что в отличие от электрического поля, циркуляция магнитного поля по замкнутому контуру не равна нулю. Это является следствием вихревого характера магнитного поля. Сравнивая (3.7.3) с формулой для циркуляции вектора напряженности электрического поля видим, что в отличие от электрического поля, циркуляция магнитного поля по замкнутому контуру не равна нулю. Это является следствием вихревого характера магнитного поля.

«Что изучает физика» - Что изучает физика? Электрические явления природы. Атомные явления природы. Вступительное слово учителя. Явления природы. Техника. Горение. Оптические явления природы. Гроза. Утренняя роса. Знакомство учащихся с новым предметом школьного курса. Вызов интереса учащихся к сознательному изучению данного предмета.

«Сопротивление проводника» - Сопротивление и проводимость проводников. ЭДС, как и потенциал, выражается в вольтах. Природа сторонних сил может быть различной. Мощность тока. Применение источников с разным значением ЭДС возможно, но затруднительно. Второй интеграл. Величина? служит характеристикой вещества, из которого изготовлен проводник.

«Дизельный двигатель» - Способы изменения внутренней энергии. Реактивный двигатель. Переработка нефти. Масла. Форма существования материи. Паровая машина. Способ существования материи. Теплопроводность. Теплопередача. Модель теплового двигателя. Конвекция. Один из способов изменения внутренней энергии. Излучение. Паровая турбина.

«Ток в цепи» - Что такое напряжение? Как на опыте показать, что сила тока в цепи зависит от свойств проводника? От какого полюса источника тока и к какому принято считать направление тока? Как зависит сила тока в проводнике от напряжения на концах проводника? Какой вид имеет график зависимости силы тока от напряжения?

«Электрический заряд» - Формулировка закона Кулона. Напряженность поля точечного заряда в вакууме. Электрический заряд дискретен. Экспериментальная проверка закона Кулона на макро и микро дистанциях. Электрический заряд и закон его сохранения. Свойства электрического заряда. Электрический заряд аддитивен. Напряженность электростатического поля.

«Теория относительности Энштейна» - Биография Альберта Эйнштейна. В 1905г. Эйнштейну было 26 лет, но его имя уже приобрело широкую известность. Движения системы. Теория относительности - физическая теория пространства и времени. Любой перенос энергии связан с переносом массы. Общая теория относительности. Физик, автор теории относительности.

Всего в теме 18 презентаций