Прилагательные женского рода по падежам. Как определить падеж имени прилагательного. Определяем окончания по падежам. Правописание безударных окончаний в именах прилагательных

§ 46. Величина и направление э. д. с. самоиндукции

Величина возникающей в катушке э. д. с. самоиндукции прямо пропорциональна ее индуктивности и зависит от скорости изменения магнитного потока.
Если в цепи, обладающей индуктивностью L гн , ток изменяется за малое время Δt сек на малую величину ΔI а , то в такой цепи возникает э. д. с. самоиндукции е с, измеряемая в вольтах.

Знак минус в этой формуле указывает на то, что э. д. с. самоиндукции противодействует изменению тока в ней.

Пример . В катушке, обладающей индуктивностью L = 5 гн , протекает электрический ток, сила которого изменяется за 2 сек на 10 а . Вычислить, какая э. д. с. самоиндукции возникает в катушке.
Решение .

Русский ученый Э. X. Ленц доказал, что э. д. с. индукции, в том числе э. д. с. самоиндукции, всегда направлена так, что она противодействует причине, вызывающей ее . Это определение называется правилом Ленца .
Если при замыкании цепи э. д. с. батареи направлена, как показано стрелкой на рис. 45, а, то э. д. с. самоиндукции, согласно правилу Ленца, в этот момент будет иметь противоположное направление (показано двойной стрелкой), препятствуя нарастанию тока. В момент размыкания цепи (рис. 45, б), наоборот, э. д. с. самоиндукции будет иметь направление, совпадающее с э. д. с. батареи, препятствуя убыванию тока.


Следовательно, в момент замыкания цепи, обладающей индуктивностью, э. д. с. на зажимах цепи уменьшается на величину возникающей э. д. с. самоиндукции.
Обозначив напряжение источника тока U , величину э. д. с. самоиндукции е с, а результирующее напряжение U р, получим:

U p = U - е с. (45)

В момент размыкания цепи результирующее напряжение увеличивается:

U p = U + е с. (46)

Э. д. с. самоиндукции в электрических цепях может во много раз превосходить напряжение источника тока. В связи с этим при размыкании цепей, обладающих большой индуктивностью, происходит пробой воздушного промежутка между контактами рубильников и выключателей и образуется искра или дуга, от которой контакты обгорают и частично расплавляются. Кроме того, э. д. с. самоиндукции может пробить изоляцию проводов катушки.
Для наблюдения возникновения э. д. с. и тока самоиндукции в момент размыкания цепи выполним такой опыт (рис. 46).

При замыкании цепи ток в точке А разветвляется. Одна его часть пройдет по виткам катушки в лампу Л 1 а другая часть - через реостат в лампу Л 2 . При этом лампа Л 2 мгновенно вспыхнет, тогда как нить лампы Л 1 накалится постепенно. При размыкании цепи лампа Л 2 сразу погаснет, а лампа Л 1 на мгновение ярко вспыхнет и затем погаснет. Наблюдаемое явление связано с тем, что при замыкании цепи магнитное поле, создаваемое вокруг катушки L , пересекает «собственные витки» и возбуждает в ней э. д. с. и ток самоиндукции, который препятствует прохождению основного тока. По этой причине нить лампы Л 1 накаливается при замыкании цепи медленнее нити лампы Л 2 . При размыкании цепи в катушке также создается э. д. с. и ток самоиндукции, но в данном случае направление э. д. с. самоиндукции совпадает с направлением основного тока. Это и служит причиной того, что нить лампы Л 1 на мгновение ярко вспыхивает и гаснет позже лампы Л 2 , в цепь которой катушка не включена.

На данном уроке мы узнаем, как и кем было открыто явление самоиндукции, рассмотрим опыт, с помощью которого продемонстрируем это явление, определим, что самоиндукция - это частный случай электромагнитной индукции. В конце урока введем физическую величину, показывающую зависимость ЭДС самоиндукции от размеров и формы проводника и от среды, в которой находится проводник, т. е. индуктивность.

Генри изобретал плоские катушки из полосовой меди, с помощью которых добивался силовых эффектов, выраженных более ярко, чем при использовании проволочных соленоидов. Ученый заметил, что при нахождении в цепи мощной катушки ток в этой цепи достигает своего максимального значения гораздо медленнее, чем без катушки.

Рис. 2. Схема экспериментальной установки Д. Генри

На рис. 2 изображена электрическая схема экспериментальной установки, на основе которой можно продемонстрировать явление самоиндукции. Электрическая цепь состоит из двух параллельно соединенных лампочек, подключенных через ключ к источнику постоянного тока. Последовательно с одной из лампочек подключена катушка. После замыкания цепи видно, что лампочка, которая соединена последовательно с катушкой, загорается медленнее, чем вторая лампочка (рис. 3).

Рис. 3. Различный накал лампочек в момент включения цепи

При отключении источника лампочка, подключенная последовательно с катушкой, гаснет медленнее, чем вторая лампочка.

Почему лампочки гаснут не одновременно

При замыкании ключа (рис. 4) из-за возникновения ЭДС самоиндукции ток в лампочке с катушкой нарастает медленнее, поэтому эта лампочка загорается медленнее.

Рис. 4. Замыкание ключа

При размыкании ключа (рис. 5) возникающая ЭДС самоиндукции мешает убыванию тока. Поэтому ток еще некоторое время продолжает течь. Для существования тока нужен замкнутый контур. Такой контур в цепи есть, он содержит обе лампочки. Поэтому при размыкании цепи лампочки должны некоторое время светиться одинаково, и наблюдаемое запаздывание может быть вызвано другими причинами.

Рис. 5. Размыкание ключа

Рассмотрим процессы, происходящие в данной цепи при замыкании и размыкании ключа.

1. Замыкание ключа.

В цепи находится токопроводящий виток. Пусть ток в этом витке течет против часовой стрелки. Тогда магнитное поле будет направлено вверх (рис. 6).

Таким образом, виток оказывается в пространстве собственного магнитного поля. При возрастании тока виток окажется в пространстве изменяющегося магнитного поля собственного тока. Если ток возрастает, то созданный этим током магнитный поток также возрастает. Как известно, при возрастании магнитного потока, пронизывающего плоскость контура, в этом контуре возникает электродвижущая сила индукции и, как следствие, индукционный ток. По правилу Ленца, этот ток будет направлен таким образом, чтобы своим магнитным полем препятствовать изменению магнитного потока, пронизывающего плоскость контура.

То есть для рассматриваемого на рис. 6 витка индукционный ток должен быть направлен по часовой стрелке (рис. 7), тем самым препятствуя нарастанию собственного тока витка. Следовательно, при замыкании ключа ток в цепи возрастает не мгновенно благодаря тому, что в этой цепи возникает тормозящий индукционный ток, направленный в противоположную сторону.

2. Размыкание ключа

При размыкании ключа ток в цепи уменьшается, что приводит к уменьшению магнитного потока сквозь плоскость витка. Уменьшение магнитного потока приводит к появлению ЭДС индукции и индукционного тока. В этом случае индукционный ток направлен в ту же сторону, что и собственный ток витка. Это приводит к замедлению убывания собственного тока.

Вывод: при изменении тока в проводнике возникает электромагнитная индукция в этом же проводнике, что порождает индукционный ток, направленный таким образом, чтобы препятствовать любому изменению собственного тока в проводнике (рис. 8). В этом заключается суть явления самоиндукции. Самоиндукция - это частный случай электромагнитной индукции.

Рис. 8. Момент включения и выключения цепи

Формула для нахождения магнитной индукции прямого проводника с током:

где - магнитная индукция; - магнитная постоянная; - сила тока; - расстояние от проводника до точки.

Поток магнитной индукции через площадку равен:

где - площадь поверхности, которая пронизывается магнитным потоком.

Таким образом, поток магнитной индукции пропорционален величине тока в проводнике.

Для катушки, в которой - число витков, а - длина, индукция магнитного поля определяется следующим соотношением:

Магнитный поток, созданный катушкой с числом витков N , равен:

Подставив в данное выражение формулу индукции магнитного поля, получаем:

Отношение числа витков к длине катушки обозначим числом :

Получаем окончательное выражение для магнитного потока:

Из полученного соотношения видно, что значение потока зависит от величины тока и от геометрии катушки (радиус, длина, число витков). Величина, равная , называется индуктивностью:

Единицей измерения индуктивности является генри:

Следовательно, поток магнитной индукции, вызванный током в катушке, равен:

С учетом формулы для ЭДС индукции , получаем, что ЭДС самоиндукции равна произведению скорости изменения тока на индуктивность, взятому со знаком «-»:

Самоиндукция - это явление возникновения электромагнитной индукции в проводнике при изменении силы тока, протекающего сквозь этот проводник.

Электродвижущая сила самоиндукции прямо пропорциональна скорости изменения тока, протекающего сквозь проводник, взятой со знаком минус. Коэффициент пропорциональности называется индуктивностью , которая зависит от геометрических параметров проводника.

Проводник имеет индуктивность, равную 1 Гн, если при скорости изменения тока в проводнике, равной 1 А в секунду, в этом проводнике возникает электродвижущая сила самоиндукции, равная 1 В.

С явлением самоиндукции человек сталкивается ежедневно. Каждый раз, включая или выключая свет, мы тем самым замыкаем или размыкаем цепь, при этом возбуждая индукционные токи. Иногда эти токи могут достигать таких больших величин, что внутри выключателя проскакивает искра, которую мы можем увидеть.

Список литературы

  1. Мякишев Г.Я. Физика: Учеб. для 11 кл. общеобразоват. учреждений. - М.: Просвещение, 2010.
  2. Касьянов В.А. Физика. 11 кл.: Учеб. для общеобразоват. учреждений. - М.: Дрофа, 2005.
  3. Генденштейн Л.Э., Дик Ю.И., Физика 11. - М.: Мнемозина.
  1. Интернет-портал Myshared.ru ().
  2. Интернет-портал Physics.ru ().
  3. Интернет-портал Festival.1september.ru ().

Домашнее задание

  1. Вопросы в конце параграфа 15 (стр. 45) - Мякишев Г.Я. Физика 11 (см. список рекомендованной литературы)
  2. Индуктивность какого проводника равна 1 Генри?

Магнитное поле контура, в котором сила тока изменяется, индуцирует ток не только в других контурах, но и в себе самом. Это явление получило название самоиндукции.

Опытным путём установлено, что магнитный поток вектора магнитной индукции поля, создаваемого текущим в контуре током, пропорционален силе этого тока:

где L– индуктивность контура. Постоянная характеристика контура, которая зависит от его формы и размеров, а так же от магнитной проницаемости среды, в которой находится контур. [L] = Гн (Генри,

1Гн = Вб/А).

Если за время dtток в контуре изменится наdI, то магнитный поток, связанный с этим током, изменится наdФ =LdIв результате чего в этом контуре появится ЭДС самоиндукции:

Знак минус показывает, что ЭДС самоиндукции (а, следовательно, и ток самоиндукции) всегда препятствует изменению силы тока, который вызвал самоиндукцию.

Наглядным примером явления самоиндукции служат экстратоки замыкания и размыкания, возникающие при включении и выключении электрических цепей, обладающей значительной индуктивностью.

Энергия магнитного поля

Магнитное поле обладает потенциальной энергией, которая в момент его образования (или изменения) пополняется за счёт энергии тока в цепи, совершающего при этом работу против ЭДС самоиндукции, возникающей вследствие изменения поля.

Работа dAза бесконечно малый промежуток времениdt, в течении которого ЭДС самоиндукциии токIможно считать постоянными, равняется:

. (5)

Знак минус указывает, что элементарная работа совершается током против ЭДС самоиндукции. Чтобы определить работу при изменении тока от 0 до I, проинтегрируем правую часть, получим:

. (6)

Эта работа численно равна приросту потенциальной энергии ΔW п магнитного поля, связанного с этой цепью, т.е.A= -ΔW п.

Выразим энергию магнитного поля через его характеристики на примере соленоида. Будем считать, что магнитное поле соленоида однородно и в основном расположено внутри его. Подставим в (5) значение индуктивности соленоида, выраженное через его параметры и значение силы тока I, выраженное из формулы индукции магнитного поля соленоида:

, (7)

где N – общее число витков соленоида; ℓ – его длина; S – площадь сечения внутреннего канала соленоида.

, (8)

После подстановки имеем:

Разделив обе части на V, получим объёмную плотность энергии поля:

(10)

или, с учётом, что
получим,
. (11)

Переменный ток

2.1 Переменный ток и его основные характеристики

Переменным называется ток, изменяющийся с течением времени и по величине и по направлению. Примером переменного тока может служить потребляемый промышленный ток. Этот ток является синусоидальным, т.е. мгновенное значение его параметров меняются со временем по закону синуса (или косинуса):

i = I 0 sinωt, u = U 0 sin(ωt + φ 0). (12)

Переменный синусоидальный ток можно получить, если вращать рамку (контур) с постоянной скоростью

в однородном магнитном поле с индукцией B (рис.5). При этом магнитный поток, пронизывающий контур, изменяется по закону

где S– площадь контура, α = ωt– угол поворота рамки за время t. Изменение потока приводит к возникновению ЭДС индукции

, (17)

направление которой определяется по правилу Ленца.

Если контур замкнут (рис.5), то по нему идёт ток:

. (18)

График изменения электродвижущей силыи индукционного токаi представлен на рис.6.

Переменный ток характеризуется периодом Т, частотой ν = 1/Т, циклической частотой
и фазой φ = (ωt + φ 0) Графически значения напряжения и силы переменного тока на участке цепи будут представляться двумя синусоидами, в общем случае сдвинутыми по фазе на φ.

Для характеристики переменного тока вводятся понятия действующего (эффективного) значения тока и напряжения. Эффективным значением силы переменного тока называется сила такого постоянного тока, который выделяет в данном проводнике столько же тепла за время одного периода, сколько выделяет тепла и данный переменный ток.

,
. (13)

Приборы, включенные в цепь переменного тока (амперметр, вольтметр), показывают эффективные значения тока и напряжения.