Какое событие произошло раньше других. Какое историческое событие произошло позже всех других? Ссср был принят постоянным членом в лигу наций в

Определение 1. Функцияназываетсячетной (нечетной ), если вместе с каждым значением переменной
значение –х также принадлежит
и выполняется равенство

Таким образом, функция может быть четной или нечетной только тогда, когда ее область определения симметрична относительно начала координат на числовой прямой (числа х и –х одновременно принадлежат
). Например, функция
не является четной и нечетной, так как ее область определения
не симметрична относительно начала координат.

Функция
четная, так как
симметрична относительно начала координат и.

Функция
нечетная, так как
и
.

Функция
не является четной и нечетной, так как хотя
и симметрична относительно начала координат, равенства (11.1) не выполняются. Например,.

График четной функции симметричен относительно оси Оу , так как если точка

тоже принадлежит графику. График нечетной функции симметричен относительно начала координат, так как если
принадлежит графику, то и точка
тоже принадлежит графику.

При доказательстве четности или нечетности функции бывают полезны следующие утверждения.

Теорема 1. а) Сумма двух четных (нечетных) функций есть функция четная (нечетная).

б) Произведение двух четных (нечетных) функций есть функция четная.

в) Произведение четной и нечетной функций есть функция нечетная.

г) Если f – четная функция на множествеХ , а функцияg определена на множестве
, то функция
– четная.

д) Если f – нечетная функция на множествеХ , а функцияg определена на множестве
и четная (нечетная), то функция
– четная (нечетная).

Доказательство . Докажем, например, б) и г).

б) Пусть
и
– четные функции. Тогда, поэтому. Аналогично рассматривается случай нечетных функций
и
.

г) Пусть f – четная функция. Тогда.

Остальные утверждения теоремы доказываются аналогично. Теорема доказана.

Теорема 2. Любую функцию
, заданную на множествеХ , симметричном относительно начала координат, можно представить в виде суммы четной и нечетной функций.

Доказательство . Функцию
можно записать в виде

.

Функция
– четная, так как
, а функция
– нечетная, поскольку. Таким образом,
, где
– четная, а
– нечетная функции. Теорема доказана.

Определение 2. Функция
называетсяпериодической , если существует число
, такое, что при любом
числа
и
также принадлежат области определения
и выполняются равенства

Такое число T называетсяпериодом функции
.

Из определения 1 следует, что если Т – период функции
, то и число –Т тоже является периодом функции
(так как при заменеТ на –Т равенство сохраняется). С помощью метода математической индукции можно показать, что еслиТ – период функцииf , то и
, тоже является периодом. Отсюда следует, что если функция имеет период, то она имеет бесконечно много периодов.

Определение 3. Наименьший из положительных периодов функции называется ееосновным периодом.

Теорема 3. ЕслиТ – основной период функцииf , то остальные периоды кратны ему.

Доказательство . Предположим противное, то есть что существует периодфункцииf (>0), не кратныйТ . Тогда, разделивнаТ с остатком, получим
, где
. Поэтому

то есть – период функцииf , причем
, а это противоречит тому, чтоТ – основной период функцииf . Из полученного противоречия следует утверждение теоремы. Теорема доказана.

Хорошо известно, что тригонометрические функции являются периодическими. Основной период
и
равен
,
и
. Найдем период функции
. Пусть
- период этой функции. Тогда

(так как
.

илиилиили
.

Значение T , определяемое из первого равенства, не может быть периодом, так как зависит отх , т.е. является функцией отх , а не постоянным числом. Период определяется из второго равенства:
. Периодов бесконечно много, при
наименьший положительный период получается при
:
. Это – основной период функции
.

Примером более сложной периодической функции является функция Дирихле

Заметим, что если T – рациональное число, то
и
являются рациональными числами при рациональномх и иррациональными при иррациональномх . Поэтому

при любом рациональном числе T . Следовательно, любое рациональное числоT является периодом функции Дирихле. Ясно, что основного периода у этой функции нет, так как есть положительные рациональные числа, сколь угодно близкие к нулю (например, рациональное числоможно сделать выборомn сколь угодно близким к нулю).

Теорема 4. Если функцияf задана на множествеХ и имеет периодТ , а функцияg задана на множестве
, то сложная функция
тоже имеет периодТ .

Доказательство . Имеем, поэтому

то есть утверждение теоремы доказано.

Например, так как cos x имеет период
, то и функции
имеют период
.

Определение 4. Функции, не являющиеся периодическими, называютсянепериодическими .

Графики четной и нечетной функции обладают следующими особенностями:

Если функция является четной, то ее график симметричен относительно оси ординат. Если функция является нечетной, то ее график симметричен относительно начала координат.

Пример. Построить график функции \(y=\left|x \right|\).

Решение. Рассмотрим функцию: \(f\left(x \right)=\left|x \right|\) и подставим вместо \(x \) противоположное \(-x \). В результате не сложных преобразований получим: $$f\left(-x \right)=\left|-x \right|=\left|x \right|=f\left(x \right)$$ Другими словами, если аргумент заменить на противоположный по знаку, функция не изменится.

Значит эта функция - четная, а ее график будет симметричен относительно оси ординат (вертикальной оси). График этой функции приведен на рисунке слева. Это означает что при построении графика, можно строить только половину, а вторую часть (левее вертикальной оси рисовать уже симметрично правой части). Определив симметричность функции перед началом построения ее графика, можно намного упростить процесс построения или исследования функции. Если сложно выполнять проверку в общем виде, можно поступить проще: подставить в уравнение одинаковые значения разных знаков. Например -5 и 5. Если значения функции получатся одинаковыми, то можно надеяться что функция будет четной. С математической точки зрения такой подход не совсем правильный, но с практической - удобный. Чтобы увеличить достоверность результата можно подставить несколько пар таких противоположных значений.


Пример. Построить график функции \(y=x\left|x \right|\).

Решение. Выполним проверку так же как в предыдущем примере: $$f\left(-x \right)=x\left|-x \right|=-x\left|x \right|=-f\left(x \right)$$ Это означает, что исходная функция является нечетной (знак функции поменялся на противоположный).

Вывод: функция симметрична относительно начала координат. Можно строить только одн половину, а вторую рисовать симметрично. Такую симметрию рисовать сложнее. Это означает, что вы смотрите на график с другой строны листа да еще и перевернув вверх ногами. А можно еще так: берем нарисованную часть и вращаем ее вокруг начала координат на 180 градусов против часовой стрелки.


Пример. Построить график функции \(y=x^3+x^2\).

Решение. Выполним такую же проверку на смену знака, как и в предыдущих двух примерах. $$f\left(-x \right)=\left(-x \right)^3+\left(-x \right)^2=-x^2+x^2$$ В результате получим, что: $$f\left(-x \right)\not=f\left(x \right),f\left(-x \right)\not=-f\left(x \right)$$ А это означает, что функция не является ни четной, ни нечетной.

Вывод: функция не симметрична ни относительно начала координат ни относительно центра системы координат. Это произошло потому, что она представляет собой сумму двух функций: четной и не четной. Такая же ситуация будет если вычитать две разные функции. А вот умножение или деление приведет к другому результату. Например, произведение четной и нечетной функций дает нечетную. Или частное двух нечетных приводит к четной функции.