Урок «Графический способ решения систем уравнений. Графическое решение квадратных уравнений

Определение Упорядоченную совокупность (x 1 , x 2 , ... , x n) n вещественных чисел называют n-мерным вектором , а числа x i (i = ) - компонентами, или координатами,

Пример. Если, например, некоторый автомобильный завод должен выпустить в смену 50 легковых автомобилей, 100 грузовых, 10 автобусов, 50 комплектов запчастей для легковых автомобилей и 150 комплектов для грузовых автомобилей и автобусов, то производственную программу этого завода можно записать в виде вектора (50, 100, 10, 50, 150), имеющего пять компонент.

Обозначения. Векторы обозначают жирными строчными буквами или буквами с чертой или стрелкой наверху, например, a или . Два вектора называются равными , если они имеют одинаковое число компонент и их соответствующие компоненты равны.

Компоненты вектора нельзя менять местами, например, (3, 2, 5, 0, 1) и (2, 3, 5, 0, 1) разные вектора.
Операции над векторами. Произведением x = (x 1 , x 2 , ... ,x n) на действительное число λ называется вектор λ x = (λ x 1 , λ x 2 , ... , λ x n).

Суммой x = (x 1 , x 2 , ... ,x n) и y = (y 1 , y 2 , ... ,y n) называется вектор x + y = (x 1 + y 1 , x 2 + y 2 , ... , x n + + y n).

Пространство векторов. N -мерное векторное пространство R n определяется как множество всех n-мерных векторов, для которых определены операции умножения на действительные числа и сложение.

Экономическая иллюстрация. Экономическая иллюстрация n-мерного векторного пространства: пространство благ (товаров ). Под товаром мы будем понимать некоторое благо или услугу, поступившие в продажу в определенное время в определенном месте. Предположим, что существует конечное число наличных товаров n; количества каждого из них, приобретенные потребителем, характеризуются набором товаров

x = (x 1 , x 2 , ..., x n),

где через x i обозначается количество i-го блага, приобретенного потребителем. Будем считать, что все товары обладают свойством произвольной делимости, так что может быть куплено любое неотрицательное количество каждого из них. Тогда все возможные наборы товаров являются векторами пространства товаров C = { x = (x 1 , x 2 , ... , x n) x i ≥ 0, i = }.

Линейная независимость. Система e 1 , e 2 , ... , e m n-мерных векторов называется линейно зависимой , если найдутся такие числа λ 1 , λ 2 , ... , λ m , из которых хотя бы одно отлично от нуля, что выполняется равенство λ 1 e 1 + λ 2 e 2 +... + λ m e m = 0; в противном случае данная система векторов называется линейно независимой , то есть указанное равенство возможно лишь в случае, когда все . Геометрический смысл линейной зависимости векторов в R 3 , интерпретируемых как направленные отрезки, поясняют следующие теоремы.

Теорема 1. Система, состоящая из одного вектора, линейно зависима тогда и только тогда, когда этот вектор нулевой.

Теорема 2. Для того, чтобы два вектора были линейно зависимы, необходимо и достаточно, чтобы они были коллинеарны (параллельны).

Теорема 3 . Для того, чтобы три вектора были линейно зависимы, необходимо и достаточно, чтобы они были компланарны (лежали в одной плоскости).

Левая и правая тройки векторов. Тройка некомпланарных векторов a, b, c называется правой , если наблюдателю из их общего начала обход концов векторов a, b, c в указанном порядке кажется совершающимся по часовой стрелке. B противном случае a, b, c - левая тройка . Все правые (или левые) тройки векторов называются одинаково ориентированными.

Базис и координаты. Тройка e 1, e 2 , e 3 некомпланарных векторов в R 3 называется базисом , а сами векторы e 1, e 2 , e 3 - базисными . Любой вектор a может быть единственным образом разложен по базисным векторам, то есть представлен в виде

а = x 1 e 1 + x 2 e 2 + x 3 e 3, (1.1)

числа x 1 , x 2 , x 3 в разложении (1.1) называются координатами a в базисе e 1, e 2 , e 3 и обозначаются a (x 1 , x 2 , x 3).

Ортонормированный базис. Если векторы e 1, e 2 , e 3 попарно перпендикулярны и длина каждого из них равна единице, то базис называется ортонормированным , а координаты x 1 , x 2 , x 3 - прямоугольными. Базисные векторы ортонормированного базиса будем обозначать i, j, k.

Будем предполагать, что в пространстве R 3 выбрана правая система декартовых прямоугольных координат {0, i, j, k }.

Векторное произведение. Векторным произведением а на вектор b называется вектор c , который определяется следующими тремя условиями:

1. Длина вектора c численно равна площади параллелограмма, построенного на векторах a и b, т. е.
c
= |a||b| sin (a ^b ).

2. Вектор c перпендикулярен к каждому из векторов a и b.

3. Векторы a, b и c , взятые в указанном порядке, образуют правую тройку.

Для векторного произведения c вводится обозначение c = [ab ] или
c = a × b.

Если векторы a и b коллинеарны, то sin(a^b ) = 0 и [ab ] = 0, в частности, [aa ] = 0. Векторные произведения ортов: [ij ]= k, [jk ] = i , [ki ]= j .

Если векторы a и b заданы в базисе i, j, k координатами a (a 1 , a 2 , a 3), b (b 1 , b 2 , b 3), то


Смешанное произведение. Если векторное произведение двух векторов а и b скалярноумножается на третий вектор c, то такое произведение трех векторов называется смешанным произведением и обозначается символом a b c.

Если векторы a, b и c в базисе i, j, k заданы своими координатами
a (a 1 , a 2 , a 3), b (b 1 , b 2 , b 3), c (c 1 , c 2 , c 3), то

.

Смешанное произведение имеет простое геометрическое толкование - это скаляр, по абсолютной величине равный объему параллелепипеда, построенного на трех данных векторах.

Если векторы образуют правую тройку, то их смешанное произведение есть число положительное, равное указанному объему; если же тройка a, b, c - левая, то a b c <0 и V = - a b c , следовательно V = |a b c| .

Координаты векторов, встречающиеся в задачах первой главы, предполагаются заданными относительно правого ортонормированного базиса. Единичный вектор, сонаправленный вектору а, обозначается символом а о. Символом r =ОМ обозначается радиус-вектор точки М, символами а, АВ или |а| , | АВ| обозначаются модули векторов а и АВ.

Пример 1.2. Найдите угол между векторами a = 2m +4n и b = m-n , где m и n - единичные векторы и угол между m и n равен 120 о.

Решение . Имеем: cos φ = ab /ab, ab = (2m +4n ) (m-n ) = 2 m 2 - 4n 2 +2mn =
= 2 - 4+2cos120 o = - 2 + 2(-0.5) = -3; a = ; a 2 = (2m +4n ) (2m +4n ) =
= 4 m 2 +16mn +16 n 2 = 4+16(-0.5)+16=12, значит a = . b = ; b 2 =
= (m-n
)(m-n ) = m 2 -2mn + n 2 = 1-2(-0.5)+1 = 3, значит b = . Окончательно имеем: cos
φ = = -1/2, φ = 120 o .

Пример 1.3. Зная векторы AB (-3,-2,6) и BC (-2,4,4),вычислите длину высоты AD треугольника ABC.

Решение . Обозначая площадь треугольника ABC через S, получим:
S = 1/2 BC AD. Тогда
AD=2S/BC, BC= = = 6,
S = 1/2| AB × AC| . AC=AB+BC , значит, вектор AC имеет координаты
.
.

Пример 1.4 . Даны два вектора a (11,10,2) и b (4,0,3). Найдите единичный вектор c, ортогональный векторам a и b и направленный так, чтобы упорядоченная тройка векторов a, b, c была правой.

Решение. Обозначим координаты вектора c относительно данного правого ортонормированного базиса через x, y, z.

Поскольку c a, c b , то ca = 0, cb = 0. По условию задачи требуется, чтобы c = 1 и a b c >0.

Имеем систему уравнений для нахождения x,y,z: 11x +10y + 2z = 0, 4x+3z=0, x 2 + y 2 + z 2 = 0.

Из первого и второго уравнений системы получим z = -4/3 x, y = -5/6 x. Подставляя y и z в третье уравнение, будем иметь: x 2 = 36/125, откуда
x = ± . Используя условие a b c > 0, получим неравенство

С учетом выражений для z и y перепишем полученное неравенство в виде: 625/6 x > 0, откуда следует, что x>0. Итак, x = , y = - , z =- .

Рассмотрим следующие уравнения:

1. 2*x + 3*y = 15;

2. x 2 + y 2 = 4;

4. 5*x 3 + y 2 = 8.

Каждое из представленных выше уравнений является уравнением с двумя переменными. Множество точек координатной плоскости, координаты которых обращают уравнение в верное числовое равенство, называется графиком уравнения с двумя неизвестными .

График уравнения с двумя переменными

Уравнения с двумя переменными имеют большое многообразие графиков. Например, для уравнения 2*x + 3*y = 15 графиком будет прямая линия, для уравнения x 2 + y 2 = 4 графиком будет являться окружность с радиусом 2, графиком уравнения y*x = 1 будет являться гипербола и т.д.

У целых уравнений с двумя переменными тоже существует такое понятие, как степень. Определяется эта степень, так же как для целого уравнения с одной переменной. Для этого приводят уравнение к виду, когда левая часть есть многочлен стандартного вида, а правая - нуль. Это осуществляется путем равносильных преобразований.

Графический способ решения систем уравнения

Разберемся, как решать системы уравнений, которые будут состоять из двух уравнений с двумя переменными. Рассмотрим графический способ решения таких систем.

Пример 1. Решить систему уравнений:

{ x 2 + y 2 = 25

{y = -x 2 + 2*x + 5.

Построим графики первого и второго уравнений в одной системе координат. Графиком первого уравнения будет окружность с центром в начале координат и радиусом 5. Графиком второго уравнения будет являться парабола с ветвями, опущенными вниз.

Все точки графиков будут удовлетворять каждый своему уравнению. Нам же необходимо найти такие точки, которые будут удовлетворять как первому, так и второму уравнению. Очевидно, что это будут точки, в которых эти два графика пересекаются.

Используя наш рисунок находим приблизительные значения координат, в которых эти точки пересекаются. Получаем следующие результаты:

A(-2,2;-4,5), B(0;5), C(2,2;4,5), D(4,-3).

Значит, наша система уравнений имеет четыре решения.

x1 ≈ -2,2; y1 ≈ -4,5;

x2 ≈ 0; y2 ≈ 5;

x3 ≈ 2,2; y3 ≈ 4,5;

x4 ≈ 4,y4 ≈ -3.

Если подставить данные значения в уравнения нашей системы, то можно увидеть, что первое и третье решение являются приближенными, а второе и четвертое - точными. Графический метод часто используется, чтобы оценить количество корней и примерные их границы. Решения получаются чаще приближенными, чем точными.