Расширение ссср в конце 1930 1940 гг. Расширение ссср. тоги и последствия войны

ЧАСТЬ II. ГЛАВА 6
ПОСЛЕДОВАТЕЛЬНОСТИ ЧИСЕЛ

Понятие о степени с иррациональным показателем

Пусть а- какое-нибудь положительное число и а - иррациональное.
Какой смысл следует придать выражению а*?
Чтобы сделать изложение более наглядным, проведем его на частном
примере. Именно, положим а - 2 и а = 1 , 624121121112 . . . .
Здесь, а - бесконечная десятичная дробь, составленная по такому
закону: начиная с четвертого десятичного знака, для изображения а
употребляются только цифры 1 и 2, и при этом количество’ цифр 1,
записываемых подряд перед цифрой 2, все время увеличивается на
одну. Дробь а непериодическая, так как иначе количество цифр 1,
записываемых подряд в его изображении, было бы ограниченным.
Следовательно, а - иррациональное число.
Итак, какой же смысл следует придать выражению
21,в2Ш1Ш1Ш11Ш11Ш. . . р
Чтобы ответить на этот вопрос, составим последовательности значений
а с недостатком и избытком с точностью до (0,1)*. Получим
1,6; 1,62; 1,624; 1,6241; …, (1)
1,7; 1,63; 1,625; 1,6242; . . . (2)
Составим соответствующие последовательности степеней числа 2:
2М. 2М*; 21*624; 21’62*1; …, (3)
21Д. 21»63; 2*»62Ву 21,6Ш; . (4)
Последовательность (3) возрастает, так как возрастает последовательность
(1) (теорема 2 § 6).
Последовательность (4) убывает, так как убывает последовательность
(2).
Каждый член последовательности (3) меньше каждого члена последовательности
(4), и, таким образом, последовательность (3) ограничена
сверху, а последовательность (4) ограничена снизу.
На основании теоремы о монотонной ограниченной последовательности
каждая из последовательностей (3) и (4) имеет предел. Если

384 Понятие о степени с иррациональным показателем. .

теперь, окажется, что разность последовательностей (4) и (3) сходится
к нулю, то из этого будет вытекать, что обе эти последовательности,
имеют общий предел.
Разность первых членов последовательностей (3) и (4)
21-7 - 21’* = 2|,в (20*1 - 1) < 4 (У 2 - 1).
Разность вторых членов
21’63 - 21,62 = 21,62 (2°’01 - 1) < 4 (l0 j/2f - 1) и т. д.
Разность п-х членов
0,0000. ..0 1
2>.««…(2 » - 1) < 4 (l0“/ 2 - 1).
На основании теоремы 3 § 6
lim 10″ / 2 = 1.
Итак, последовательности (3) и (4) имеют общий предел. Этот
предел является единственным вещественным числом, которое больше
всех членов последовательности (3) и меньше всех членов последовательности
(4), его и целесообразно считать точным значением 2*.
Из сказанного вытекает, что и вообще целесообразно принять
следующее определение:
Опр е д е л ение. Если а^> 1, то степенью числа а с иррациональным
показателем а называется такое действительное число,
которое больше всех степеней этого числа, показатели которых есть
рациональные приближения а с недостатком, и меньше всех степеней
этого числа, показатели которых - рациональные приближения а с
избытком.
Если а<^ 1, то степенью числа а с иррациональным показателем а
называется такое действительное число, которое больше всех степеней
этого числа, показатели которых - рациональные приближения а
с избытком, и меньше всех степеней этого числа, показатели которых
- рациональные приближения а с недостатком.
.Если а- 1, то степенью его с иррациональным показателем а
является 1.
Пользуясь понятием предела, это определение можно сформулировать
так:
Степенью положительного числа с иррациональным показателем
а называется предел, к которому стремится последовательность
рациональных степеней этого числа при условии, что последовательность
показателей этих степеней стремится к а, т. е.
аа = lim аЧ
Ъ — *
13 Д, К. Фатщеев, И. С. Со минский

В рамках этого материала мы разберем, что такое степень числа. Помимо основных определений мы сформулируем, что такое степени с натуральными, целыми, рациональными и иррациональными показателями. Как всегда, все понятия будут проиллюстрированы примерами задач.

Yandex.RTB R-A-339285-1

Сначала сформулируем базовое определение степени с натуральным показателем. Для этого нам понадобится вспомнить основные правила умножения. Заранее уточним, что в качестве основания будем пока брать действительное число (обозначим его буквой a), а в качестве показателя – натуральное (обозначим буквой n).

Определение 1

Степень числа a с натуральным показателем n – это произведение n -ного числа множителей, каждый из которых равен числу а. Записывается степень так: a n , а в виде формулы ее состав можно представить следующим образом:

Например, если показатель степени равен 1 , а основание – a , то первая степень числа a записывается как a 1 . Учитывая, что a – это значение множителя, а 1 – число множителей, мы можем сделать вывод, что a 1 = a .

В целом можно сказать, что степень – это удобная форма записи большого количества равных множителей. Так, запись вида 8 · 8 · 8 · 8 можно сократить до 8 4 . Примерно так же произведение помогает нам избежать записи большого числа слагаемых (8 + 8 + 8 + 8 = 8 · 4) ; мы это уже разбирали в статье, посвященной умножению натуральных чисел.

Как же верно прочесть запись степени? Общепринятый вариант – « a в степени n ». Или можно сказать « n -ная степень a » либо « a n -ной степени». Если, скажем, в примере встретилась запись 8 12 , мы можем прочесть « 8 в 12 -й степени», « 8 в степени 12 » или « 12 -я степень 8 -ми».

Вторая и третья степени числа имеют свои устоявшиеся названия: квадрат и куб. Если мы видим вторую степень, например, числа 7 (7 2) , то мы можем сказать « 7 в квадрате» или «квадрат числа 7 ». Аналогично третья степень читается так: 5 3 – это «куб числа 5 » или « 5 в кубе». Впрочем, употреблять стандартную формулировку «во второй/третьей степени» тоже можно, это не будет ошибкой.

Пример 1

Разберем пример степени с натуральным показателем: для 5 7 пятерка будет основанием, а семерка – показателем.

В основании не обязательно должно стоять целое число: для степени (4 , 32) 9 основанием будет дробь 4 , 32 , а показателем – девятка. Обратите внимание на скобки: такая запись делается для всех степеней, основания которых отличаются от натуральных чисел.

Например: 1 2 3 , (- 3) 12 , - 2 3 5 2 , 2 , 4 35 5 , 7 3 .

Для чего нужны скобки? Они помогают избежать ошибок в расчетах. Скажем, у нас есть две записи: (− 2) 3 и − 2 3 . Первая из них означает отрицательное число минус два, возведенное в степень с натуральным показателем три; вторая – число, соответствующее противоположному значению степени 2 3 .

Иногда в книгах можно встретить немного другое написание степени числа – a ^ n (где а – основание, а n - показатель). То есть 4 ^ 9 – это то же самое, что и 4 9 . В случае, если n представляет собой многозначное число, оно берется в скобки. Например, 15 ^ (21) , (− 3 , 1) ^ (156) . Но мы будем использовать обозначение a n как более употребительное.

О том, как вычислить значение степени с натуральным показателем, легко догадаться из ее определения: нужно просто перемножить a n -ное число раз. Подробнее об этом мы писали в другой статье.

Понятие степени является обратным другому математическому понятию – корню числа. Если мы знаем значение степени и показатель, мы можем вычислить ее основание. Степень обладает некоторыми специфическими свойствами, полезными для решения задач, которые мы разобрали в рамках отдельного материала.

В показателях степени могут стоять не только натуральные числа, но и вообще любые целые значения, в том числе отрицательные и нули, ведь они тоже принадлежат к множеству целых чисел.

Определение 2

Степень числа с целым положительным показателем можно отобразить в виде формулы: .

При этом n – любое целое положительное число.

Разберемся с понятием нулевой степени. Для этого мы используем подход, учитывающий свойство частного для степеней с равными основаниями. Оно формулируется так:

Определение 3

Равенство a m: a n = a m − n будет верно при условиях: m и n – натуральные числа, m < n , a ≠ 0 .

Последнее условие важно, поскольку позволяет избежать деления на ноль. Если значения m и n равны, то мы получим следующий результат: a n: a n = a n − n = a 0

Но при этом a n: a n = 1 - частное равных чисел a n и a . Выходит, что нулевая степень любого отличного от нуля числа равна единице.

Однако такое доказательство не подходит для нуля в нулевой степени. Для этого нам нужно другое свойство степеней – свойство произведений степеней с равными основаниями. Оно выглядит так: a m · a n = a m + n .

Если n у нас равен 0 , то a m · a 0 = a m (такое равенство также доказывает нам, что a 0 = 1 ). Но если а также равно нулю, наше равенство приобретает вид 0 m · 0 0 = 0 m , Оно будет верным при любом натуральном значении n , и неважно при этом, чему именно равно значение степени 0 0 , то есть оно может быть равно любому числу, и на верность равенства это не повлияет. Следовательно, запись вида 0 0 своего особенного смысла не имеет, и мы не будем ему его приписывать.

При желании легко проверить, что a 0 = 1 сходится со свойством степени (a m) n = a m · n при условии, что основание степени не равно нулю. Таким образом, степень любого отличного от нуля числа с нулевым показателем равна единице.

Пример 2

Разберем пример с конкретными числами: Так, 5 0 - единица, (33 , 3) 0 = 1 , - 4 5 9 0 = 1 , а значение 0 0 не определено.

После нулевой степени нам осталось разобраться, что из себя представляет степень отрицательная. Для этого нам понадобится то же свойство произведения степеней с равными основаниями, которое мы уже использовали выше: a m · a n = a m + n .

Введем условие: m = − n , тогда a не должно быть равно нулю. Из этого следует, что a − n · a n = a − n + n = a 0 = 1 . Выходит, что a n и a − n у нас являются взаимно обратными числами.

В итоге a в целой отрицательной степени есть не что иное, как дробь 1 a n .

Такая формулировка подтверждает, что для степени с целым отрицательным показателем действительны все те же свойства, которыми обладает степень с натуральным показателем (при условии, что основание не равно нулю).

Пример 3

Степень a с целым отрицательным показателем n можно представить в виде дроби 1 a n . Таким образом, a - n = 1 a n при условии a ≠ 0 и n – любое натуральное число.

Проиллюстрируем нашу мысль конкретными примерами:

Пример 4

3 - 2 = 1 3 2 , (- 4 . 2) - 5 = 1 (- 4 . 2) 5 , 11 37 - 1 = 1 11 37 1

В последней части параграфа попробуем изобразить все сказанное наглядно в одной формуле:

Определение 4

Степень числа a с натуральным показателем z ​​ – это: a z = a z , e с л и z - ц е л о е п о л о ж и т е л ь н о е ч и с л о 1 , z = 0 и a ≠ 0 , (п р и z = 0 и a = 0 п о л у ч а е т с я 0 0 , з н а ч е н и я в ы р а ж е н и я 0 0 н е о п р е д е л я е т с я)   1 a z , е с л и z - ц е л о е о т р и ц а т е л ь н о е ч и с л о и a ≠ 0 (е с л и z - ц е л о е о т р и ц а т е л ь н о е ч и с л о и a = 0 п о л у ч а е т с я 0 z , е г о з н а ч е н и е н е о п р е д е л я е т с я)

Что такое степени с рациональным показателем

Мы разобрали случаи, когда в показателе степени стоит целое число. Однако возвести число в степень можно и тогда, когда в ее показателе стоит дробное число. Это называется степенью с рациональным показателем. В этом пункте мы докажем, что она обладает теми же свойствами, что и другие степени.

Что такое рациональные числа? В их множество входят как целые, так и дробные числа, при этом дробные числа можно представить в виде обыкновенных дробей (как положительных, так и отрицательных). Сформулируем определение степени числа a с дробным показателем m / n , где n – натуральное число, а m – целое.

У нас есть некоторая степень с дробным показателем a m n . Для того, чтобы свойство степени в степени выполнялось, равенство a m n n = a m n · n = a m должно быть верным.

Учитывая определение корня n -ной степени и что a m n n = a m , мы можем принять условие a m n = a m n , если a m n имеет смысл при данных значениях m , n и a .

Приведенные выше свойства степени с целым показателем будут верными при условии a m n = a m n .

Основной вывод из наших рассуждений таков: степень некоторого числа a с дробным показателем m / n – это корень n -ой степени из числа a в степени m . Это справедливо в том случае, если при данных значениях m , n и a выражение a m n сохраняет смысл.

1. Мы можем ограничить значение основания степени: возьмем a , которое при положительных значениях m будет больше или равно 0 , а для отрицательных – строго меньше (поскольку при m ≤ 0 мы получаем 0 m , а такая степень не определена). В таком случае определение степени с дробным показателем будет выглядеть следующим образом:

Степень с дробным показателем m / n для некоторого положительного числа a есть корень n -ной степени из a, возведенного в степень m . В виде формулы это можно изобразить так:

Для степени с нулевым основанием это положение также подходит, но только в том случае, если ее показатель – положительное число.

Степень с нулевым основанием и дробным положительным показателем m / n можно выразить как

0 m n = 0 m n = 0 при условии целого положительного m и натурального n .

При отрицательном отношении m n < 0 степень не определяется, т.е. такая запись смысла не имеет.

Отметим один момент. Поскольку мы ввели условие, что a больше или равно нулю, то у нас оказались отброшены некоторые случаи.

Выражение a m n иногда все же имеет смысл при некоторых отрицательных значениях a и некоторых m . Так, верны записи (- 5) 2 3 , (- 1 , 2) 5 7 , - 1 2 - 8 4 , в которых основание отрицательно.

2. Второй подход – это рассмотреть отдельно корень a m n с четными и нечетными показателями. Тогда нам потребуется ввести еще одно условие: степень a , в показателе которой стоит сократимая обыкновенная дробь, считается степенью a , в показателе которой стоит соответствующая ей несократимая дробь. Позже мы объясним, для чего нам это условие и почему оно так важно. Таким образом, если у нас есть запись a m · k n · k , то мы можем свести ее к a m n и упростить расчеты.

Если n – нечетное число, а значение m – положительно, a – любое неотрицательное число, то a m n имеет смысл. Условие неотрицательного a нужно, поскольку корень четной степени из отрицательного числа не извлекают. Если же значение m положительно, то a может быть и отрицательным, и нулевым, т.к. корень нечетной степени можно извлечь из любого действительного числа.

Объединим все данные выше определения в одной записи:

Здесь m/n означает несократимую дробь, m – любое целое число, а n – любое натуральное число.

Определение 5

Для любой обыкновенной сократимой дроби m · k n · k степень можно заменить на a m n .

Степень числа a с несократимым дробным показателем m / n – можно выразить в виде a m n в следующих случаях: - для любых действительных a , целых положительных значений m и нечетных натуральных значений n . Пример: 2 5 3 = 2 5 3 , (- 5 , 1) 2 7 = (- 5 , 1) - 2 7 , 0 5 19 = 0 5 19 .

Для любых отличных от нуля действительных a , целых отрицательных значений m и нечетных значений n , например, 2 - 5 3 = 2 - 5 3 , (- 5 , 1) - 2 7 = (- 5 , 1) - 2 7

Для любых неотрицательных a , целых положительных значений m и четных n , например, 2 1 4 = 2 1 4 , (5 , 1) 3 2 = (5 , 1) 3 , 0 7 18 = 0 7 18 .

Для любых положительных a , целых отрицательных m и четных n , например, 2 - 1 4 = 2 - 1 4 , (5 , 1) - 3 2 = (5 , 1) - 3 , .

В случае других значений степень с дробным показателем не определяется. Примеры таких степеней: - 2 11 6 , - 2 1 2 3 2 , 0 - 2 5 .

Теперь объясним важность условия, о котором говорили выше: зачем заменять дробь с сократимым показателем на дробь с несократимым. Если бы мы этого не сделали бы, то получились бы такие ситуации, скажем, 6 / 10 = 3 / 5 . Тогда должно быть верным (- 1) 6 10 = - 1 3 5 , но - 1 6 10 = (- 1) 6 10 = 1 10 = 1 10 10 = 1 , а (- 1) 3 5 = (- 1) 3 5 = - 1 5 = - 1 5 5 = - 1 .

Определение степени с дробным показателем, которое мы привели первым, удобнее применять на практике, чем второе, поэтому мы будем далее пользоваться именно им.

Определение 6

Таким образом, степень положительного числа a с дробным показателем m / n определяется как 0 m n = 0 m n = 0 . В случае отрицательных a запись a m n не имеет смысла. Степень нуля для положительных дробных показателей m / n определяется как 0 m n = 0 m n = 0 , для отрицательных дробных показателей мы степень нуля не определяем.

В выводах отметим, что можно записать любой дробный показатель как в виде смешанного числа, так и в виде десятичной дроби: 5 1 , 7 , 3 2 5 - 2 3 7 .

При вычислении же лучше заменять показатель степени обыкновенной дробью и далее пользоваться определением степени с дробным показателем. Для примеров выше у нас получится:

5 1 , 7 = 5 17 10 = 5 7 10 3 2 5 - 2 3 7 = 3 2 5 - 17 7 = 3 2 5 - 17 7

Что такое степени с иррациональным и действительным показателем

Что такое действительные числа? В их множество входят как рациональные, так и иррациональные числа. Поэтому для того, чтобы понять, что такое степень с действительным показателем, нам надо определить степени с рациональными и иррациональными показателями. Про рациональные мы уже упоминали выше. Разберемся с иррациональными показателями пошагово.

Пример 5

Допустим, что у нас есть иррациональное число a и последовательность его десятичных приближений a 0 , a 1 , a 2 , . . . . Например, возьмем значение a = 1 , 67175331 . . . , тогда

a 0 = 1 , 6 , a 1 = 1 , 67 , a 2 = 1 , 671 , . . . , a 0 = 1 , 67 , a 1 = 1 , 6717 , a 2 = 1 , 671753 , . . .

Последовательности приближений мы можем поставить в соответствие последовательность степеней a a 0 , a a 1 , a a 2 , . . . . Если вспомнить, что мы рассказывали ранее о возведении чисел в рациональную степень, то мы можем сами подсчитать значения этих степеней.

Возьмем для примера a = 3 , тогда a a 0 = 3 1 , 67 , a a 1 = 3 1 , 6717 , a a 2 = 3 1 , 671753 , . . . и т.д.

Последовательность степеней можно свести к числу, которое и будет значением степени c основанием a и иррациональным показателем a . В итоге: степень с иррациональным показателем вида 3 1 , 67175331 . . можно свести к числу 6 , 27 .

Определение 7

Степень положительного числа a с иррациональным показателем a записывается как a a . Его значение – это предел последовательности a a 0 , a a 1 , a a 2 , . . . , где a 0 , a 1 , a 2 , . . . являются последовательными десятичными приближениями иррационального числа a . Степень с нулевым основанием можно определить и для положительных иррациональных показателей, при этом 0 a = 0 Так, 0 6 = 0 , 0 21 3 3 = 0 . А для отрицательных этого сделать нельзя, поскольку, например, значение 0 - 5 , 0 - 2 π не определено. Единица, возведенная в любую иррациональную степень, остается единицей, например, и 1 2 , 1 5 в 2 и 1 - 5 будут равны 1 .

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter


Информационный бум В биологии - колонии микробов в чашке Петри Кролики в Австралии Цепные реакции – в химии В физике - радиоактивный распад, изменение атмосферного давления с изменением высоты, охлаждение тела.В физике - радиоактивный распад, изменение атмосферного давления с изменением высоты, охлаждение тела. Выбрасывание адреналина в кровь и его разрушение А так же утверждают, что количество информации удваивается каждые 10 лет.А так же утверждают, что количество информации удваивается каждые 10 лет.


(3/5) -1 a 1 3 1/2 (4/9) 0 a *81 (1/2) -3 a -n 36 1/2* 8 1/ /3 2 -3,5


Выражение 2 х 2 2 =4 2 5 = = =1/2 4 =1/16 2 4/3 = 32 4 = ,5 = 1/2 3,5 =1/2 7= 1/(8 2)= 2/16 2)=



3=1, … 1; 1,7 1,73; 1,732;1,73205; 1, ;… последовательность возрастает 2 1 ; 2 1,7 ; 2 1,73 ;2 1,732 ; 2 1,73205 ; 2 1, ;… последовательность возрастает Ограниченная, а значит сходится к одному пределу - значение 2 3


Можно определить π 0











10 10 18 Свойства функции у = а х п \ п а >10 10 10 10 10 title="Свойства функции у = а х п \ п а >10 21


Количество информации удваивается каждые 10 лет По оси Ох – по закону арифметической прогрессии:1,2,3,4…. По оси Оу – по закону геометрической прогрессии: 2 1,2 2,2 3,2 4 … График показательной функции, его называют экспонентой (от латинского exponere - выставлять напоказ)

Степень с рациональным показателем, её свойства.

Выражение а n определено для всех а и n, кроме случая а=0 при n≤0. Напомним свойства таких степеней.

Для любых чисел а, b и любых целых чисел m и п справедливы равенства:

A m *a n =a m+n ; a m:а n =a m-n (а≠0); (а m) n = а mn ; (ab) n = a n *b n ; (b≠0); а 1 =а; а 0 =1 (а≠0).

Отметим также следующее свойство:

Если m>n, то а m >а n при а>1 и а m <а n при 0<а<1.

В этом пункте мы обобщим понятие степени числа, придав смысл выражениям типа 2 0.3 , 8 5/7 , 4 -1/2 и т. д. Естественно при этом дать определение так, чтобы степени с рациональными показателями обладали теми же свойствами (или хотя бы их частью), что и степени с целым показателем. Тогда, в частности, n-я степень числа должна быть равна а m . Действительно, если свойство

(a p) q =a pq

выполняется, то



Последнее равенство означает (по определению корня n-й степени), что число должно быть корнем п-й степени из числа а m .

Определение.

Степенью числа а>0 с рациональным показателем r=, где m — целое число, а n — натуральное (n > 1), называется число

Итак, по определению

(1)

Степень числа 0 определена только для положительных показателей; по определению 0 r = 0 для любого r>0.

Степень с иррациональным показателем.

Иррациональное число можно представить в виде предела последовательности рациональных чисел : .

Пусть . Тогда существуют степени с рациональным показателем . Можно доказать, что последовательность этих степеней является сходящейся. Предел этой последовательности называется степенью с основанием и иррациональным показателем : .

Зафиксируем положительное число а и поставим в соответствие каждому числу . Тем самым получим числовую функцию f(x) = a x , определенную на множестве Q рациональных чисел и обладающую ранее перечисленными свойствами. При а=1 функция f(x) = a x постоянна, так как 1 x =1 для любого рационального х.



Нанесем несколько точек графика функции у =2 x предварительно вычислив с помощью калькулятора значения 2 x на отрезке [—2; 3] с шагом 1/4 (рис. 1, а), а затем с шагом 1/8 (рис. 1, б).Продолжая мысленно такие же построения с шагом 1/16, 1/32 и т. д., мы видим, что получающиеся точки можно соединить плавной кривой, которую естественно считать графиком некоторой функции, определенной и возрастающей уже на всей числовой прямой и принимающей значения в рациональных точках (рис. 1, в). Построив достаточно большое число точек графика функции , можно убедиться в том, что аналогичными свойствами обладает и эта функция (отличие состоит в том, что функция убывает на R).

Эти наблюдения подсказывают, что можно так определить числа 2 α и для каждого иррационального α, что функции, задаваемые формулами y=2 x и будут непрерывными, причем функция у=2 x возрастает, а функция убывает на всей числовой прямой.

Опишем в общих чертах, как определяется число a α для иррациональных α при а>1. Мы хотим добиться того, чтобы функция у = a x была возрастающей. Тогда при любых рациональных r 1 и r 2 , таких, что r 1 <α должно удовлетворять неравенствам a r 1 <а α <а r 1 .

Выбирая значения r 1 и r 2 , приближающиеся к х, можно заметить, что и соответствующие значения a r 1 и a r 2 будут мало отличаться. Можно доказать, что существует, и притом только одно, число у, которое больше всех a r 1 для всех рациональных r 1 и меньше всех a r 2 для всех рациональных r 2 . Это число у по определению есть а α .

Например, вычислив с помощью калькулятора значения 2 x в точках х n и х` n , где х n и х` n — десятичные приближения числа мы обнаружим, что, чем ближе х n и х` n к , тем меньше отличаются 2 x n и 2 x` n .

Так как , то



и, значит,



Аналогично, рассматривая следующие десятичные приближения по недостатку и избытку, приходим к соотношениям

;

;

;

;

.

Значение вычисленное на калькуляторе, таково:

.

Аналогично определяется число a α для 0<α<1. Кроме того полагают 1 α =1 для любого α и 0 α =0 для α>0.

Показательная функция.


При a > 0, a = 1, определена функция y = a x , отличная от постоянной. Эта функция называется показательной функцией с основанием a .

y = a x при a > 1:

Графики показательных функций с основанием 0 < a < 1 и a > 1 изображены на рисунке.

Основные свойства показательной функции y = a x при 0 < a < 1:

  • Область определения функции - вся числовая прямая.
  • Область значений функции - промежуток (0; + ) .
  • Функция строго монотонно возрастает на всей числовой прямой, то есть, если x 1 < x 2 , то a x 1 > a x 2 .
  • При x = 0 значение функции равно 1.
  • Если x > 0 , то 0 < a < 1 и если x < 0, то a x > 1.
  • К общим свойствам показательной функции как при0 < a < 1, так и при a > 1 относятся:
    • a x 1 a x 2 = a x 1 + x 2 , для всех x 1 и x 2.
    • a − x = ( a x ) − 1 = 1 a x для любого x .
    • n a x = a

Дата: 27.10.2016

Класс: 11Б

Тема урока Степень с иррациональным показателем.

Иррациональное выражение. Преобразования иррациональных выражений.

Цель урока:

Обобщение и систематизация знаний по данной теме

Задачи урока:

Повышение вычислительной культуры уч-ся;

Проверка уровня усвоения темы путем дифференцированного

опроса уч-ся;

Развитие интереса к предмету;

Воспитание навыков контроля и самоконтроля.

Ход урока.

I этап урока (1 минута)

Организационный момент

Учитель сообщает учащимся тему урока, цель и задачи урока (слайд№2); поясняет, как во время урока будет использоваться раздаточный материал, который находится на рабочем месте каждого ученика, обращает внимание учащихся на лист самоконтроля, в который постепенно в ходе урока будут заноситься баллы, полученные за выполнение заданий разноуровневых тестов, выполнения заданий у доски, за активную работу на уроке.

Лист самоконтроля

Вопросы

теории

Разноуровневая самостоятельная работа «Повышение вычислительной культуры»

Работа на уроке (оценка учителя)

Разноуровневый тест

«Обобщение понятия степени.»

Итог

Резуль

таты

са мо

оц ен ки

Учитель обращается к учащимся:

«В конце урока мы увидим результаты вашей самооценки. Древнегреческий поэт Нивей утверждал, что математику нельзя изучать, наблюдая, как это делает сосед.

Поэтому вы сегодня должны работать самостоятельно и объективно оценивать свои знания».

II этап урока (3 минуты)

Повторение теоретического материала по теме.

Учитель просит учащихся дать определение степени с натуральным показателем.

Звучит определение.

Определение. Степенью действительного числа а с натуральным показателем п называется произведение п множителей, каждый из которых равен а.

Учитель просит учащихся дать определение степени с целым показателем.

Звучит определение.

Определение. Если - целое отрицательное число, то , где 0 Учитель спрашивает: «Чему равна нулевая, первая степень любого действительного числа?» ; .

Учитель просит учащихся дать определение степени с рациональным

показателем. Звучит определение.

Определение. Степенью действительного числа а > 0 c рациональным показателем r = , где m - целое, n - натуральное, называется число:

Если, то.

Учитель: «Вспомните основные свойства степени».

Учащиеся перечисляют свойства степени:

Для любых действительных чисел т и п и для любых положительных а и в выполняются равенства:

1. 4.

2. 5.

Во время ответов на интерактивной доске учащиеся видят определения и свойства степени, и если надо вносят дополнения и исправления в ответы своих товарищей.

III этап урока (3 минуты)

Устная работа по решению простейших задач по теме « Основные свойства степени»

Работа с диском « Новые возможности для усвоения курса математики».

(Учебное электронное издание «Математика 5-11»/ Дрофа.)

Учитель предлагает учащимся применить только что сформулированные теоретические факты к решению упражнений:

    Вычислите

2. Упростите

3) () 6)

3. Выполните действия

К компьютеру вызываются по очереди 3 ученика, они решают предложенные задачи устно, комментируя свой ответ, ссылаясь на теорию. Если задача решена правильно, то звучат аплодисменты, на экране и на доске появляется улыбающееся лицо, а если упражнение выполнено неверно, то лицо грустное, и тогда учитель предлагает взять подсказку. С помощью программы все учащиеся видят на интерактивной доске правильное решение.

IV этап урока (5 минут)

Вариант 1

Вычислите:

648

Уровень II

(2-)

7- 4

0,0640,49

0,28

Уровень III

0,3

Вариант 2

Вычислите:

4 64

Уровень II

(-2)

при а =

125 16-36

Уровень III

1,5

Учащийся должен решить задания своего уровня сложности. Если у него остается ещё время, то он может набирать дополнительные баллы, решая задания другого уровня сложности. Сильные учащиеся, прорешав задания менее сложного уровня, смогут помочь своим товарищам из другой группы в случае необходимости. (По просьбе учителя они выступают в роли консультантов).

Проверка теста с помощью инструмента « Шторка» интерактивной доски.

V этап урока (15 минут)

Разноуровневый тест тематического контроля знаний

«Обобщение понятия степени».

У доски учащиеся группы III записывают и подробно объясняют решение варианта 7 и 8

Во время выполнения работы учитель, если необходимо, помогает учащимся группы III выполнять задания и контролирует решение задач на доске.

Учащиеся двух других групп и остальные учащиеся группы III решают в это время разноуровневый тест (1 и 2 вариант)

VI этап урока (7 минут)

Обсуждение решений задач представленных на доске.

На доске учащиеся решали пять задач. Учащиеся, выполнявшие задачи у доски, комментируют свои решения, а остальные вносят, при необходимости, коррективы.

VII этап урока (5 минут) Подведение итогов урока, комментарии по домашнему заданию. Учитель еще раз обращает внимание, на те типы заданий и те теоретические факты, которые вспоминали на уроке, говорит о необходимости выучить их. Отмечает наиболее успешную работу на уроке отдельных учащихся.

1). Подсчет баллов (слайд)

Каждое задание самостоятельной работы и теста, если

оно выполнено верно, оценивается в 1 балл.

Не забудьте прибавить оценки-баллы учителя за урок…

2). Заполнение листа самоконтроля (слайд)

«5» - 15 баллов

«4» - 10 баллов

«3» - 7баллов < 7 баллов

мы надеемся, что ты очень старался,

просто сегодня – не твой день!..

Решения теста и самостоятельной работы учащиеся забирают с собой, чтобы дома сделать работу над ошибками, листы самоконтроля сдают учителю. Учитель после урока анализирует их и выставляет оценки, докладывая о результатах анализа на следующем уроке.

3). Домашнее задание:

    Работа над ошибками в тестах.

    Творческое задание для группы III : составить карточку с заданиями на применение свойств степеней для опроса на следующем уроке.

    Выучить определение и свойства

    Выполнить упражнения

Разноуровневая самостоятельная работа «Повышение вычислительной культуры»:

Вариант 1

Вычислите:

Уровень II