Основные математические формулы и понятия. Математика, которая мне нравится. Заучивание наизусть и долговременная память

Презентация на тему: "Решение уравнений. Примеры"

Дополнительные материалы
Уважаемые пользователи, не забывайте оставлять свои комментарии, отзывы, пожелания. Все материалы проверены антивирусной программой.

Обучающие пособия и тренажеры в интернет-магазине "Интеграл" для 6 класса
Электронная рабочая тетрадь по математике для 6 класса
Интерактивный тренажер к учебнику Виленкина Н.Я.

Ребята, давайте повторим: правила раскрытия скобок, как найти неизвестный множитель, правила переноса слагаемых из одной части уравнения в другую.

Чтобы найти неизвестный множитель, надо произведение разделить на известный множитель.

Корни уравнения не изменяются, если какое-нибудь слагаемое перенести из одной части уравнения в другую, изменив при этом его знак.

Если перед скобками стоит знак " + " , то можно опустить скобки и этот знак " + " , сохранив знаки слагаемых, стоящих в скобках. Если первое слагаемое в скобках записано без знака, то его надо записать со знаком " + ". Чтобы раскрыть скобки, перед которыми стоит знак " – " , надо заменить этот знак на " + " , поменяв знаки всех слагаемых в скобках на противоположные, а потом раскрыть скобки.


Порядок решения уравнений

1. раскрыть скобки, если они есть;
2. слагаемые, содержащие неизвестное, перенести в левую часть равенства, а не содержащие неизвестного ─ в правую;
3. привести подобные слагаемые;
4. найти неизвестный множитель;
5. записать ответ.

Вычислите значение числового выражения
1.

Решите уравнения
2.


3.


4.


5.

Проверка!

1. – (– 5,75 + 3,24)= 5,75 - 3,24 = 2,51

2. 6х – 12 = 5х + 4
6х - 5х = 12 + 4
х=16

3. – 12п – 3 = 11п – 3
–12n – 11n=3 – 3
–23n=0
n=0

4. (–20х – 50) * 2 = 100
-40х – 100 =100
-40х=200
х=-5

5. 4,7 – 8у = 4,9 – 10у
-8у+10у =4,9-4,7
2у=0,2
х=0,1

Решите задачу

На одной ветке в три раза больше птичек, чем на другой. Если с первой ветки перелетят 10 птичек на вторую, то на обеих ветках птичек будет поровну. Сколько птичек на каждой ветке?

Проверка!

Решение:
3х – 10 = х + 10
2х = 20
х = 10
3 * 10 = 30 (1 ветка)
Ответ: 30 и 10

Решите уравнения

Проверка!

$\frac{2}{3}y - 3,9 = 1,1 - \frac{1}{6}y$
$\frac{2}{3}y + \frac{1}{6}y = 1,1 + 3,9$
$\frac{5}{6}y = 5$
y=6

$1\frac{1}{2}y - 2\frac{1}{5} = 12,8 - 3,5y$
$1,5y +3,5y = 2,2 +12,8$
5y = 15
y = 3

Решите уравнения, используя основное свойство пропорции!

Проверка!

$\frac{x - 3}{6} = \frac{7}{3}$
3(x - 3) = 42
3x - 9 =42
3x = 51
x = 17

$\frac{x + 7}{3} = \frac{2x - 3}{5}$
5(x + 7) = 3(2x - 3)
5x + 35 = 6x - 9
5x - 6x = - 35 - 9
-x = -44
x = 44

Помимо способа, изложенного в подразд. 2.1, для решения этой задачи можно воспользоваться командой Сервис Подбор параметра… Перед обращением к этой команде следует ввести в Рабочий лист алгоритм расчета функции (он может быть представлен одной или несколькими формулами) и ввести в ячейку ее аргумента ориентировочное значение, с которого следует начать поиск корня.

Команда Сервис Подбор параметра… вызывает на экран окно Подбор параметра, в котором следует указать:

    адрес ячейки, в которой находится конечное значение функции;

    то число, к которому ее надо приравнять;

    ячейку аргумента.

В процессе выполнения команды начальное значение аргумента заменится на такое, при котором функция будет равна нужному значению (не обязательно нулю). Точность подбора аргумента и максимально допустимое количество итераций при решении задачи задаются в диалоговом окне команды Сервис Параметры… на вкладке Вычисления.

Задание

Решите с точностью до 0,001 уравнение e 0,5 x 2x + 4 = 3.

6.6. Решение систем уравнений

Для решения систем линейных и нелинейных уравнений используют разные средства Excel.

Для нелинейных систем можно использовать команду Сервис Поиск решения…, преобразовав задачу в оптимизационную (см. подразд. 6.7 ).

Систему линейных уравнений можно решить, запрограммировав вручную метод Гаусса, но проще сделать это матричным методом, опираясь на функции работы с массивами. В матричном виде линейная система любого порядка и ее решение записываются следующим образом:

АХ = В; Х = А - 1 В.

Здесь А – матрица коэффициентов при неизвестных;В – столбец свободных членов системы;Х – неизвестные решения;А 1 – обратная матрица коэффициентов системы.

В библиотеке Мастера функций Excel в категории Математические есть функции МУМНОЖ() и МОБР(), которые выполняют соответственно умножение и обращение матриц, необходимые для решения данной задачи. Так как результатом работы этих функций являются массивы чисел, их следует вводить как функции массива (см. подразд. 1.6, 1.9 ).

Пример

Рассмотрим систему четырех линейных уравнений с четырьмя неизвестными. Введем на Рабочий лист информацию, необходимую для ее решения, в соответствии с планом, представленным в табл. 6.6.1. Для удобства работы перед вводом коэффициентов системы и расчетных формул можно провести форматирование данных (см. подразд. 1.13 ):

    объединить ячейки, в которых размещены заголовки;

    разместить эти заголовки по центру объединенных ячеек;

    изменить направление текста в заголовке А4:А7 на вертикальное;

    разрешить перенос по словам в заголовках А4:А7, G2:G3,H2:H3,I2:I3;

    разделить тонкими линиями столбцы полученной таблицы;

    обвести жирной рамкой всю таблицу в целом и блоки заголовков (A2:B7 иA2:I3).

Таблица 6.6.1

Информация

Значение

Заголовок расчета

Решение системы линейных уравнений

Общий заголовок строк

Номер уравнения

Номера строк

Общий заголовок столбцов

Номер переменной

Номера переменных

Коэффициенты при неизвестных системы

Любые числа

Заголовок

Свободные члены

Свободные члены уравне­ний

Любые числа

Заголовок

Решение системы

Формула массива

{=МУМНОЖ(МОБР(C4:F7);G4:G7)}

Заголовок

Проверка

Формула массива

{=МУМНОЖ(C4:F7;H4:H7)}

Перед вводом формулы массива следует выделить ячейки, в которых надо разместить результаты. При решении системы это блок Н4:Н7, при проверке правильности найденного решения – I4:I7. Затем формула набирается обычным способом с помощью Мастера функций, но ввод заканчивается нажатием клавиши или кнопки <ОК> при дополнительно утопленных клавишах . При правильном вводе отображение формулы массива в Информационном поле автоматически заключается в фигурные скобки.

Одним из наиболее сложных видов набора является набор математических формул. Формулы представляют собой тексты, включающие шрифты на русской, латинской и греческой основах, прямого и курсивного, светлого, полужирного начертания, с большим числом математических и других знаков, индексов на верхнюю и нижнюю линии шрифта и различных крупнокегельных знаков. Ассортимент шрифтов для набора формул минимально составляет 2 тыс. знаков. Таблица символов в WORD-98 включает 1148 символов.

Основное отличие формульного набора от всех других видов набора состоит в том, что набор формулы в ее классическом виде производится не параллельными строками, а занимает определенную часть площади полосы.

Формула - математическое или химическое выражение, в котором при помощи цифр, символов и специальных знаков в условной форме выражается соотношение между определенными величинами.

Цифры - знаки, которыми обозначаются или выражаются числа (количества). Цифры бывают арабские и римские.

Арабские цифры : 1, 2. 3, 4, 5, 6, 7, 8, 9, 0. Арабские цифры меняют свое значение в зависимости оттого места, которое они занимают в ряду цифровых знаков. Арабские цифры делятся на два класса - 1-й - единицы, десятки, сотни; 2-й - тысячи, десятки тысяч, сотни тысяч и т.д.

Римские цифры . Основных цифровых знаков семь: I - единица, V - пять, X - десять, L - пятьдесят, С - сто, D - пятьсот, М - тысяча. Римские цифры имеют постоянное значение, поэтому числа получаются сложением или вычитанием цифровых знаков. Например: 28 = XXVIII (10 + 10 + 5 + 1 + 1+ 1); 29 = XXIX (10 + 10 -1 + 10); 150 = CL (100 + 50); 200 = СС (100 + 100); 1980 = MDCCCCLXXX (1000 + 500 + 100 + 100 + 100 + 100 + 50 + 10+ 10 + 10); 2002 = MMII (1000 + 1000 + 1 + 1).

Римскими цифрами обычно обозначают столетия (ХV1в.), номера томов (том IX), глав (глава VII), частей (часть II) и т.д.

Символы - буквенные выражения, входящие в состав формулы (например, математические символы: l - длина, λ - частота отказов (усадка), π - отношение длины окружности к диаметру и т.д.; химические символы: Аl - алюминий, РЬ - свинец, Н - водород и т.д.).

Коэффициенты - цифры, стоящие перед символами, например 2Н 2 О; 4sinx. Символы и цифры часто имеют индексы надстрочные (на верхнюю линию) и подстрочные (на нижнюю линию), которые либо поясняют значение индексов, (например, λ с - линейная усадка, G T - теоретическая масса отливки, С ф -фактическая масса отливки); либо указывают на математические действия (например, х 2 , у 3 , z -2 и т.д.); либо указывают число атомов в молекуле и число зарядов ионов в химических формулах (например, СН 4). В формулах встречаются также индексы к индексам: верхний индекс к верхнему индексу - верхний супраиндекс , нижний индекс к верхнему индексу - верхний субиндекс , верхний индекс к нижнему индексу - нижний супраиндекс и нижний индекс к нижнему индексу - нижний субиндекс.

Знаки математических действий и соотношений - сложение « + », вычитания « - », равенства « = », умножения «х»; действие деление обозначается горизонтальной линейкой, которая будет называться дробной или делительной линейкой..

(9.12)

Основная строка - строка, в которой размещены основные знаки математических действий и соотношений.

Классификация формул .

Математические формулы разделяются по сложности набора, зависящей от состава формулы (однострочные, двухстрочные, многострочные) и насыщенности ее различными математическими знаками и символами, индексами, субиндексами, супраиндексами и приставными знаками. По сложности набора все математические формулы условно можно разделить на четыре основные группы и одну дополнительную:

1 группа. Однострочные формулы (9.13-9.16);

2 группа. Двухстрочные формулы (9.17-9.19). Фактически эти ф-лы состоят из 3-х строк;

3 группа. Трехстрочные формулы (9.20-9.23). Фактически эти ф-лы состоят из 5-и строк;

4 группа. Многострочные формулы (9.24-9.26);

Дополнительная группа (9.27-9.29).

При выделении формул в группы сложности учитывалась трудоемкость набора и время, затрачиваемое на набор.

II группа. Двустрочные формулы :

(9.29)

Правила набора текста математических формул .

При наборе математического текста необходимо соблюдать следующие основные правила.

Набирать цифры в формулах прямым шрифтом, например 2ах; Зу .

Сокращенные тригонометрические и математические термины , например sin , cos , tg , ctg , arcsin . Ig , lim и т.д., набирать шрифтом латинского алфавита прямого светлого начертания.

Сокращенные слова в индексе набирать русским шрифтом прямого начертания на нижнюю линию.

Сокращенные наименования физических, метрических и технических единиц измерения , обозначенные буквами русского алфавита, набирать в тексте прямым шрифтом без точек, например 127 В, 20 кВт . Эти же наименования, обозначенные буквами латинского алфавита, набирать также прямым шрифтом без точек, например 120 V , 20 kW , если нет в оригинале других указаний.

Символы (или цифры и символы ), следующие один за другим и не разделенные какими-либо знаками, набирать без отбивки, например 2ху; 4у .

Знаки препинания в формулах набирать прямым светлым шрифтом. Запятые внутри формулы отбивать от последующего элемента формулы на 3 п .; от предыдущего элемента формулы запятая не отбивается; от предшествующей подстрочной литеры запятая отбивается на 1 п .

Многоточие на нижнюю линию набирать точками с разбивкой на полукегельную. От предыдущего и последующего элементов формулы точки отбивать тоже полукегельной, например:

(9.30)

Символы (или цифры и символы), следующие один за другим, не разделять, а набирать без отбивки.

Знаки математических действий и соотношений, а также знаки геометрических образов , как, например, = ,< ,> , + , - , отбивать от предыдущих и последующих элементов формулы на 2 п

Сокращенные математические термины отбивать от предыдущих и последующих элементов формулы на 2 п.

Показатель степени , следующий непосредственно за математическим термином, набирать вплотную к нему, а отбивку делать после показателя степени.

Буквы « d » (в значении «дифференциал» ), δ (в значении «частная производная») и ∆ (в значении «приращение») отбивать от предшествующего элемента формулы на 2 п., от последующего символа указанные знаки не отбиваются.

Сокращенные наименования физических и технических единиц измерения и метрических мер в формулах отбивать на 3 п. от цифр и символов, к которым они относятся.

Знаки ° , " , " отбивать от последующего символа (или цифры) на 2 п., от предыдущего символа указанные знаки не отбиваются.

Знаки препинания, следующие за формулой , не отбиваются от нее.

Строку отточий в формулах набирают точками, используя полукегельную отбивку между ними.

Формулы, набранные в подбор с текстом, отбивать от предыдущего и последующего текстов полукегельной; эта отбивка при выключке строки не уменьшается, а увеличивается. Так же выключают формулы, следующие одна за другой в подбор с текстом.

Несколько формул, помещенных в одной строке, выключенной по центру, отбивать друг от друга пробелом не менее кегельной и не более 1/2 кв.

Мелкие пояснительные формулы, набираемые в одну строку с основной формулой, выключать в правый край строки, или отбивать на две кегельные от основного выражения (если нет иных указаний в оригинале).

Порядковые номера формул набирать цифрами того же кегля, что и однострочные формулы, и выключать в правый край, например:

Х+У=2 (9.31)

Если формула не умещается в формат строки, а переносить ее нельзя, допускается ее набор меньшим кеглем.

Переносы в формулах нежелательны. Во избежание переноса допускается уменьшение пробелов между элементами формулы. Если уменьшением пробелов не удается довести формулу до нужного формата строки, то переносы допускаются:

    на знаках соотношения между левой и правой частями формулы (= ,>,< );

    на знаках сложения или вычитания (+, - );

    на знаках умножения (х). При этом следующая строка начинается со знака, на котором закончилась формула в предыдущей строке. При переносе формул необходимо смотреть за тем, чтобы переносимая часть не была очень маленькой, не разрывались выражения, заключенные в скобки, выражения, относящиеся к знакам корня, интеграла, суммы; не допускается разделение индексов, показателей степеней, дробей.

В нумерованных формулах номер формулы в случае ее переноса ставят на уровне центральной строки перенесенной части формулы. Если порядковая нумерация на умещается в строке, ее помещают в следующей и выключают в правый край. Формулы, числитель или знаменатель которых не умещается в заданном формате набора, набирают шрифтом меньшего кегля, либо шрифтом этого же кегля, но в две строки с переносом.

Если при переносе формулы разрывается делительная линейка или линейка корня, то место разрыва каждой линейки указывают стрелками.

Стрелки нельзя устанавливать около математических знаков.

Однострочные и многострочные формулы.

В однострочных формулах основную строку (без индексов и приставных знаков) следует набирать шрифтом того же кегля, что и основной текст издания (если нет других указаний в оригинале).

Середина кегля всех букв, цифр и знаков основной строки однострочной формулы должна находиться на одной линии, которая носит название средней. При определении средней линии подключки к символам основной строки в расчет не принимаются.

Индексы и показатели степени в многострочной формуле выравниваются по основной линии шрифта.

Однострочные формулы выключаются на середину формата, т.е. в красную строку (если нет особых указаний в оригинале) и отбиваются одна от другой на 4 - 6 п.

Группа формул с однотипной левой или правой частью выравнивается по знаку соотношения, при этом сначала набирается самая длинная формула и выключается в красную строку, остальные равняются по ней, например:

(9.32)

При наборе многострочных формул, если основной текст набирают кг. 10 п., то центральную строку набирают корпусом, числитель и знаменатель - петитом.

Линейка, отделяющая числитель от знаменателя в двухстрочной формуле, по длине должна быть равна более длинному из этих выражений или длиннее его не более чем на 2 - 4 п. Минимальная длина линейки равна кеглю шрифта, которым набирается дробь. Кегль линейки - 2 п., тонкая.

В многострочной дроби основная линейка должна быть на 4 п. длиннее делительных линеек в числителе и знаменателе, например:

(9.33)

Числитель и знаменатель выключаются посередине основной делительной линейки.

Числитель и знаменатель от линейки не отбиваются, исключение составляет знаменатель, в котором преобладают прописные буквы и показатели степени.

Пояснения к формулам, которые начинаются словом «где», набирают или в одну строку с первым символом и отбивкой от него на полукегельную, тогда все последующие пояснения выравниваются по линии тире, например:

А - количество раствора;

В - количество добавок;

или с выключкой слова «где» в левый край отдельной строки, например:

А - количество раствора;

В - количество добавок.

Индексы и показатели степени.

В формулах встречаются индексы первого порядка (индексы) и индексы второго порядка (субиндексы и супраиндексы - индекс к индексу).

В большинстве формул, однострочных и многострочных, содержатся индексы 1-го порядка: надстрочные и подстрочные один под другим.

По своему размеру индексы заметно меньше буквы и цифр основной строки, кроме того, они должны выступать за линию шрифта основной строки. При наборе основной строки шрифтом кг. 10 п. и 8 п. индексы набирают шрифтом кг. 6 п., при наборе основной строки шрифтом кг. 6 п. очко индексов и показателей степени должно быть 4 п., при этом индекс опускают ниже основной строки на 2 п., а показатели степени поднимают выше строки на 2 п.

Двойные (верхний и нижний) индексы должны располагаться строго один под другим.

Супраиндексы и субиндексы набираются шрифтом кг. 4 п.

Индексы и показатели степени набираются вплотную к выражению, к которому они относятся. Если подынтегральное выражение в степени однострочное, знак интеграла набирается шрифтом кг. 10 п., если двухстрочное - шрифтом кг. 12 п., например:

(9.34)

Знак суммы Σ в подключке на верхнюю линию при однострочном показателе степени набирается шрифтом кг. 6 п. или 8 п., при двухстрочном - шрифтом кг. 10 п., например:

(9.35)

Скобки (круглые, квадратные и фигурные) должны быть прямого начертания, кегль скобок выбирается таким, чтобы они могли закрыть все выражение, заключенное в них. Скобки отбиваются от предшествующих символов в формуле на 2 п, от символов, заключенных в скобки, скобки не отбиваются, показатель степени, помещенный за скобкой, от скобки не отбивается. Подряд идущие скобки друг от друга не отбиваются.

Крупнокегельные знаки.

Знак корня должен быть по кеглю на 2 п. больше кегля шрифта, которым набирается подкоренное выражение.

Линейка корня набирается двухпунктовой линейкой, по длине равной подкоренному выражению или на 1-2 п. длинее,

(9.36)

Знаки Σ , S (знаки суммы) и П (знак произведения) набираются шрифтом прямого начертания большего кегля, так при наборе формул кг. 8 или 10п.-указанные знаки набираются шрифтом кг. 12 п., при наборе шрифтом кг. 6 п. - приставные знаки в однострочных формулах набираются шрифтом кг. 10 п., в двухстрочных - 16 - 20 п. в зависимости от высоты формулы, а в многострочных формулах - шрифтом кегля, позволяющего перекрыть меньшую по высоте часть формулы, если числитель и знаменатель формулы неодинаковые по высоте, например (ф-ла 9.37) :

Индексы над и под знаками Σ , S, П набираются шрифтом кг. 6 п. и ставятся на середине знака, например:

(9.39)

Знаки Σ , S (знаки суммы) и П (знак произведения) отбиваются от предыдущих и последующих элементов формулы на 2 п.

Знак интеграла набирается шрифтом большего кегля следующим образом: при наборе однострочной формулы шрифтом кг. 6 п. - набирается шрифтом кг. 12 п.; при наборе однострочной формулы шрифтом кг. 8 п. или 10 п. - набирается шрифтом кг. 14 или 16 п.; в двухстрочных формах - набирается шрифтом, кегль которого выбирается в зависимости от высоты подынтегрального выражения, причем середина знака всегда должна находиться на средней линии формулы, например:

(9.40)

Кегль интеграла без подключек при высоте формулы 36 п. должен быть 28 п., при высоте формулы 48 п. - 36. Индексы над и под знаками интеграла также набираются шрифтом кг. 6 п, приставляются вплотную к и выключаются по его середине.

Интеграл так же, как и знаки Σ , S (знаки суммы) и П (знак произведения), отбивается от предыдущих и последующих элементов формулы на 2 п., причем эта отбивка в случае длинных индексов может быть увеличена до 12 п. Друг от друга знаки интеграла не отбиваются.

Вертикальные линейки одинарные или двойные должны быть точно равны высоте выражения, заключенного в них, например:

(9.41)

Пробел между строками в группе формульных выражений должен быть равен полукегельной, между колонками цифр - не менее кегельной.

Линейки выбирают кеглем 2 п.

При наборе матриц вертикальные линейки берут двухпунктовые двойные, например:

(9.42)

Формульные выражения в колонках матриц выключаются в красную строку или выравниваются по левому краю колонок.

Вертикальные линейки отбиваются от выражений, заключенных в них, на полукегельную, фигурные скобки - на 6 п.

Все горизонтальные линейки в формулах набираются всегда двухпукнтовыми тонкими.

Длина дробной линейки должна быть такой, чтобы наибольшая часть дроби (числитель и знаменатель) была перекрыта линейкой.

Как правило, в формулу входят переменные (одна или более), причём сама формула представляет собой не просто выражение, а некое суждение . Такое суждение может утверждать что-то о переменных, а может - о применяемых операциях. Точный смысл формулы зачастую подразумевается из контекста и его невозможно понять непосредственно из её вида. Можно выделить три распространённых случая:

Уравнения

Уравнение - формула, внешняя (верхняя) связка которого представляет собой бинарное отношение равенства . Однако важная особенность уравнения заключается также в том, что входящие в него символы делятся на переменные и параметры (присутствие последних, впрочем, необязательно). Например, x 2 = 1 {\displaystyle x^{2}=1} является уравнением, где x - переменная. Значения переменной, при которых равенство истинно, называются корнями уравнения : в данном случае таковыми являются два числа и −1 . Как правило, если уравнение на одну переменную не является тождеством (см. ниже), то корни уравнения представляют собой дискретное, чаще всего конечное (возможно и пустое) множество.

Если в уравнение входят параметры, то его смысл - для заданных параметров найти корни (то есть значения переменной, при котором равенство верно). Иногда это можно сформулировать как нахождение неявной зависимости переменной от параметра (параметров). Например x 2 = a {\displaystyle x^{2}=a} понимается как уравнение на x (это обычная буква для обозначения переменной, наряду с y , z и t). Корнями уравнения является квадратный корень из a (считается, что их имеется два, разных знаков). Следует отметить, что подобная формула, сама по себе, задаёт лишь бинарное отношение между x и a и её можно понимать в обратную сторону, как уравнение на a относительно x . В данном элементарном случае, речь может идти скорее об определении a через x: a = x 2 {\displaystyle a=x^{2}} .

Тождества

Тождество - суждение, верное при любых значениях переменных. Обычно, под тождеством подразумевают тождественно верное равенство, хотя снаружи тождества может стоять и неравенство или какое-либо другое отношение. Во многих случаях тождество можно понимать как некое свойство используемых в нём операций , например тождество a + b = b + a {\displaystyle a+b=b+a} утверждает коммутативность сложения.

С помощью математической формулы довольно сложные предложения могут быть записаны в компактной и удобной форме. Формулы, становящиеся истинными при любом замещении переменных конкретными объектами из некоторой области, называются тождественно-истинными в данной области. Например: «для любых a и b имеет место равенство (a + b) 2 = a 2 + 2 a b + b 2 {\displaystyle (a+b)^{2}=a^{2}+2ab+b^{2}} ». Данное тождество можно вывести из аксиом сложения и умножения в коммутативном кольце , которые сами по себе также имеют вид тождеств.

Тождество может и не включать в себя переменные и являться арифметическим (или каким-то ещё) равенством, как например 6 3 = 3 3 + 4 3 + 5 3 {\displaystyle 6^{3}=3^{3}+4^{3}+5^{3}} .

Приближённые равенства

Например: x ≈ sin ⁡ (x) {\displaystyle x\approx \sin(x)} - приближённое равенство при малых x {\displaystyle x} ;

Неравенства

Формула-неравенство может пониматься в обоих описанных в начале раздела смыслах: как тождество (например, неравенство Коши - Буняковского) или же, подобно уравнению, как задача на отыскание множества (а точнее, подмножества области определения), которому может принадлежать переменная, или переменные.

Используемые операции

В данном разделе будут перечислены операции, используемые в алгебре , а также некоторые общеупотребительные функции из математического анализа .

Сложение и вычитание

Возведение в степень

Элементарные функции

Абсолютная величина, знак и т. п.

Приоритет операций и скобки

Приоритет, ранг или старшинство операции или оператора - формальное свойство оператора/операции, влияющее на очерёдность его выполнения в выражении с несколькими различными операторами при отсутствии явного (с помощью скобок) указания на порядок их вычисления. Например, операцию умножения обычно наделяют бо́льшим приоритетом, чем операцию сложения, поэтому в выражении будет получено сначала произведение y и z, а потом уже сумма.

Примеры

Например:

2 + 2 = 7 {\displaystyle 2+2=7} - пример формулы, имеющей значение «ложь»;

Y = ln ⁡ (x) + sin ⁡ (x) {\displaystyle y=\ln(x)+\sin(x)} - функция одного действительного аргумента;

Z = y 3 y 2 + x 2 {\displaystyle z={\frac {y^{3}}{y^{2}+x^{2}}}} - функция нескольких аргументов (график одной из самых замечательных кривых - верзьера Аньези);

Y = 1 − | 1 − x | {\displaystyle y=1-|1-x|} - не дифференцируемая функция в точке x = 1 {\displaystyle x=1} (непрерывная ломаная линия не имеет касательной);

X 3 + y 3 = 3 a x y {\displaystyle x^{3}+y^{3}=3axy} - уравнение, то есть неявная функция (график кривой «