Расписание огэ и егэ официальное фипи. Расписание бесплатных пробных егэ. Как же ОГЭ может повлиять на аттестат

Оксид углерода(II) – СО

(угарный газ , окись углерода , монооксид углерода )

Физические свойства: бесцветный ядовитый газ без вкуса и запаха, горит голубоватым пламенем, легче воздуха, плохо растворим в воде. Концентрация угарного газа в воздухе 12,5-74 % взрывоопасна.

Строение молекулы:

Формальная степень окисления углерода +2 не отражает строение молекулы СО, в которой помимо двойной связи, обра­зованной обобществлением электронов С и О, имеется дополнительная, образованная по донорно-акцепторному механизму за счет неподеленной пары электронов кислорода (изображена стрелкой):

В связи с этим молекула СО очень прочна и способна вступать в реакции окисления-восстановления только при высоких темпера­турах. При обычных условиях СО не взаимодействует с водой, щелочами или кислотами.

Получение:

Основным антропогенным источником угарного газа CO в настоящее время служат выхлопные газы двигателей внутреннего сгорания. Угарный газ образуется при сгорании топлива в двигателях внутреннего сгорания при недостаточных температурах или плохой настройке системы подачи воздуха (подается недостаточное количество кислорода для окисления угарного газа CO в углекислый газ CO2). В естественных условиях, на поверхности Земли, угарный газ CO образуется при неполном анаэробном разложении органических соединений и при сгорании биомассы, в основном в ходе лесных и степных пожаров.

1) В промышленности (в газогенераторах):

Видео - опыт "Получение угарного газа"

C + O 2 = CO 2 + 402 кДж

CO 2 + C = 2CO – 175 кДж

В газогенераторах иногда через раскалённый уголь продувают водяной пар:

С + Н 2 О = СО + Н 2 – Q ,

смесь СО + Н 2 – называется синтез – газом .

2) В лаборатории - термическим разложением муравьиной или щавелевой кислоты в присутствии H 2 SO 4 (конц.):

HCOOH t˚C, H2SO4 H 2 O + CO­

H 2 C 2 O 4 t˚C,H2SO4 CO­ + CO 2 ­ + H 2 O

Химические свойства:

При обычных условиях CO инертен; при нагревании – восстановитель;

CO - несолеобразующий оксид .

1) с кислородом

2 C +2 O + O 2 t ˚ C →2 C +4 O 2

2) с оксидами металлов CO + Me x O y = CO 2 + Me

C +2 O + CuO t ˚ C →Сu + C +4 O 2

3) с хлором (на свету)

CO + Cl 2 свет → COCl 2 (фосген – ядовитый газ)

4)* реагирует с расплавами щелочей (под давлением)

CO + NaOH P → HCOONa (формиат натрия)

Влияние угарного газа на живые организмы:

Угарный газ опасен, потому что он лишает возможности кровь нести кислород к жизненно важным органам, таким как сердце и мозг. Угарный газ объединяется с гемоглобином, который переносит кислород к клеткам организма, в следствии чего тот становится непригодным для транспортировки кислорода. В зависимости от вдыхаемого количества, угарный газ ухудшает координацию, обостряет сердечно-сосудистые заболевания и вызывает усталость, головную боль, слабость, Влияние угарного газа на здоровье человека зависит от его концентрации и времени воздействия на организм. Концентрация угарного газа в воздухе более 0,1% приводит к смерти в течение одного часа, а концентрация более 1,2% в течении трех минут.

Применение оксида углерода :

Главным образом угарный газ применяют, как горючий газ в смеси с азотом, так называемый генераторный или воздушный газ, или же в смеси с водородом водяной газ. В металлургии для восстановления металлов из их руд. Для получения металлов высокой чистоты при разложении карбонилов.

ЗАКРЕПЛЕНИЕ

№1. Закончите уравнения реакций, составьте электронный баланс для каждой из реакций, укажите процессы окисления и восстановления; окислитель и восстановитель:

CO 2 + C =

C + H 2 O =

С O + O 2 =

CO + Al 2 O 3 =

№2. Вычислите количество энергии, которое необходимо для получения 448 л угарного газа согласно термохимическому уравнению

CO 2 + C = 2CO – 175 кДж

Оксид углерода(II ), или угарный газ, СО был открыт английским химиком Джозефом Пристли в 1799 г. Это бес-цветный газ без вкуса и запаха, он ма-лорастворим в воде (3,5 мл в 100 мл воды при 0 °С), имеет низкие темпера-туры плавления (-205 °С) и кипения (-192 °С).

В атмосферу Земли угарный газ попадает при неполном сгорании ор-ганических веществ, при извержении вулканов, а также в результате жиз-недеятельности некоторых низших растений (водорослей). Естественный уровень СО в воздухе составляет 0,01—0,9 мг/м 3 . Угарный газ очень ядовит. В организме человека и выс-ших животных он активно реагирует с

Пламя горящего угарного газа — красивого сине-фиолетового цвета. Его легко наблюдать самому. Для этого надо зажечь спичку. Нижняя часть пламени светящаяся — этот цвет придают ему раскалённые частицы углерода (продукта неполного сгорания древесины). Сверху пламя окружено сине-фиолетовой каймой. Это горит образующийся при окислении древесины угарный газ.

комплексным соединением железа — гемом крови (связанным с белком гло-бином), нарушая функции переноса и потребления кислорода тканями. По-мимо этого, он вступает в необрати-мое взаимодействие с некоторыми ферментами, участвующими в энерге-тическом обмене клетки. При концен-трации угарного газа в помещении 880 мг/м 3 смерть наступает через не-сколько часов, а при 10 г/м 3 — прак-тически мгновенно. Предельно допу-стимое содержание угарного газа в воздухе — 20 мг/м 3 . Первыми призна-ками отравления СО (при концентра-ции 6—30 мг/м 3) являются снижение чувствительности зрения и слуха, го-ловная боль, изменение частоты сер-дечных сокращений. Если человек от-равился угарным газом, его надо вывести на свежий воздух, сделать ему искусственное дыхание, в лёгких слу-чаях отравления — дать крепкого чаю или кофе.

Большие количества оксида углерода ( II ) поступают в атмосферу в резуль-тате деятельности человека. Так, авто-мобиль в среднем за год выбрасывает в воздух около 530 кг СО. При сжига-нии в двигателе внутреннего сгорания 1 л бензина выброс угарного газа ко-леблется от 1 50 до 800 г. На автостра-дах России средняя концентрация СО составляет 6—57 мг/м 3 , т. е. превыша-ет порог отравления. Угарный газ на-капливается в плохо проветриваемых дворах перед домами, расположенны-ми вблизи автострад, в подвалах и га-ражах. В последние годы на автодоро-гах организованы специальные пункты по контролю содержания угарного га-за и других продуктов неполного сго-рания топлива (СО-СН-контроль).

При комнатной температуре угар-ный газ довольно инертен. Он не вза-имодействует с водой и растворами щелочей, т. е. является несолеобразующим оксидом, однако при нагревании вступает в реакцию с твёрдыми щело-чами: СО+КОН=НСООК (формиат калия, соль муравьиной кислоты); СО+Са(ОН) 2 =СаСО 3 +Н 2 . Эти реакции применяют для выделения водорода из синтез-газа (СО+3Н 2), образующегося при взаимодействии метана с пере-гретым водяным паром.

Интересным свойством угарного газа является его способность образо-вывать соединения с переходными ме-таллами — карбонилы, например: Ni +4СО ® 70° C Ni (CO ) 4 .

Оксид углерода(II ) — прекрасный восстановитель. При нагревании он окисляется кислородом воздуха: 2СО+О 2 =2СО 2 . Эту реакцию возможно осуществить и при комнатной темпера-туре, используя катализатор — плати-ну или палладий. Такие катализаторы устанавливают на автомобилях для уменьшения выброса СО в атмосферу.

При реакции СО с хлором обра-зуется очень ядовитый газ фосген (t кип =7,6 °С): СО+ Cl 2 = COCl 2 . Рань-ше его применяли в качестве боевого отравляющего вещества, а сейчас ис-пользуют в производстве синтетиче-ских полимеров полиуретанов.

Угарный газ используют при вы-плавке чугуна и стали для восстановле-ния железа из оксидов, он находит ши-рокое применение и в органическом синтезе. При взаимодействии смеси оксида углерола( II ) с водородом в зави-симости от условий (температуры, давления) образуются различные про-дукты — спирты, карбонильные соеди-нения, карбоновые кислоты. Особенно большое значение имеет реакция син-теза метанола: СО+2Н 2 = CH 3 OH , являющегося одним из основных про-дуктов органического синтеза. Угар-ный газ используют для синтеза фос-гена, муравьиной кислоты, в качестве высококалорийного топлива.

Многие газообразные вещества, существующие в природе и получаемые при производствах, являются сильными отравляющими соединениями. Известно, что хлор использовался как биологическое оружие, пары брома обладают сильно разъедающим действием на кожу, сероводород вызывает отравление и так далее.

Одним из таких веществ является и монооксид углерода или угарный газ, формула которого имеет свои особенности в структуре. О нем и пойдет речь дальше.

Химическая формула угарного газа

Эмпирический вид формулы рассматриваемого соединения следующий: СО. Однако такая форма дает характеристику лишь о качественном и количественном составе, но не затрагивает особенности строения и порядок соединения атомов в молекуле. А он отличается от такового во всех прочих подобных газах.

Именно эта особенность влияет на проявляемые соединением физические и химические свойства. Какая же это структура?

Строение молекулы

Во-первых, по эмпирической формуле видно, что валентность углерода в соединении равна II. Так же, как и у кислорода. Следовательно, каждый из них может сформировать по две формула угарного газа СО это наглядно подтверждает.

Так и происходит. Между атомом углерода и кислорода по механизму обобществления неспаренных электронов происходит образование двойной ковалентной полярной связи. Таким образом, угарного газа принимает вид С=О.

Однако на этом особенности молекулы не заканчиваются. По донорно-акцепторному механизму в молекуле происходит формирование третьей, дативной или семиполярной связи. Чем это объясняется? Так как после образования по обменному порядку у кислорода остается две пары электронов, а у атома углерода - пустая орбиталь, то последний выступает в роли акцептора одной из пар первого. Другими словами, пара электронов кислорода размещается на свободной орбитали углерода и происходит образование связи.

Так, углерод - акцептор, кислород - донор. Поэтому формула угарного газа в химии принимает следующий вид: С≡О. Такая структуризация сообщает молекуле дополнительную химическую стабильность и инертность в проявляемых свойствах при обычных условиях.

Итак, связи в молекуле монооксида углерода:

  • две ковалентные полярные, образованные по обменному механизму за счет обобществления неспаренных электронов;
  • одна дативная, сформированная по донорно-акцепторному взаимодействию между парой электронов и свободной орбиталью;
  • всего связей в молекуле - три.

Физические свойства

Есть ряд характеристик, которыми, как и любое другое соединение, обладает угарный газ. Формула вещества четко дает понять, что кристаллическая решетка молекулярная, состояние при обычных условиях газообразное. Отсюда вытекают следующие физические параметры.

  1. С≡О - угарный газ (формула), плотность - 1,164 кг/м 3 .
  2. Температура кипения и плавления соответственно: 191/205 0 С.
  3. Растворяется в: воде (незначительно), эфире, бензоле, спирте, хлороформе.
  4. Не имеет вкуса и запаха.
  5. Бесцветен.

С биологической точки зрения крайне опасен для всех живых существ, кроме определенных видов бактерий.

Химические свойства

С точки зрения химической активности, одно из самых инертных веществ при обычных условиях - это угарный газ. Формула, в которой отражены все связи в молекуле, подтверждает это. Именно из-за такой прочной структуры данное соединение при стандартных показателях окружающей среды практически не вступает ни в какие взаимодействия.

Однако следует хотя бы немного нагреть систему, как дативная связь в молекуле рушится, как и ковалентные. Тогда монооксид углерода начинает проявлять активные восстановительные свойства, причем достаточно сильные. Так, он способен взаимодействовать с:

  • кислородом;
  • хлором;
  • щелочами (расплавы);
  • с оксидами и солями металлов;
  • с серой;
  • незначительно с водой;
  • с аммиаком;
  • с водородом.

Поэтому, как уже оговаривалось выше, свойства, которые проявляет угарный газ, формула его во многом объясняет.

Нахождение в природе

Основной источник СО в атмосфере Земли - лесные пожары. Ведь главный способ образования данного газа естественным путем - это неполное сгорание различного вида топлива, в основном органической природы.

Антропогенные источники загрязнения воздуха монооксидом углерода так же немаловажны и дают по массовой доле такой же процент, как и природные. К ним относятся:

  • дым от работы фабрик и заводов, металлургических комплексов и прочих промышленных предприятий;
  • выхлопные газы из двигателей внутреннего сгорания.

В природных условиях угарный газ легко окисляется кислородом воздуха и парами воды до углекислого газа. На этом основана первая помощь при отравлении этим соединением.

Получение

Стоит указать одну особенность. Угарный газ (формула), углекислый газ (строение молекулы) соответственно выглядят так: С≡О и О=С=О. Разница на один атом кислорода. Поэтому промышленный способ получения монооксида основан на реакции между диоксидом и углем: СО 2 + С = 2СО. Это самый простой и распространенный способ синтеза данного соединения.

В лаборатории используют различные органические соединения, соли металлов и комплексные вещества, так как выход продукта не ожидают слишком большим.

Качественный реагент на наличие в воздухе или растворе угарного газа - хлорид палладия. При их взаимодействии формируется чистый металл, который вызывает потемнение раствора или поверхности бумаги.

Биологическое действие на организм

Как уже оговаривалось выше, угарный газ - это очень ядовитый бесцветный, опасный и смертоносный вредитель для человеческого организма. Да и не только именно человеческого, а вообще любого живого. Растения, которые находятся под воздействием выхлопных газов автомобилей, гибнут очень быстро.

В чем же именно заключается биологическое воздействие монооксида углерода на внутреннюю среду животных существ? Все дело в формировании прочных комплексных соединений белка крови гемоглобина и рассматриваемого газа. То есть вместо кислорода захватываются молекулы яда. Клеточное дыхание мгновенно блокируется, газообмен становится невозможным в нормальном его течении.

В результате происходит постепенная блокировка всех молекул гемоглобина и, как следствие, смерть. Достаточно поражения всего на 80%, чтобы исход отравления стал летальным. Для этого концентрация угарного газа в воздухе должна составлять 0,1 %.

Первыми признаками, по которым можно определить наступление отравления этим соединением, являются:

  • головная боль;
  • головокружение;
  • потеря сознания.

Первая помощь - выйти на свежий воздух, где угарный газ под влиянием кислорода превратится в углекислый, то есть обезвредится. Случаи смертей от действия рассматриваемого вещества очень часты, особенно в домах с Ведь при сгорании дров, угля и другого вида топлива в качестве побочного продукта обязательно образуется этот газ. Соблюдение правил техники безопасности крайне важно для сохранения жизни и здоровья человека.

Также много случаев отравления в гаражных помещениях, где собрано много работающих двигателей автомобилей, но недостаточно подведен приток свежего воздуха. Смерть при превышении допустимой концентрации наступает уже через час. Ощутить присутствие газа физически невозможно, ведь ни запаха, ни цвета у него нет.

Использование в промышленности

Кроме того, монооксид углерода применяют:

  • для обработки мясных и рыбных продуктов, что позволяет придать им свежий вид;
  • для синтезов некоторых органических соединений;
  • как компонент генераторного газа.

Поэтому это вещество является не только вредоносным и опасным, но еще и весьма полезным для человека и его хозяйственной деятельности.

Рассмотрены физические свойства угарного газа (окиси углерода CO) при нормальном атмосферном давлении в зависимости от температуры при отрицательных и положительных ее значениях.

В таблицах представлены следующие физические свойства CO: плотность угарного газа ρ , удельная теплоемкость при постоянном давлении C p , коэффициенты теплопроводности λ и динамической вязкости μ .

В первой таблице приведены значения плотности и удельной теплоемкости окиси углерода CO в диапазоне температуры от -73 до 2727°С.

Во второй таблице даны значения таких физических свойств угарного газа, как теплопроводность и его динамическая вязкость в интервале температуры от минус 200 до 1000°С.

Плотность угарного газа, как и , существенно зависит от температуры — при нагревании оксида углерода CO его плотность снижается. Например, при комнатной температуре плотность угарного газа имеет значение 1,129 кг/м 3 , но в процессе нагрева до температуры 1000°С, плотность этого газа уменьшается в 4,2 раза — до величины 0,268 кг/м 3 .

При нормальных условиях (температура 0°С) угарный газ имеет плотность 1,25 кг/м 3 . Если же сравнить его плотность с или другими распространенными газами, то плотность угарного газа относительно воздуха имеет меньшее значение — угарный газ легче воздуха. Он также легче и аргона, но тяжелее азота, водорода, гелия и других легких газов.

Удельная теплоемкость угарного газа при нормальных условиях равна 1040 Дж/(кг·град). В процессе роста температуры этого газа его удельная теплоемкость увеличивается. Например, при 2727°С ее значение составляет 1329 Дж/(кг·град).

Плотность угарного газа CO и его удельная теплоемкость
t, °С ρ, кг/м 3 C p , Дж/(кг·град) t, °С ρ, кг/м 3 C p , Дж/(кг·град) t, °С ρ, кг/м 3 C p , Дж/(кг·град)
-73 1,689 1045 157 0,783 1053 1227 0,224 1258
-53 1,534 1044 200 0,723 1058 1327 0,21 1267
-33 1,406 1043 257 0,635 1071 1427 0,198 1275
-13 1,297 1043 300 0,596 1080 1527 0,187 1283
-3 1,249 1043 357 0,535 1095 1627 0,177 1289
0 1,25 1040 400 0,508 1106 1727 0,168 1295
7 1,204 1042 457 0,461 1122 1827 0,16 1299
17 1,162 1043 500 0,442 1132 1927 0,153 1304
27 1,123 1043 577 0,396 1152 2027 0,147 1308
37 1,087 1043 627 0,374 1164 2127 0,14 1312
47 1,053 1043 677 0,354 1175 2227 0,134 1315
57 1,021 1044 727 0,337 1185 2327 0,129 1319
67 0,991 1044 827 0,306 1204 2427 0,125 1322
77 0,952 1045 927 0,281 1221 2527 0,12 1324
87 0,936 1045 1027 0,259 1235 2627 0,116 1327
100 0,916 1045 1127 0,241 1247 2727 0,112 1329

Теплопроводность угарного газа при нормальных условиях имеет значение 0,02326 Вт/(м·град). Она увеличивается с ростом его температуры и при 1000°С становится равной 0,0806 Вт/(м·град). Следует отметить, что величина теплопроводности угарного газа немногим меньше этой величины у .

Динамическая вязкость угарного газа при комнатной температуре равна 0,0246·10 -7 Па·с. При нагревании окиси углерода, ее вязкость увеличивается. Такой характер зависимости динамической вязкости от температуры наблюдается у . Необходимо отметить, что угарный газ более вязкий чем водяной пар и диоксид углерода CO 2 , однако имеет меньшую вязкость по сравнению с окисью азота NO и воздухом.