Уравнение гиперболы через 2 точки. Гипербола и ее каноническое уравнение. Кривые второго порядка

Построение прямой, параллельной заданной плоскости, основано на

следующем положении, известном из геометрии: прямая параллельна плоскости,

если эта прямая параллельна любой прямой в плоскости.

Через заданную точку в пространстве можно провести бесчисленное

множество прямых линий, параллельных заданной плоскости: Для получения

единственного решения требуется какое-нибудь дополнительное условие.

Например, через точку (рис. 180) требуется провести прямую,

параллельную плоскости, заданной треугольником ABC, и плоскости проекций!

(дополнительное условие).

Очевидно, искомая прямая должна быть параллельна линии пересечения

обеих плоскостей, т.е. должна быть параллельна горизонтальному следу

плоскости, заданной треугольником ABC. Для определения направления этого

следа можно воспользоваться горизонталью плоскости, заданной треугольником

ABC. На рис. 180 проведена горизонталь DC и затем через точку M проведена

прямая, параллельная этой горизонтали.

Поставим обратную задачу: через заданную точку провести плоскость,

параллельную заданной прямой линии. Плоскости, проходящие через некоторую

точку А параллельно некоторой прямой ВС, образуют пучок плоскостей, осью

которого является прямая, проходящая через точку А параллельно прямой ВС.

Для получения единственного решения требуется какое-либо дополнительное

Например, надо провести плоскость, параллельную прямой CD, не через

точку, а через прямую АВ (рис. 181). Прямые АВ и CD - скрещивающиеся. Если

через одну из двух скрещивающихся прямых требуется провести плоскость,

параллель-

Рис. 180 Рис. 181

ную другой, то задача имеет единственное решение. Через точку В

проведена прямая, параллельная прямой CD; прямые АВ и BE определяют

плоскость, параллельную прямой CD.

Как установить, параллельна ли данная прямая данной плоскости?

Можно попытаться провести в этой плоскости некоторую прямую параллельно

данной прямой. Если такую прямую в плоскости не удается построить, то

заданные прямая и плоскость не параллельны между собой.

Можно попытаться найти также точку пересечения данной прямой с данной

плоскостью. Если такая точка не может быть найдена, то заданные прямая и

плоскость взаимно параллельны.

§ 28. Построение взаимно параллельных плоскостей

Пусть дается точка К, через которую надо провести плоскость,

параллельную некоторой плоскости, заданной пересекающимися прямыми AF и BF

Очевидно, если через точку К провести прямые СК и DK, соответственно

параллельные прямым AF и BF, то плоскость, определяемая прямыми СК и DK,

окажется параллельной заданной плоскости.

Другой пример построения дан на рис. 183 справа. Через точку A

проведена пл. параллельно пл. а. Сначала через точку А проведена прямая,

заведомо параллельная пл. . Это горизонталь с проекциями "" и "",

причем A"N"\\ h " o. Таk

Рис. 182 Рис. 183

как точка N является фронтальным следом горизонтали AN, то через эту

точку пройдет след f"o% f"o, а через Х - след h"o || h"o. Плоскости

и взаимно параллельны, так как их одноименные пересекающиеся следы взаимно

параллельны.

На рис. 184 изображены две параллельные между собой плоскости -- одна

га них задана треугольником ЛВС, другая -- параллельными прямыми DE и FG.

Чем же устанавливается параллельность этих плоскостей? Тем, что в плоскости,

заданной прямыми DE и FG, оказалось возможным провести две пересекающиеся

прямые KN и КМ, соответственно параллельные пересекающимся прямым АС и

ВС другой плоскости.

Конечно, можно было бы попытаться найти точку пересечения хотя бы

прямой DE с плоскостью треугольника ABC. Неудача подтвердила бы

параллельность плоскостей.

ВОПРОСЫ К §§ 27-28

1. На чем основано построение прямой линии, которая должна быть

параллельна некоторой плоскости?

2. Как провести плоскость через прямую параллельно заданной прямой?

3. Чем определяется взаимная параллельность двух плоскостей?

4. Как провести через точку плоскость, параллельную заданной плоскости?

5. Как проверить на чертеже, параллельны ли одна другой заданные

Соблюдение Вашей конфиденциальности важно для нас. По этой причине, мы разработали Политику Конфиденциальности, которая описывает, как мы используем и храним Вашу информацию. Пожалуйста, ознакомьтесь с нашими правилами соблюдения конфиденциальности и сообщите нам, если у вас возникнут какие-либо вопросы.

Сбор и использование персональной информации

Под персональной информацией понимаются данные, которые могут быть использованы для идентификации определенного лица либо связи с ним.

От вас может быть запрошено предоставление вашей персональной информации в любой момент, когда вы связываетесь с нами.

Ниже приведены некоторые примеры типов персональной информации, которую мы можем собирать, и как мы можем использовать такую информацию.

Какую персональную информацию мы собираем:

  • Когда вы оставляете заявку на сайте, мы можем собирать различную информацию, включая ваши имя, номер телефона, адрес электронной почты и т.д.

Как мы используем вашу персональную информацию:

  • Собираемая нами персональная информация позволяет нам связываться с вами и сообщать об уникальных предложениях, акциях и других мероприятиях и ближайших событиях.
  • Время от времени, мы можем использовать вашу персональную информацию для отправки важных уведомлений и сообщений.
  • Мы также можем использовать персональную информацию для внутренних целей, таких как проведения аудита, анализа данных и различных исследований в целях улучшения услуг предоставляемых нами и предоставления Вам рекомендаций относительно наших услуг.
  • Если вы принимаете участие в розыгрыше призов, конкурсе или сходном стимулирующем мероприятии, мы можем использовать предоставляемую вами информацию для управления такими программами.

Раскрытие информации третьим лицам

Мы не раскрываем полученную от Вас информацию третьим лицам.

Исключения:

  • В случае если необходимо - в соответствии с законом, судебным порядком, в судебном разбирательстве, и/или на основании публичных запросов или запросов от государственных органов на территории РФ - раскрыть вашу персональную информацию. Мы также можем раскрывать информацию о вас если мы определим, что такое раскрытие необходимо или уместно в целях безопасности, поддержания правопорядка, или иных общественно важных случаях.
  • В случае реорганизации, слияния или продажи мы можем передать собираемую нами персональную информацию соответствующему третьему лицу – правопреемнику.

Защита персональной информации

Мы предпринимаем меры предосторожности - включая административные, технические и физические - для защиты вашей персональной информации от утраты, кражи, и недобросовестного использования, а также от несанкционированного доступа, раскрытия, изменения и уничтожения.

Соблюдение вашей конфиденциальности на уровне компании

Для того чтобы убедиться, что ваша персональная информация находится в безопасности, мы доводим нормы соблюдения конфиденциальности и безопасности до наших сотрудников, и строго следим за исполнением мер соблюдения конфиденциальности.

1. Общее уравнение кривых второго порядка.

Всякое уравнение второй степени относительно х и у, то есть уравнение вида

где - заданные постоянные коэффициенты, причем
, определяет на плоскости линию, которую принято называть кривой второго порядка. Верно и обратное. Существует четыре вида кривых второго порядка: окружность, эллипс, гипербола и парабола. Все они могут быть получены путем сечения конуса плоскостью и потому их еще называют кониками.

Уравнения кривых можно получить исходя из их геометрических свойств как некоторого геометрического места точек, удовлетворяющего определенным условиям.

2. Окружность. Окружностью называют геометрическое место точек плоскости, равноудаленных от данной точки, называемой центром.

Если r – радиус окружности, а точка С() – ее центр, то уравнение окружности имеет вид:

. (12.2)

Если центр окружности совпадает с началом координат, то уравнение окружности имеет простейший – канонический вид: .

Пример14. Составить уравнение окружности, проходящей через точки
А(5; 0) и В(1; 4), если центр ее лежит на прямой х – у – 3 = 0.

Найдем координаты точки М – середины хорды АВ:

, то есть М(3; 2).

Центр окружности находится на перпендикуляре, восстановленном из середины отрезка АВ. Составим уравнение прямой АВ:

, или х + у – 5 = 0.

Угловой коэффициент прямой АВ равен -1, следовательно угловой коэффициент перпендикуляра . Уравнение перпендикуляра

у – 2 = 1(х – 3), или х – у – 1 = 0.

Центр окружности С лежит на прямой х + у – 3 = 0 по условию задачи, а также на перпендикуляре х – у – 1 = 0, то есть координаты центра удовлетворяют системе уравнений:

х – у – 3 = 0

х – у – 1 = 0.

Отсюда х = 2, у = 1, и точка С(2; 1).

Радиус окружности равен длине отрезка СА:

Уравнение окружности: (х – 2) 2 +(у-1) 2 = 10.

3. Эллипс. Эллипсом называется геометрическое место точек плоскости, сумма расстояний которых до двух данных точек, называемых фокусами, есть величина постоянная, равная , большая чем расстояние между фокусами. Каноническое уравнение эллипса имеет вид:

. (12.3)

Здесь - большая полуось эллипса, - малая полуось, причем если расстояние между фокусами равно 2с, то . Величина называется эксцентриситетом эллипса и характеризует меру сжатия. Так как с < , то < 1. Расстояния от некоторой точки М, расположенной на эллипсе, до фокусов называются фокальными радиус-векторами этой точки. Фокальные радиус-векторы выражаются через абсциссу точки эллипса по формулам: .

Прямые и называются директрисами эллипса. Директрисы эллипса обладают следующим свойством: если r – фокальный радиус-вектор точки М, d – расстояние от этой точки до односторонней с фокусом директрисы, то .


Пример15. Составить уравнение эллипса, фокусы которого лежат на оси абсцисс, симметрично относительно начала координат, зная, что его большая ось равна 8, а расстояние между директрисами равно 16.

По условию задачи Уравнение директрис ; расстояние между директрисами , отсюда ; так как , то , то есть с = 2.

Так как , то .

Уравнение эллипса: .

Замечание: если в каноническом уравнении эллипса , то фокусы эллипса лежат на оси ординат и ; уравнения директрис: ; фокальные радиус-векторы определяются по формулам: .

Пример 16. Составить уравнение эллипса, фокусы которого лежат на оси ординат симметрично относительно начала координат, зная, что расстояние между фокусами 2с = 24, эксцентриситет .

Каноническое уравнение эллипса имеет вид: .

По условию задачи с = 12. так как , то , то есть .

Так как , то .

Уравнение эллипса: .

4. Гипербола. Гиперболой называется геометрическое место точек плоскости, для которых абсолютная величина разности расстояний до двух фиксированных точек той же плоскости, называемых фокусами, есть величина постоянная, равная , меньшая, чем расстояние между фокусами ().

Каноническое уравнение гиперболы имеет вид:

, (12.4)

где .

Гипербола состоит из двух ветвей и расположена симметрично относительно осей координат. Точки и называют вершинами гиперболы. Отрезок называют вещественной осью гиперболы, а отрезок , соединяющий точки и , - мнимой осью. Гипербола имеет две асимптоты, уравнения которых . Отношение называется эксцентриситетом гиперболы. Прямые, заданные уравнениями называют директрисами гиперболы. Фокальные радиус-векторы правой ветви гиперболы: .

Фокальные радиус-векторы левой ветви гиперболы: .

Уравнение так же является уравнением гиперболы, но вещественной осью этой гиперболы служит отрезок оси OY длины . Точки и служат вершинами гиперболы. Ветви гиперболы расположены в верхней и нижней части координатной плоскости. Две гиперболы и называют сопряженными гиперболами.

Пример17. Эксцентриситет гиперболы равен . Составить простейшее уравнение гиперболы, проходящей через точку М().

По определению эксцентриситета, имеем , или .

Но , следовательно . Так как точка М() находится на гиперболе, то . Отсюда .

Таким образом, уравнение искомой гиперболы имеет вид: .

Пример 18. Угол между асимптотами гиперболы равен 60 о. Вычислить эксцентриситет гиперболы.

Угловой коэффициент асимптоты гиперболы
. Эксцентриситет гиперболы
.

Подставляя значение углового коэффициента, получим

.

Пример 19. Составить уравнение гиперболы, проходящей через точку
М(9; 8), если асимптоты гиперболы заданы уравнениями .

Из уравнения асимптоты имеем . Так как точка М(9; 8) принадлежит гиперболе, то ее координаты удовлетворяют уравнению гиперболы, то есть .

Для отыскания полуосей гиперболы, имеем систему:

Решив систему, получим Искомое уравнение гиперболы имеет вид: .

5. Парабола. Параболой называется геометрическое место точек плоскости, равноудаленных от данной точки, называемой фокусом, и от данной прямой, называемой директрисой. Если директриса задана уравнением , а фокус находится в точке F(), то уравнение параболы имеет вид:

. (12.5)

Эта парабола расположена симметрично относительно оси абсцисс.

Уравнение является уравнением параболы, симметричной относительно оси ординат.

Длина фокального радиус-вектора параболы определяется по формуле .

Пример 20. Составить уравнение параболы с вершиной в начале координат, симметричной относительно оси OY и отсекающей на биссектрисе первого и третьего координатных углов хорду длиной 8 .

Искомое уравнение параболы имеет вид .

Уравнение биссектрисы у = х. Определим точки пересечения параболы и биссектрисы:

Решив систему, получим О(0; 0) и М(2р; 2р).

Длина хорды ОМ = .

По условию имеем: ОМ = 8 , откуда 2р = 8.

Искомое уравнение параболы .

Уравнение плоскости

В декартовых координатах каждая плоскость определяется уравнением первой степени относительно неизвестных х, у и z и каждое уравнение первой степени с тремя неизвестными определяет плоскость.

Возьмем произвольный вектор с началом в точке . Выведем уравнение геометрического места точек М(x,y,z), для каждой из которых вектор перпендикулярен вектору . Запишем условие перпендикулярности векторов:

Полученное уравнение линейное относительно x, y, z, следовательно, оно определяет плоскость, проходящую через точку перпендикулярно вектору . Вектор называют нормальным вектором плоскости. Раскрывая скобки в полученном уравнении плоскости и обозначая число
буквой D, представим его в виде:

Ax + By + Cz + D = 0. (13.2)

Это уравнение называют общим уравнением плоскости . А, В, С и D – коэффициенты уравнения, А 2 + В 2 + С 2 0.

1. Неполные уравнения плоскости.

Если в общем уравнении плоскости один, два или три коэффициента равны нулю, то уравнение плоскости называют неполным. Могут представиться следующие случаи:

1) D = 0 – плоскость проходит через начало координат;

2) А = 0 – плоскость параллельна оси Ох;

3) В = 0 – плоскость параллельна оси Оу;

4) С = 0 – плоскость параллельна оси Оz;

5) А = В = 0 – плоскость параллельна плоскости ХОY;

6) А = С = 0 – плоскость параллельна плоскости ХОZ;

7) В = С = 0 – плоскость параллельна плоскости YOZ;

8) А = D = 0 – плоскость проходит через ось Ох;

9) В = D = 0 – плоскость проходит через ось Оу;

10) С = D = 0 – плоскость проходит через ось Оz;

11) А = В = D = 0 – плоскость совпадает с плоскостью XOY;

12) А = С = D = 0 – плоскость совпадает с плоскостью XOZ;

13) С = В = D = 0 – плоскость совпадает с плоскостью YOZ.

2. Уравнение плоскости в отрезках.

Если в общем уравнении плоскости D 0, то его можно преобразовать к виду

, (13.3)

которое называют уравнением плоскости в отрезках. - определяют длины отрезков, отсекаемых плоскостью на координатных осях.

3. Нормальное уравнение плоскости.

Уравнение

где - направляющие косинусы нормального вектора плоскости , называют нормальным уравнением плоскости. Для приведения общего уравнение плоскости к нормальному виду его надо умножить на нормирующий множитель :
,

при этом знак перед корнем выбирают из условия .

Расстояние d от точки до плоскости определяют по формуле: .

4. Уравнение плоскости, проходящей через три точки

Возьмем произвольную точку плоскости М(x,y,z) и соединим точку М 1 с каждой из трех оставшихся. Получим три вектора . Для того, чтобы три вектора принадлежали одной плоскости, необходимо и достаточно, чтобы они были компланарны. Условием компланарности трех векторов служит равенство нулю их смешанного произведения, то есть .

Записывая это равенство через координаты точек, получим искомое уравнение:

. (13.5)

5. Угол между плоскостями.

Плоскости могут быть параллельны, совпадать или пересекаться, образуя двугранный угол . Пусть две плоскости заданы общими уравнениями и . Чтобы плоскости совпадали, нужно, чтобы координаты любой точки, удовлетворяющей первому уравнению, удовлетворяли бы и второму уравнению.

Это будет иметь место, если
.

Если , то плоскости параллельны.

Угол , образованный двумя пересекающимися плоскостями, равен углу, образованному их нормальными векторами. Косинус угла между векторами определяется по формуле:

Если , то плоскости перпендикулярны.

Пример 21 . Составить уравнение плоскости, которая проходит через две точки и перпендикулярно к плоскости .

Запишем искомое уравнение в общем виде: . Так как плоскость должна проходить через точки и , то координаты точек должны удовлетворять уравнению плоскости. Подставляя координаты точек и , получаем: и .

Из условия перпендикулярности плоскостей имеем: . Вектор расположен в искомой плоскости и, следовательно, перпендикулярен нормальному вектору: .

Объединяя полученные уравнения, имеем:

Решив систему, получим: , , , .

Искомое уравнение имеет вид: .

Второй способ. Нормальный вектор заданной плоскости имеет координаты . Вектор . Нормальный вектор искомой плоскости перпендикулярен вектору и вектору , т.е. коллинеарен векторному произведению . Вычислим векторное произведение:
.

Вектор
. Запишем уравнение плоскости, проходящей через точку перпендикулярно вектору :

Или искомое уравнение.

Дано уравнение эллипса .

Решение:

Запишем уравнение эллипса в каноническом виде:
.

Отсюда
. Используя соотношение
, находим
. Следовательно,
.

По формуле найдем.

Уравнения директрис
имеют вид
, расстояние между ними
.

По формуле
находим абсциссу точек, расстояние от которых до точкиравно 12:

. Подставляя значениеx в уравнение эллипса, найдем ординаты этих точек:.

Таким образом, условию задачи удовлетворяет точка A(7;0).

Задача 56.

Составить уравнение эллипса, проходящего через точки .

Решение:

Уравнение эллипса ищем в виде
.

Так как эллипс проходит через точки
, то их координаты удовлетворяют уравнению эллипса:
. Умножая второе равенство на (-4) и складывая с первым, находим
.

Подставляя найденное значение в первое уравнение, найдем
. Таким образом, искомое уравнение
.

Задача 57.

;
.

Гипербола

Гиперболой называется линия, состоящая из всех точек плоскости, модуль разности расстояний от которых до двух данных точекиесть величина постоянная (не равная нулю и меньшая, чем расстояние между точкамии).

Точки иназываютсяфокусами гиперболы. Пусть по-прежнему расстояние между фокусами равно
. Модуль расстояний от точек гиперболы до фокусовиобозначим через. По условию,
.

,

где
‑ координаты произвольной точки гиперболы,

.

Уравнение
называетсяканоническим уравнением гиперболы.

У гиперболы две асимптоты
.

Эксцентриситетом гиперболы называется число. Для любой гиперболы
.

Фокальными радиусами точки гиперболы называются отрезки прямых, соединяющие эту точку с фокусамии. Их длиныизадаются формулами:


Прямые
называются директрисами гиперболы. Как и в случае эллипса, точки гиперболы характеризуются соотношением.

Задача 58.

Найти расстояние между фокусами и эксцентриситет гиперболы
.

Ответ:
.

Задача 59.

Написать каноническое уравнение гиперболы, если (
). Определить эксцентриситет гиперболы.

Ответ:
.

Задача 60.

Написать каноническое уравнение гиперболы, симметричной относительно осей координат, если она проходит через точку
, а эксцентриситет равен
.

Ответ:
.

Задача 61.

Найти уравнения гиперболы, вершины которой находятся в фокусах, а фокусы в вершинах эллипса
.

Ответ:
.

Задача 62.

Определить геометрическое место точек
, расстояния от которых до прямой
вдвое меньше, чем до точки
.

Ответ:
.

Задача 63.

Составить уравнение гиперболы симметричной относительно системы координат, если она проходит через точки
,
.

Ответ:
.

Задача 64.

Составить уравнение гиперболы, если ее асимптоты заданы уравнением
, и гипербола проходит через точку
.

Ответ:
.

Задача 65.

Как расположены на плоскости точки, координаты которых удовлетворяют условиям:

.

Парабола

Параболой называется линия, состоящая из всех точек плоскости, равноудаленных от данной точки
(фокуса) и данной прямой(директрисы).

Для вывода канонического уравнения параболы ось
проводят через фокус
перпендикулярно директрисев направлении от директрисы к фокусу; начало координат берут в середине отрезка между фокусом
и точкой
пересечения оси
с директрисой. Если обозначить черезрасстояние фокуса от директрисы, то
и уравнение директрисы будет иметь вид
.

В выбранной системе координат уравнение параболы имеет вид:
. Это уравнение называетсяканоническим уравнением параболы .