Тема действия с рациональными числами. "действия с рациональными числами". Умножение на единицу

На этом уроке мы вспомним основные свойства действий с числами. Мы не только повторим основные свойства, но и научимся применять их к рациональным числам. Все полученные знания закрепим с помощью решения примеров.

Основные свойства действий с числами:

Первые два свойства - это свойства сложения, следующие два - умножения. Пятое свойство относится к обеим операциям.

Ничего нового в этих свойствах нет. Они были справедливы и для натуральных, и для целых чисел. Они также верны для рациональных чисел и будут верны для чисел, которые мы будем изучать дальше (например, иррациональных).

Перестановочные свойства:

От перестановки слагаемых или множителей результат не меняется.

Сочетательные свойства: , .

Сложение или умножение нескольких чисел можно делать в любом порядке.

Распределительное свойство: .

Свойство связывает обе операции - сложение и умножение. Также если его читать слева направо, то его называют правилом раскрытия скобок, а если в обратную сторону - правилом вынесения общего множителя за скобки.

Следующие два свойства описывают нейтральные элементы для сложения и умножения: прибавление нуля и умножение на единицу не меняют исходного числа.

Еще два свойства, которые описывают симметричные элементы для сложения и умножения, сумма противоположных чисел равна нулю; произведение обратных чисел равно единице.

Следующее свойство: . Если число умножить на ноль, в результате всегда будет ноль.

Последнее свойство, которое мы рассмотрим: .

Умножив число на , получаем противоположное число. У этого свойства есть особенность. Все остальные рассмотренные свойства нельзя было доказать, используя остальные. Это же свойство можно доказать, используя предыдущие.

Умножение на

Докажем, что если умножить число на , то получим противоположное число. Используем для этого распределительное свойство: .

Оно верно для любых чисел. Подставим вместо числа и :

Слева в скобках стоит сумма взаимно противоположных чисел. Их сумма равна нулю (у нас есть такое свойство). Слева теперь . Справа , получаем: .

Теперь слева у нас стоит ноль, а справа - сумма двух чисел. Но если сумма двух чисел равна нулю, то эти числа взаимно противоположны. Но у числа только одно противоположное число: . Значит, - это и есть : .

Свойство доказано.

Такое свойство, которое можно доказать, используя предыдущие свойства, называют теоремой

Почему здесь нет свойств вычитания и деления? Например, можно было бы записать распределительное свойство для вычитания: .

Но так как:

  • вычитание любого числа можно эквивалентно записать в виде сложения, заменив число на противоположное:

  • деление можно записать в виде умножения на обратное число:

Значит, свойства сложения и умножения вполне можно применять для вычитания и деления. В итоге список свойства, которые необходимо запомнить, получается короче.

Все рассмотренные нами свойства не являются исключительно свойствами рациональных чисел. Всем этим правилам подчиняются и другие числа, например, иррациональные. Например, сумма и противоположного ему числа равна нулю: .

Теперь мы перейдем к практической части, решим несколько примеров.

Рациональные числа в жизни

Те свойства предметов, которые мы можем описать количественно, обозначить каким-нибудь числом, называются величинами : длина, вес, температура, количество.

Одну и ту же величину можно обозначить и целым, и дробным числом, положительным или отрицательным.

Например, ваш рост м - дробное число. Но ведь можно сказать, что он равен см - это уже целое число (рис. 1).


Рис. 1. Иллюстрация к примеру

Еще один пример. Отрицательная температура по шкале Цельсия будет положительной по шкале Кельвина (рис. 2).


Рис. 2. Иллюстрация к примеру

При строительстве стены дома один человек может ширину и высоту измерить в метрах. У него получаются дробные величины. Все вычисления дальше он будет проводить с дробными (рациональными) числами. Другой человек может все измерить в количестве кирпичей в ширину и высоту. Получив только целые значения, он и вычисления будет проводить с целыми числами.

Сами величины не бывают ни целыми, ни дробными, ни отрицательными, ни положительными. Но число, которым мы описываем значение величины, уже является вполне конкретным (например, отрицательным и дробным). Это зависит от шкалы измерений. И когда мы от реальных величин переходим к математической модели, то работаем с конкретным типом чисел

Начнем со сложения. Слагаемые можно переставлять так, как нам удобно, и действия выполнять можно в любом порядке. Если слагаемые разных знаков оканчиваются на одну цифру, то удобно сначала выполнять действия с ними. Для этого поменяем слагаемые местами. Например:

Обыкновенные дроби с одинаковыми знаменателями легко складываются.

Противоположные числа в сумме дают ноль. Числа с одинаковыми десятичными «хвостами» легко вычитаются. Используя эти свойства, а также переместительный закон сложения, можно облегчить вычисление значения, например, следующего выражения:

Числа с дополняющими друга десятичными «хвостами» легко складываются. С целыми и дробными частями смешанных чисел удобно работать по отдельности. Используем эти свойства при вычислении значения следующего выражения:

Перейдем к умножению. Есть пары чисел, которые легко перемножить. Используя переместительное свойство, можно переставить множители так, чтобы они оказались рядом. Количество минусов в произведении можно посчитать сразу и сделать вывод о знаке результата.

Рассмотрим такой пример:

Если из сомножителей равен нулю, то произведение равно нулю, например: .

Произведение обратных чисел равно единице, а умножение на единицу не меняет значение произведения. Рассмотрим такой пример:

Рассмотрим пример с использованием распределительного свойства. Если раскрыть скобки, то каждое умножение выполняется легко.


























Назад Вперёд

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

Тип урока: урок обобщения и систематизации знаний с применением компьютерных технологий.

Цели урока:

  • Образовательные :
    • совершенствовать навыки решения примеров и уравнений по теме «Свойства действий с рациональными числами»;
    • закрепить умения выполнять арифметические действия над рациональными числами;
    • проверить умение использовать свойства арифметических действий для упрощения выражений с рациональными числами;
    • обобщить и систематизировать теоретический материал.
  • Развивающие :
  • Воспитательные :
    • воспитывать умение работать с имеющейся информацией;
    • воспитывать уважение к предмету;
    • воспитывать умение слушать своего товарища, чувство взаимопомощи и взаимоподдержки;
    • способствовать воспитанию самоконтроля и взаимоконтроля учащихся.

Оборудование и наглядность: компьютер, мультимедийный проектор, экран, интерактивная презентация, сигнальные карточки для устного счета, цветные мелки.

Структура урока:

ХОД УРОКА

I. Организационный момент

II. Сообщение темы и целей урока

Проверка готовности учащихся к уроку. Сообщение учащимся целей и плана урока.

– Тема нашего урока: «Свойства действий с рациональными числами», а девиз урока я прошу вас прочитать хором:

Да, путь познания не гладок.
Но знаем мы со школьных лет,
Загадок больше, чем разгадок,
И поискам предела нет!

И сегодня мы с вами на уроке дружно и активно создадим математическую газету. Я – буду главным редактором, а вы – корректорами. Как вы понимаете значение этого слова?
Чтобы проверить других, нам необходимо систематизировать свои знания по теме «Свойства действий с рациональными числами».

А газета наша называется «Рациональные числа». А в переводе на татарский язык?
Я слышала, что вы хорошо знаете и английский язык, а как англичане назовут эту газету?
Представляю вам макет газеты, которая состоит из следующих рубрик: чтение хором: «Спрашивают – отвечаем », «Новости дня », «Аукцион проектов », «Актуальный репортаж », «А знаете ли вы…?» .

III. Актуализация опорных знаний

Устная работа:

В первой рубрике «Спрашивают – отвечаем» нам нужно проверить правильность информации, которую нам прислали в письмах наши корреспонденты. Посмотрите внимательно и скажите, какие правила нам нужно вспомнить, чтобы проверить эту информацию.

1.Правило сложения отрицательных чисел:

«Чтобы сложить два отрицательных числа, надо: 1) сложить их модули, 2) поставить перед полученным числом знак минус».

2. Правило деления чисел с разными знаками:

«При делении чисел с разными знаками, надо: 1) разделить модуль делимого на модуль делителя, 2) поставить перед полученным числом знак минус».

3. Правило умножения двух отрицательных чисел:

«Чтобы перемножить два отрицательных числа, надо перемножить их модули».

4. Правило умножения чисел с разными знаками:

«Чтобы перемножить два числа с разными знаками, надо перемножить модули этих чисел и поставить перед полученным числом знак минус».

5. Правило деления отрицательного числа на отрицательное число:

«Чтобы разделить отрицательное число на отрицательное число, надо разделить модуль делимого на модуль делителя».

6. Правило сложения чисел с разными знаками:

«Чтобы сложить два числа с разными знаками, надо 1) из большего модуля слагаемых вычесть меньший, 2) поставить перед полученным числом знак того слагаемого, модуль которого больше.

1) – 8,4 + (– 8,4) = 0; (– 16,8)
2) (– 6,7) . (– 10) = – 67; (67)
3) (– 2,2) + 3,5 = 1,3;
4) – 13 – 8 = – 5; (– 21)
5) 15 – 18 = – 13; (– 3)
6) 7,4 – (– 3,2) = – 10,6; (10,6)
7) – 9 . 6 = – 54;
8) – 3,6 . 1 = –1; (– 3,6)
9) – 18: (– 0,3) = 60;
10) – 3,7 . 0 = – 3,7. (0)

– Молодцы, хорошо справились.

IV. Закрепление пройденного материала

– А сейчас мы переходим к рубрике «Новости дня ». Чтобы заполнить эту рубрику, нам необходимо систематизировать знания о числах.
– Какие вы знаете числа? (Натуральные, дробные, рациональные)
– А какие числа относятся к рациональным? (Положительные, отрицательные и 0)
– А какие свойства рациональных чисел вы знаете? (Переместительное, сочетательное и распределительное, умножение на 1, умножение на 0)
– А теперь перейдем к письменной работе. Открыли тетради, записали число, классная работа, тема «Свойства действий с рациональными числами».
Используя эти свойства, упростим выражения:

А) х + 32 – 16 = х + 16
Б) – х – 18 – 23 = – х – 41
В) – 1,5 + х – 20 = – 21,5 + х
Г) 12 – 26 + х = х – 14
Д) 1,7 + 3,6 – х = 5,3 – х
Е) – х + а + 6,1 – а + 2,8 – 8,8 = – х + 0,1

– А следующие примеры требуют от нас еще более рационального решения с объяснением.

– 98 + 85 + 45 – 55 – 28 + 63 = 12
– 6,56 + 2,4 – 3,2 + 6,56 + 4 + 3,2 – 2,4 = 4
– 19,61 * 20 + 19,61 * 120 = 1961

12.04.1961 – Вам о чем-нибудь говорят полученные ответы?
50 лет назад 12 апреля 1961 года Юрий Гагарин полетел в космос. Город Заинск тоже имеет свою космическую историю: 9 марта 1961 года спускаемый аппарат №1 космического корабля «ВОСТОК-4» совершил мягкую посадку в районе села Старый Токмак Заинского района с манекеном человека, собакой и другими мелкими животными на борту. И в честь этого события в нашем районе поставят памятник. Сейчас в городе работает конкурсная комиссия. В конкурсе участвуют 3 проекта, они перед вами на экране. А сейчас мы с вами проведем аукцион проектов.
Я прошу проголосовать за понравившийся вам проект. Ваш голос может оказаться решающим.

V. Физкультминутка

– Свое мнение вы выражаете аплодисментами и топаньем. Давайте прорепетируем! Три хлопка и три притопа.
– Еще раз попробуем. Итак, голосование начинается:

– Отдаем свои голоса за Макет №1
– Отдаем свои голоса за Макет №2
– Отдаем свои голоса за Макет №3
– А теперь за все макеты вместе.
– Победу одержал Макет № ... Спасибо, я записала ваши голоса (поднимает сотовый телефон и показывает детям) и передам в счетную комиссию.
– Молодцы, спасибо. А впереди не менее важный – Актуальный репортаж.

VI. Подготовка к ГИА

В рубрику «Актуальный репортаж» пришло письмо, где ученик просит помочь ему в решении заданий к итоговому экзамену в 9 классе. Нам нужно каждому самостоятельно прорешать задания, тесты <Приложение 1 > у вас на столах:

1. Решить уравнения:

а) (х + 3)(х – 6) = 0

1) х = 3, х = – 6
2) х = – 3, х = – 6
3) х = – 3, х = 6

Понятие о числах относится к абстракциям, характеризующим объект с количественной точки зрения. Еще в первобытном обществе у людей возникла потребность в счете предметов, поэтому появились численные обозначения. В дальнейшем они стали основой математики как науки.

Чтобы оперировать математическими понятиями, необходимо, прежде всего, представлять, какие же бывают числа. Основных видов чисел несколько. Это:

1. Натуральные - те, которые мы получаем при нумерации предметов (их естественном счете). Их множество обозначают N.

2. Целые (их множество обозначается буквой Z). Сюда относятся натуральные, противоположные им целые отрицательные числа и нуль.

3. Рациональные числа (буква Q). Это те, которые возможно представить в виде дроби, числитель которой равняется целому числу, а знаменатель - натуральному. Все целые и относятся к рациональным.

4. Действительные (их обозначают буквой R). Они включают в себя рациональные и иррациональные числа. Иррациональными называются числа, полученные из рациональных путем различных операций (вычисление логарифма, извлечение корня), сами не являющиеся рациональными.

Таким образом, любое из перечисленных множеств является подмножеством нижеперечисленного. Иллюстрацией данного тезиса служит диаграмма в виде т. н. кругов Эйлера. Рисунок представляет собой несколько концентрических овалов, каждый из которых расположен внутри другого. Внутренний, самый малый по размеру овал (область) обозначает множество натуральных чисел. Его полностью охватывает и включает в себя область, символизирующая множество целых чисел, которая, в свою очередь, заключена внутри области рациональных чисел. Внешний, самый большой овал, включающий в себя все остальные, обозначает массив

В данной статье мы рассмотрим множество рациональных чисел, их свойства и особенности. Как уже упоминалось, к ним принадлежат все существующие числа (положительные, а также отрицательные и нуль). Рациональные числа составляют бесконечный ряд, имеющий следующие свойства:

Данное множество упорядочено, то есть, взяв любую пару чисел из этого ряда, мы всегда можем узнать, какое из них больше;

Взяв любую пару таких чисел, мы всегда можем поместить между ними как минимум еще одно, а, следовательно, и целый ряд таковых - таким образом, рациональные числа представляют собой бесконечный ряд;

Все четыре арифметических действия над такими числами возможны, результатом их всегда является определенное число (также рациональное); исключение составляет деление на 0 (нуль) - оно невозможно;

Любые рациональные числа могут быть представлены в виде десятичных дробей. Эти дроби могут быть либо конечными, либо бесконечными периодическими.

Чтобы сравнить два числа, относящихся к множеству рациональных, необходимо помнить:

Любое положительное число больше нуля;

Любое отрицательное число всегда меньше нуля;

При сравнении двух отрицательных рациональных чисел больше то из них, чья абсолютная величина (модуль) меньше.

Как производятся действия с рациональными числами?

Чтобы сложить два таких числа, имеющих одинаковый знак, нужно сложить их абсолютные величины и поставить перед суммой общий знак. Для сложения чисел с разными знаками следует из большего значения вычесть меньшее и поставить знак того из них, чье абсолютное значение больше.

Для вычитания одного рационального числа из другого достаточно к первому числу прибавить противоположное второму. Для умножения двух чисел нужно перемножить значения их абсолютных величин. Полученный результат будет положительным, если сомножители имеют один и тот же знак, и отрицательным, если разные.

Деление производится аналогично, то есть находится частное абсолютных величин, а перед результатом ставится знак «+» в случае совпадения знаков делимого и делителя и знак «-» в случае их несовпадения.

Степени рациональных чисел выглядят как произведения нескольких сомножителей, равных между собой.

То а + b = b + a, а+(b + с) = (а + b) + с.

Прибавление нуля не изменяет числа, а сумма противоположных чисел равна нулю.

Значит, для любого рационального числа имеем: а + 0 = а, а + (- а)=0.

Умножение рациональных чисел тоже обладает переместительным и сочетательным свойствами. Другими словами, если а, b и с - любые рациональные числа, то ab - ba, a(bc) - (ab)c.

Умножение на 1 не изменяет рационального числа, а произведение числа на обратное ему число равно 1.

Значит, для любого рационального числа а имеем:

а) x + 8 - х - 22; в) a-m + 7-8+m;
б) -х-а + 12+а -12; г) 6,1 -k + 2,8 + p - 8,8 + k - р.

1190. Выбрав удобный порядок вычислений, найдите значение выражения:

1191. Сформулируйте словами переместительное свойство умножения ab = ba и проверьте его при:

1192. Сформулируйте словами сочетательное свойство умножения a(bc)=(ab)c и проверьте его при:

1193. Выбирая удобный порядок вычислений, найдите значение выражения:


1194. Какое получится число (положительное или отрицательное), если перемножить:

а) одно отрицательное число и два положительных числа;
б) два отрицательных и одно положительное число;
в) 7 отрицательных и несколько положительных чисел;
г) 20 отрицательных и несколько положительных? Сделайте вывод.

1195. Определите знак произведения:

а) - 2 (- 3) (- 9) (-1,3) 14 (- 2,7) (- 2,9);
б) 4 (-11) (-12) (-13) (-15) (-17) 80 90.

а) В спортивном зале собрались Витя, Коля, Петя, Сережа и Максим (рис. 91, а). Оказалось, что каждый из мальчиков знаком только с двумя другими. Кто с кем знаком? (Ребро графа означает «мы знакомы».)

б) Во дворе гуляют братья и сестры одной семьи. Кто из этих детей мальчики, а кто девочки (рис. 91, б)? (Пунктирные ребра графа означают - "я - сестра", а сплошные - "я - брат".)

1205. Вычислите:

1206. Сравните:

а) 2 3 и 3 2 ; б) (-2) 3 и (-3) 2 ; в) 1 3 и 1 2 ; г) (-1) 3 и (-1) 2 .

1207. Округлите 5,2853 до тысячных; до сотых ; до десятых; до единиц.

1208. Решите задачу:

1) Мотоциклист догоняет велосипедиста. Сейчас между ними 23,4 км. Скорость мотоциклиста в 3,6 раза больше скорости велосипедиста. Найдите скорости велосипедиста и мотоциклиста, если известно, что мотоциклист догонит велосипедиста через ч.
2) Легковая автомашина догоняет автобус. Сейчас между ними 18 км. Скорость автобуса составляет скорости легковой автомашины. Найдите скорости автобуса и легковой автомашины, если известно, что легковая автомашина догонит автобус через ч.

1209. Найдите значение выражения:

1) (0,7245:0,23 - 2,45) 0,18 + 0,07 4;
2) (0,8925:0,17 - 4,65) 0,17+0,098;
3) (-2,8 + 3,7 -4,8) 1,5:0,9;
4) (5,7-6,6-1,9) 2,1:(-0,49).

Проверьте ваши вычисления с помощью микрокалькулятора .
1210. Выбрав удобный порядок вычислений, найдите значение выражения:

1211. Упростите выражение:

1212. Найдите значение выражения:

1213. Выполните действия:

1214. Ученикам дали задание собрать 2,5 т металлолома. Они собрали 3,2 т металлолома. На сколько процентов учащиеся выполнили задание и на сколько процентов они перевыполнили задание?

1215. Автомашина прошла 240 км. Из них 180 км она шла по проселочной дороге, а остальной путь - по шоссе. Расход бензина на каждые 10 км проселочной дороги составил 1,6 л, а по шоссе - на 25% меньше. Сколько литров бензина в среднем расходовалось на каждые 10 км пути?

1216. Выезжая из села, велосипедист заметил на мосту пешехода, идущего в том же направлении, и догнал его через 12 мин. Найдите скорость пешехода, если скорость велосипедиста 15 км/ч, а расстояние от села до моста 1 км 800 м?

1217. Выполните действия:

а) - 4,8 3,7 - 2,9 8,7 - 2,6 5,3 + 6,2 1,9;
б) -14,31:5,3 - 27,81:2,7 + 2,565:3,42+4,1 0,8;
в) 3,5 0,23 - 3,5 (- 0,64) + 0,87 (- 2,5).

С рациональными числами люди, как вы знаете, знакомились постепенно. Вначале при счете предметов возникли натуральные числа. На первых порах их было немного. Так, еще недавно у туземцев островов в Торресовом проливе (отделяющем Новую Гвинею от Австралии) были в языке названия только двух чисел: «урапун» (один) и «оказа» (два). Островитяне считали так: «оказа-урапун» (три), «оказа-оказа» (четыре) и т. д. Все числа, начиная с семи, туземцы называли словом, обозначавшим «много».

Ученые полагают, что слово для обозначения сотни появилось более 7000 лет назад, для обозначения тысячи - 6000 лет назад, а 5000 лет тому назад в Древнем Египте и в Древнем Вавилоне появляются названия для громадных чисел - до миллиона. Но долгое время натуральный ряд чисел считался конечным: люди думали, что существует самое большое число.

Величайший древнегреческий математик и физик Архимед (287-212 гг. до н. э.) придумал способ описания громадных чисел. Самое большое число, которое умел называть Архимед, было настолько велико, что для его цифровой записи понадобилась бы лента в две тысячи раз длиннее, чем расстояние от Земли до Солнца.

Но записывать такие громадные числа еще не умели. Это стало возможным только после того, как индийскими математиками в VI в. была придумана цифра нуль и ею стали обозначать отсутствие единиц в разрядах десятичной записи числа.

При разделе добычи и в дальнейшем при измерениях величин, да и в других похожих случаях люди встретились с необходимостью ввести «ломаные числа» - обыкновенные дроби. Действия над дробями еще в средние века считались самой сложной областью математики. До сих пор немцы говорят про человека, попавшего в затруднительное положение, что он «попал в дроби».

Чтобы облегчить действия с дробями, были придуманы десятичные дроби . В Европе их ввел в Х585 г. голландский математик и инженер Симон Стевин.

Отрицательные числа появились позднее, чем дроби. Долгое время такие числа считали «несуществующими», «ложными» прежде всего из-за того, что принятое истолкование для положительных и отрицательных чисел «имущество - долг» приводило к недоумениям: можно сложить или вычесть «имущества» или «долги», но как понимать произведение или частное «имущества» и «долга»?

Однако несмотря на такие сомнения и недоумения, правила умножения и деления положительных и отрицательных чисел были предложены в III в. греческим математиком Диофантом (в виде: «Вычитаемое, умноженное на прибавляемое, дает вычитаемое; вычитаемое на вычитаемое дает прибавляемое» и т. д.), а позже индийский математик Б х а с к а р а (XII в.) выразил те же правила в понятиях «имущество», «долг» («Произведение двух имуществ или двух долгов есть имущество; произведение имущества и долга есть долг». То же правило и при делении).

Было установлено, что свойства действий над отрицательными числами те же, что и над положительными (например, сложение и умножение обладают переместительным свойством). И наконец с начала прошлого века отрицательные числа стали равоправными с положительными.

В дальнейшем в математике появились новые числа - иррациональные, комплексные и другие. О них вы узнаете в старших классах.

Н.Я.Виленкин, А.С. Чесноков, С.И. Шварцбурд, В.И.Жохов, Математика для 6 класса, Учебник для средней школы

Книги и учебники согласно календарному плануванння по математике 6 класса скачать , помощь школьнику онлайн

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки

Действия с десятичными дробями.
 Сложение и вычитание десятичных дробей.
1. Уравнять количество цифр после запятой.
2. Сложить или вычесть десятичные дроби запятая под запятой по разрядам.
 Умножение десятичных дробей.
1. Умножить, не обращая внимания на запятые.
2. В произведении запятой отделить справа столько цифр, сколько их во всех множителях
вместе после запятой.
 Деление десятичных дробей.
1. В делимом и делителе перенести запятые вправо на столько цифр, сколько их после запятой
в делителе.
2. Разделить целую часть, поставить в частном запятую. (Если целая часть меньше делителя, то
частное начинается с нуля целых)
3. Продолжить деление.
Действия с положительными и отрицательными числами.
Сложение и вычитание положительных и отрицательных чисел.
а – (– в) = а + в
Все остальные случаи рассматриваются как сложение чисел.
 Сложение двух отрицательных чисел:
1. результат записываем со знаком «–»;
2. модули складываем.
 Сложение чисел с разными знаками:
1. ставим знак большего модуля;
2. вычитаем из большего модуля меньший.
 Умножение и деление положительных и отрицательных чисел.
1. При умножении и делении чисел с разными знаками результат записывается со знаком
минус.
2. При умножении и делении чисел с одинаковыми знаками результат записывается со знаком
плюс.
Действия с обыкновенными дробями.
Сложение и вычитание.
1. Привести дроби к общему знаменателю.
2. Сложить или вычесть числители, а знаменатель оставить без изменения.
Умножить числитель на числитель, а знаменатель на знаменатель (по возможности – сократить).
Делитель (вторую дробь) «перевернуть» и выполнить умножение.
Деление.
Умножение.
Выделение целой части из неправильной дроби.
38
5 = 38: 5 = 7(ост.3) = 7
3
5
Перевод смешанного числа в неправильную дробь.
2
7 + =
4
4·7+2
7
30
7
=

1
.
+
Сокращение дроби.
Сократить дробь – разделить числитель и знаменатель на одно и то же число.
6
7
6
7 . Можно короче:
30:5
35:5 =
30
35 =
Например:
30
35 =
.
1.
Разложить знаменатели дробей на простые
множители.
Приведение дробей к общему знаменателю.
5 4
7
16 +

36
80 =
71
80
2. Вычеркнуть одинаковые множители.
3. Оставшиеся множители от знаменателя первой
дроби перемножить и записать как
дополнительный множитель для второй дроби, а
от второй дроби – к первой дроби.
2∙2∙2∙2 2∙2∙5
4. Умножить числитель и знаменатель каждой дроби
на её дополнительный множитель.
9
20 =
35
80 +
Сложение и вычитание смешанных чисел.
Сложить или вычесть отдельно целые части, отдельно ­ дробные.
«Особые» случаи:
«Превратить» 1 в дробь, у которой числитель и

2
2
5
6
3
5 =
3
5 = 2
1
1
Занять 1 и «превратить» её в дробь, у которой числитель и
знаменатель равны знаменателю данной дроби.
Занять 1 и прибавить знаменатель к числителю.
3
5 =
3
5 = 2
5
5 ‒
5
5 ‒

1

3
2
5
1 ‒
3
3
5 = 2
5
5 1 ‒
3
5 = 1
2
5
1
5
1 ‒
3
5 = 2
6
5 1‒
3
3
5 = 1
3
5
Перевести смешанные числа в неправильные дроби и выполнить умножение или деление.
Умножение и деление смешанных чисел.

2
7 + ∙ 2
4
4
5 + =
30
7 ∙
14
5 =
30·14
7·5
6·2
1·1 =
12
1 = 12
=
∙ ∙
6
7