Графическое решение уравнения с параметром. §4. Графические методы решения задач с параметрами. Параметр как равноправная переменная

На рисунке изображён график производной функции f(x), определённой на промежутке [–5; 6]. Найдите количество точек графика f(x), в каждой из которых касательная, проведённая к графику функции, совпадает или параллельна оси абсцисс

На рисунке изображён график производной дифференцируемой функции y = f(х).

Найдите количество точек графика функции, принадлежащих отрезку [–7; 7], в которых касательная к графику функции параллельна прямой, заданной уравнением у = –3х.

Материальная точка М начинает движение из точки А и движется по прямой на протяжении 12 секунд. График показывает, как менялось расстояние от точки А до точки М со временем. На оси абсцисс откладывается время t в секундах, на оси ординат - расстояние s в метрах. Определите, сколько раз за время движения скорость точки М обращалась в ноль (начало и конец движения не учитывайте).

На рисунке изображены участки графика функции y=f(х) и касательной к нему в точке с абсциссой х = 0. Известно, что данная касательная параллельна прямой, проходящей через точки графика с абсциссами х = -2 и х = 3. Используя это, найдите значение производной f"(о).

На рисунке изображён график y = f’(x) - производной функции f(x), определённой на отрезке (−11; 2). Найдите абсциссу точки, в которой касательная к графику функции y = f(x) параллельна оси абсцисс или совпадает с ней.

Материальная точка движется прямолинейно по закону x(t)=(1/3)t^3-3t^2-5t+3, где x - расстояние от точки отсчета в метрах, t - время в секундах, измеренное с начала движения. В какой момент времени (в секундах) ее скорость была равна 2 м/с?

Материальная точка движется вдоль прямой от начального до конечного положения. На рисунке изображён график её движения. На оси абсцисс откладывается время в секундах, на оси ординат - расстояние от начального положения точки(в метрах). Найдите среднюю скорость движения точки. Ответ дайте в метрах в секунду.

Функция у = f (x) определена на промежутке [-4; 4]. На рисунке приведен график её производной. Найдите количество точек графика функции у = f (x), касательная в которых образует с положительным направлением оси Ох угол 45°.

Функция у = f (x) определена на отрезке [-2; 4]. На рисунке дан график её производной. Найдите абсциссу точки графика функции у = f (x), в которой она принимает наименьшее значение на отрезке [-2; -0,001].

На рисунке изображены график функции у = f(x) и касательная к этому графику, проведённая в точке x0. Касательная задана уравнением y = -2x + 15. Найдите значение производной функции у = -(1/4)f(x) + 5 в точке x0.

На графике дифференцируемой функции у = f (x) отмечены семь точек: х1,..,х7. Найдите все отмеченные точки, в которых производная функции f (x) больше нуля. В ответе укажите количество этих точек.

На рисунке изображён график y = f"(х) производной функции f(х), определенной на интервале (-10; 2). Найдите количество точек, в которых касательная к графику функции f(x) параллельна прямой y = -2x-11 или совпадает с ней.


На рисунке изображён график y=f"(x)- производной функции f(x). На оси абсцисс отмечено девять точек: x1, x2, x3, x4, x5, x6, x6, x7, x8, x9.
Сколько из этих точек принадлежит промежуткам убывания функции f(x) ?

На рисунке изображён график функции у = f(x) и касательная к этому графику, проведённая в точке х0. Касательная задана уравнением у = 1,5x + 3,5. Найдите значение производной функции у = 2f(x) - 1 в точке x0.

На рисунке приведен график y=F(x) одной из первообразных функции f (x). На графике отмечены шесть точек с абсциссами x1, x2, ..., x6. В скольких из этих точек функция y=f(x) принимает отрицательные значения?

На рисунке показан график движения автомобиля по маршруту. На оси абсцисс откладывается время (в часах), на оси ординат - пройденный путь (в километрах). Найдите среднюю скорость движения автомобиля на данном маршруте. Ответ дайте в км/ч

Материальная точка движется прямолинейно по закону x(t)=(-1/6)t^3+7t^2+6t+1, где x - расстояние от точки отсчёта (в метрах), t - время движения (в секундах). Найдите её скорость (в метрах в секунду) в момент времени t=6 с

На рисунке изображен график первообразной у = F(x) некоторой функции у = f(x), определенной на интервале (-6; 7). Пользуясь рисунком, определите количество нулей функции f(x) на данном интервале.

На рисунке изображён график y = F(x) одной из первообразных некоторой функции f(x), определённой на интервале (-7; 5). Пользуясь рисунком, определите количество решений уравнения f(x) = 0 на отрезке [- 5; 2].

На рисунке изображён график дифференцируемой функции y=f(x). На оси абсцисс отмечены девять точек: x1, x2, ... x9 . Найдите все отмеченные точки, в которых производная функции f(x) отрицательна. В ответе укажите количество этих точек.

Материальная точка движется прямолинейно по закону x(t)=12t^3−3t^2+2t, где x - расстояние от точки отсчета в метрах, t - время в секундах, измеренное с начала движения. Найдите ее скорость (в метрах в секунду) в момент времени t=6 с.

На рисунке изображены график функции y=f(x) и касательная к этому графику, проведённая в точке x0. Уравнение касательной показано на рисунке. найдите значение производной функции y=4*f(x)-3 в точке x0.

\(\DeclareMathOperator{\tg}{tg}\)\(\DeclareMathOperator{\ctg}{ctg}\)\(\DeclareMathOperator{\arctg}{arctg}\)\(\DeclareMathOperator{\arcctg}{arcctg}\)

Содержание

Элементы содержания

Производная, касательная, первообразная, графики функций и производных.

Производная Пусть функция \(f(x)\) определена в некоторой окрестности точки \(x_0\).

Производной функции \(f\) в точке \(x_0\) называется предел

\(f"(x_0)=\lim_{x\rightarrow x_0}\dfrac{f(x)-f(x_0)}{x-x_0},\)

если этот предел существует.

Производная функции в точке характеризует скорость изменения этой функции в данной точке.

Таблица производных

Функция Производная
\(const\) \(0\)
\(x\) \(1\)
\(x^n\) \(n\cdot x^{n-1}\)
\(\dfrac{1}{x}\) \(-\dfrac{1}{x^2}\)
\(\sqrt{x}\) \(\dfrac{1}{2\sqrt{x}}\)
\(e^x\) \(e^x\)
\(a^x\) \(a^x\cdot \ln{a}\)
\(\ln{x}\) \(\dfrac{1}{x}\)
\(\log_a{x}\) \(\dfrac{1}{x\ln{a}}\)
\(\sin x\) \(\cos x\)
\(\cos x\) \(-\sin x\)
\(\tg x\) \(\dfrac{1}{\cos^2 x}\)
\(\ctg x\) \(-\dfrac{1}{\sin^2x}\)

Правила дифференцирования \(f\) и \(g\) - функции, зависящие от переменной \(x\); \(c\) - число.

2) \((c\cdot f)"=c\cdot f"\)

3) \((f+g)"= f"+g"\)

4) \((f\cdot g)"=f"g+g"f\)

5) \(\left(\dfrac{f}{g}\right)"=\dfrac{f"g-g"f}{g^2}\)

6) \(\left(f\left(g(x)\right)\right)"=f"\left(g(x)\right)\cdot g"(x)\) - производная сложной функции

Геометрический смысл производной Уравнение прямой - не параллельной оси \(Oy\) можно записать в виде \(y=kx+b\). Коэффициент \(k\) в этом уравнении называют угловым коэффициентом прямой . Он равен тангенсу угла наклона этой прямой.

Угол наклона прямой - угол между положительным направлением оси \(Ox\) и данной прямой, отсчитываемый в направлении положительных углов (то есть, в направлении наименьшего поворота от оси \(Ox\) к оси \(Oy\)).

Производная функции \(f(x)\) в точке \(x_0\) равна угловому коэффициенту касательной к графику функции в данной точке: \(f"(x_0)=\tg\alpha.\)

Если \(f"(x_0)=0\), то касательная к графику функции \(f(x)\) в точке \(x_0\) параллельна оси \(Ox\).

Уравнение касательной

Уравнение касательной к графику функции \(f(x)\) в точке \(x_0\):

\(y=f(x_0)+f"(x_0)(x-x_0)\)

Монотонность функции Если производная функции положительна во всех точках промежутка, то функция возрастает на этом промежутке.

Если производная функции отрицательна во всех точках промежутка, то функция убывает на этом промежутке.

Точки минимума, максимума и перегиба положительного на отрицательное в этой точке, то \(x_0\) - точка максимума функции \(f\).

Если функция \(f\) непрерывна в точке \(x_0\), а значение производной этой функции \(f"\) меняется с отрицательного на положительное в этой точке, то \(x_0\) - точка минимума функции \(f\).

Точки, в которых производная \(f"\) равна нулю или не существует называются критическими точками функции \(f\).

Внутренние точки области определения функции \(f(x)\), в которых \(f"(x)=0\) могут быть точками минимума, максимума или перегиба.

Физический смысл производной Если материальная точка движется прямолинейно и её координата изменяется в зависимости от времени по закону \(x=x(t)\), то скорость этой точки равна производной координаты по времени:

Ускорение материальной точки в равно производной скорости этой точки по времени:

\(a(t)=v"(t).\)

Прямая y=3x+2 является касательной к графику функции y=-12x^2+bx-10. Найдите b , учитывая, что абсцисса точки касания меньше нуля.

Показать решение

Решение

Пусть x_0 — абсцисса точки на графике функции y=-12x^2+bx-10, через которую проходит касательная к этому графику.

Значение производной в точке x_0 равно угловому коэффициенту касательной, то есть y"(x_0)=-24x_0+b=3. С другой стороны, точка касания принадлежит одновременно и графику функции и касательной, то есть -12x_0^2+bx_0-10=3x_0+2. Получаем систему уравнений \begin{cases} -24x_0+b=3,\\-12x_0^2+bx_0-10=3x_0+2. \end{cases}

Решая эту систему, получим x_0^2=1, значит либо x_0=-1, либо x_0=1. Согласно условию абсцисса точки касания меньше нуля, поэтому x_0=-1, тогда b=3+24x_0=-21.

Ответ

Условие

На рисунке изображён график функции y=f(x) (являющийся ломаной линией, составленной из трёх прямолинейных отрезков). Пользуясь рисунком, вычислите F(9)-F(5), где F(x) — одна из первообразных функции f(x).

Показать решение

Решение

По формуле Ньютона-Лейбница разность F(9)-F(5), где F(x) — одна из первообразных функции f(x), равна площади криволинейной трапеции, ограниченной графиком функции y=f(x), прямыми y=0, x=9 и x=5. По графику определяем, что указанная криволинейная трапеция является трапецией с основаниями, равными 4 и 3 и высотой 3 .

Её площадь равна \frac{4+3}{2}\cdot 3=10,5.

Ответ

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Условие

На рисунке изображён график y=f"(x) — производной функции f(x), определённой на интервале (-4; 10). Найдите промежутки убывания функции f(x). В ответе укажите длину наибольшего из них.

Показать решение

Решение

Как известно, функция f(x) убывает на тех промежутках, в каждой точке которых производная f"(x) меньше нуля. Учитывая, что надо находить длину наибольшего из них естественно по рисунку выделяются три таких промежутка: (-4; -2); (0; 3); (5; 9).

Длина наибольшего из них — (5; 9) равна 4.

Ответ

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Условие

На рисунке изображён график y=f"(x) — производной функции f(x), определённой на интервале (-8; 7). Найдите количество точек максимума функции f(x), принадлежащих промежутку [-6; -2].

Показать решение

Решение

Из графика видно, что производная f"(x) функции f(x) меняет знак с плюса на минус (именно в таких точках будет максимум) ровно в одной точке (между -5 и -4 ) из промежутка [-6; -2]. Поэтому на промежутке [-6; -2] ровно одна точка максимума.

Ответ

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Условие

На рисунке изображён график функции y=f(x), определённой на интервале (-2; 8). Определите количество точек, в которых производная функции f(x) равна 0 .

Показать решение

Решение

Равенство нулю производной в точке означает, что касательная к графику функции, проведённая в этой точке, параллельна оси Ox. Поэтому находим такие точки, в которых касательная к графику функции параллельна оси Ox. На данном графике такими точками являются точки экстремума (точки максимума или минимума). Как видим, точек экстремума 5 .

Ответ

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Условие

Прямая y=-3x+4 параллельна касательной к графику функции y=-x^2+5x-7. Найдите абсциссу точки касания.

Показать решение

Решение

Угловой коэффициент прямой к графику функции y=-x^2+5x-7 в произвольной точке x_0 равен y"(x_0). Но y"=-2x+5, значит, y"(x_0)=-2x_0+5. Угловой коэффициент прямой y=-3x+4, указанной в условии, равен -3. Параллельные прямые имеют одинаковые угловые коэффициенты. Поэтому находим такое значение x_0, что =-2x_0 +5=-3.

Получаем: x_0 = 4.

Ответ

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Условие

На рисунке изображён график функции y=f(x) и отмечены точки -6, -1, 1, 4 на оси абсцисс. В какой из этих точек значение производной наименьшее? В ответе укажите эту точку.

Отделкина Ольга ученица 9 класса

Эта тема является неотъемлемой частью изучения школьного курса алгебры. Цель данной работы более глубокого изучения этой темы, выявления наиболее рационального решения, быстро приводящего к ответу. Этот реферат поможет понять другим ученикам применение графического метода решения уравнений с параметрами, узнать о происхождении, развитии этого метода.

Скачать:

Предварительный просмотр:

Введение2

Глава 1. Уравнения с параметром

История возникновения уравнений с параметром3

Теорема Виета4

Основные понятия5

Глава 2. Виды уравнений с параметрами.

Линейные уравнения6

Квадратные уравнения…………………………………………....................7

Глава 3. Методы решения уравнений с параметром

Аналитический метод….……………………………………………….......8

Графический метод. История возникновения….…………………………9

Алгоритм решения графическим методом..…………….....…………….10

Решение уравнения с модулем……………...…………………………….11

Практическая часть……………………...………………………………………12

Заключение……………………………………………………………………….19

Список литературы………………………………………………………………20

Введение.

Я выбрала эту тему, так как она является неотъемлемой частью изучения школьного курса алгебры. Готовя данную работу, я ставила цель более глубокого изучения этой темы, выявления наиболее рационального решения, быстро приводящего к ответу. Мой реферат поможет понять другим ученикам применение графического метода решения уравнений с параметрами, узнать о происхождении, развитии этого метода.

В современной жизни изучение многих физических процессов и геометрических закономерностей часто приводит к решению задач с параметрами.

Для решения таких уравнений графический метод является весьма эффективным, когда нужно установить, сколько корней имеет уравнение в зависимости от параметра α.

Задачи с параметрами представляют чисто математический интерес, способствуют интеллектуальному развитию учащихся, служат хорошим материалом для отработки навыков. Они обладают диагностической ценностью, так как с помощью них можно проверить знание основных разделов математики, уровень математического и логического мышления, первоначальные навыки исследовательской деятельности и перспективные возможности успешного овладения курса математики в высших учебных заведениях.

В моём реферате рассмотрены часто встречающиеся типы уравнений, и, я надеюсь, что знания, полученные мной в процессе работы, помогут мне при сдаче школьных экзаменов, ведь уравнения с параметрами по праву считаются одними из самых сложных задач в курсе школьной математики. Именно такие задачи и попадают в список заданий на едином государственном экзамене ЕГЭ.

История возникновения уравнений с параметром

Задачи на уравнения с параметром встречались уже в астрономическом трактате «Ариабхаттиам», составленном в 499 г. Индийским математиком и астрономом Ариабхаттой. Другой индийский ученый, Брахмагупта (VII в.), изложил общее правило решения квадратных уравнений, приведенных к единой канонической форме:

αх 2 + bx = c, α>0

В уравнении коэффициенты, кроме параметра , могут быть и отрицательными.

Квадратные уравнения у ал-Хорезми.

В алгебраическом трактате ал-Хорезми дается классификация линейных и квадратных уравнений с параметром а. Автор насчитывает 6 видов уравнений, выражая их следующим образом:

1) «Квадраты равны корням», т. е. αx 2 = bx.

2) «Квадраты равны числу», т. е. αx 2 = c.

3) «Корни равны числу», т. е. αx = c.

4) «Квадраты и числа равны корням», т. е. αx 2 + c = bx.

5) «Квадраты и корни равны числу», т. е. αx 2 + bx = c.

6) «Корни и числа равны квадратам», т. е. bx + c = αx 2 .

Формулы решения квадратных уравнений по ал-Хорезми в Европе были впервые изложены в «Книге абака», написанной в 1202 г. Итальянским математиком Леонардо Фибоначчи.

Вывод формулы решения квадратного уравнения с параметром в общем виде имеется у Виета, однако Виета признавал только положительные корни. Итальянские математики Тарталья, Кардано, Бомбелли среди первых в ХII в. учитывают, помимо положительных, и отрицательные корни. Лишь в XVII в. благодаря трудам Жирара, Декарта, Ньютона и других ученых способ решения квадратных уравнений принял современный вид.

Теорема Виета

Теорема, выражающая связь между параметрами, коэффициентами квадратного уравнения и его корнями, носящая имя Виета, была им сформулирована впервые в 1591 г. Следующим образом: «Если b + d, умноженное на α минус α 2 , равно bc, то α равно b и равно d».

Чтобы понять Виета, следует вспомнить, что α, как и всякая гласная буква, означала у него неизвестное (наше х), гласные же b, d - коэффициенты при неизвестном. На языке современной алгебры вышеприведенная формулировка Виета означает:

Если имеет место

(α + b)x - x 2 = αb,

Т. е. x 2 - (α -b)x + αb =0,

то x 1 = α, x 2 = b.

Выражая зависимость между корнями и коэффициентами уравнений общими формулами, записанными с помощью символов, Виета установил единообразие в приемах решения уравнений. Однако символика Виета еще далека от современного вида. Он не признавал отрицательных чисел и поэтому при решении уравнений рассматривал лишь случаи, когда все корни положительны.

Основные понятия

Параметр - независимая переменная, значение которой считается фиксированным или произвольным числом, или числом, принадлежащим заданному условием задачи промежутку.

Уравнение с параметром — математическое уравнение , внешний вид и решение которого зависит от значений одного или нескольких параметров.

Решить уравнение с параметром означает для каждого значения найти значения х, удовлетворяющие этому уравнению, а также:

  1. 1. Исследовать, при каких значениях параметров уравнение имеет корни и сколько их при разных значениях параметров.
  2. 2. Найти все выражения для корней и указать для каждого из них те значения параметров, при которых это выражение действительно определяет корень уравнения.

Рассмотрим уравнение α(х+k)= α +c, где α, c, k, x -переменные величины.

Системой допустимых значений переменных α, c, k, x называется любая система значений переменных, при которой и левая и правая части этого уравнения принимают действительные значения.

Пусть А - множество всех допустимых значений α, K- множество всех допустимых значений k, Х - множество всех допустимых значений х, C- множество всех допустимых значений c. Если у каждого из множеств A, K, C, X выбрать и зафиксировать соответственно по одному значению α, k, c, и подставить их в уравнение, то получим уравнение относительно x, т.е. уравнение с одним неизвестным.

Переменные α, k, c, которые при решении уравнения считаются постоянными, называются параметрами, а само уравнение называется уравнением, содержащим параметры.

Параметры обозначаются первыми буквами латинского алфавита: α, b, c, d, …, k , l, m, n, а неизвестные - буквами x, y,z.

Два уравнения, содержащие одни и те же параметры, называются равносильными , если:

а) они имеют смысл при одних и тех же значениях параметров;

б) каждое решение первого уравнения является решением второго и наоборот.

Виды уравнений с параметрами

Уравнения с параметрами бывают: линейные и квадратные.

1)Линейное уравнение. Общий вид:

α х = b, где х - неизвестное; α , b - параметры.

Для этого уравнения особым или контрольным значением параметра является то, при котором обращается в нуль коэффициент при неизвестном.

При решении линейного уравнения с параметром рассматриваются случаи, когда параметр равен своему особому значению и отличен от него.

Особым значением параметра α является значение α = 0.

1.Если, а ≠0 , то при любой паре параметров α и b оно имеет единственное решение х = .

2.Если, а =0,то уравнение принимает вид:0 х = b . В этом случае значение b = 0 является особым значением параметра b .

2.1. При b ≠ 0 уравнение решений не имеет.

2.2. При b =0 уравнение примет вид:0 х =0.

Решением данного уравнения является любое действительное число.

Квадратное уравнение с параметром.

Общий вид:

α x 2 + bx + c = 0

где параметр α ≠0, b и с — произвольные числа

Если α =1, то уравнение называется приведённым квадратным уравнением.

Корни квадратного уравнения находятся по формулам

Выражение D = b 2 - 4 α c называют дискриминантом.

1. Если D> 0 — уравнение имеет два различных корня.

2. Если D < 0 — уравнение не имеет корней.

3. Если D = 0 — уравнение имеет два равных корня.

Методы решения уравнений с параметром:

  1. Аналитический - способ прямого решения, повторяющего стандартные процедуры нахождения ответа в уравнении без параметров.
  2. Графический - в зависимости от условия задачи рассматривается положение графика соответствующей квадратичной функции в системе координат.

Аналитический метод

Алгоритм решения:

  1. Прежде, чем приступить к решению задачи с параметрами аналитическим методом, нужно разобраться в ситуации для конкретного числового значения параметра. Например, возьмите значение параметра α =1 и ответьте на вопрос: является ли значение параметра α =1 искомым для данной задачи.

Пример 1. Решить относительно Х линейное уравнение с параметром m :

По смыслу задачи (m-1)(x+3) = 0, то есть m = 1, x = -3.

Умножив обе части уравнения на (m-1)(x+3), получим уравнение

Получаем

Отсюда при m= 2,25 .

Теперь необходимо проверить, нет ли таких значений m, при которых

найденное значение x равно -3.

решая это уравнение, получаем, что х равен -3 при m = -0,4.

Ответ: при m=1, m =2,25.

Графический метод. История возникновения

Исследование общих зависимостей началось в 14 веке. Средневековая наука была схоластической. При таком характере не оставалось места изучению количественных зависимостей, речь шла лишь о качествах предметов и их связях друг с другом. Но среди схоластов возникла школа, утверждавшая, что качества могут быть более или менее интенсивными (платье человека, свалившегося в реку, мокрее, чем у того, кто лишь попал под дождь)

Французский ученый Николай Оресм стал изображать интенсивность длинами отрезков. Когда он располагал эти отрезки перпендикулярно некоторой прямой, их концы образовывали линию, названную им "линией интенсивностей" или "линией верхнего края» (график соответствующей функциональной зависимости). Оресм изучал даже "плоскостные" и "телесные" качества, т.е. функции, зависящие от двух или трех переменных.

Важным достижением Оресма была попытка классифицировать получившиеся графики. Он выделил три типа качеств: Равномерные (с постоянной интенсивностью), равномерно-неравномерные (с постоянной скоростью изменения интенсивности) и неравномерно-неравномерные (все остальные), а также характерные свойства графиков таких качеств.

Чтобы создать математический аппарат для изучения графиков функций, понадобилось понятие переменной величины. Это понятие было введено в науку французским философом и математиком Рене Декартом (1596-1650). Именно Декарт пришел к идеям о единстве алгебры и геометрии и о роли переменных величин, Декарт ввел фиксированный единичный отрезок и стал рассматривать отношения других отрезков к нему.

Таким образом, графики функций за все время своего существования прошли через ряд фундаментальных преобразований, приведших их к тому виду, к которому мы привыкли. Каждый этап или ступень развития графиков функций - неотъемлемая часть истории современной алгебры и геометрии.

Графический способ определения числа корней уравнения в зависимости от входящего в него параметра является более удобным, чем аналитический.

Алгоритм решения графическим методом

График функции — множество точек, у которых абсциссы являются допустимыми значениями аргумента , а ординаты — соответствующими значениями функции .

Алгоритм графического решения уравнений с параметром:

  1. Находим область определения уравнения.
  2. Выражаем α как функцию от х.
  3. В системе координат строим график функции α (х) для тех значений х, которые входят в область определения данного уравнения.
  4. Находим точки пересечения прямой α =с, с графиком функции

α (х). Если прямая α =с пересекает график α (х), то определяем абсциссы точек пересечения. Для этого достаточно решить уравнение c = α (х) относительно х.

  1. Записываем ответ

Решение уравнений с модулем

При решении уравнений с модулем, содержащих параметр, графическим способом, необходимо построить графики функций и при различных значениях параметра рассмотреть все возможные случаи.

Например, │х│= а,

Ответ: если а < 0, то нет корней, а > 0, то х = а , х = - а, если а = 0, то х =0.

Решение задач.

Задача 1. Сколько корней имеет уравнение | | x | - 2 | = a в зависимости от параметра a ?

Решение. В системе координат (x; y) построим графики функций y = | | x | - 2 | и y = a . График функции y = | | x | - 2 | изображен на рисунке.

Графиком функции y = α a = 0).

Из графика видно, что:

Если a = 0, то прямая y = a совпадает с осью Ox и имеет с графиком функции y = | | x | - 2 | две общие точки; значит, исходное уравнение имеет два корня (в данном случае корни можно найти: x 1,2 = + 2).
Если 0 < a < 2, то прямая y = α имеет с графиком функции y = | | x | - 2 | четыре общие точки и, следовательно, исходное уравнение имеет четыре корня.
Если
a = 2, то прямая y = 2 имеет с графиком функции три общие точки. Тогда исходное уравнение имеет три корня.
Если
a > 2, то прямая y = a будет иметь с графиком исходной функции две точки, то есть данное уравнение будет иметь два корня.

Ответ: если a < 0, то корней нет;
если a = 0, a > 2, то два корня;
если a = 2, то три корня;
если 0 < a < 2, то четыре корня.

Задача 2. Сколько корней имеет уравнение | x 2 - 2| x | - 3 | = a в зависимости от параметра a ?

Решение. В системе координат (x; y) построим графики функций y = | x 2 - 2| x | - 3 | и y = a .

График функции y = | x 2 - 2| x | - 3 | изображен на рисунке. Графиком функции y = α является прямая, параллельная Ox или с ней совпадающая (когда a = 0).

Из графика видно:

Если a = 0, то прямая y = a совпадает с осью Ox и имеет с графиком функции y = | x2 - 2| x | - 3 | две общие точки, а также прямая y = a будет иметь с графиком функции y = | x 2 - 2| x | - 3 | две общие точки при a > 4. Значит, при a = 0 и a > 4 исходное уравнение имеет два корня.
Если 0 <
a < 3, то прямая y = a имеет с графиком функции y = | x 2 - 2| x | - 3 | четыре общие точки, а также прямая y= a будет иметь с графиком построенной функции четыре общие точки при a = 4. Значит, при 0 < a < 3, a = 4 исходное уравнение имеет четыре корня.
Если
a = 3, то прямая y = a пересекает график функции в пяти точках; следовательно, уравнение имеет пять корней.
Если 3 <
a < 4, прямая y = α пересекает график построенной функции в шести точках; значит, при этих значениях параметра исходное уравнение имеет шесть корней.
Если
a < 0, уравнение корней не имеет, так как прямая y = α не пересекает график функции y = | x 2 - 2| x | - 3 |.

Ответ: если a < 0, то корней нет;
если a = 0, a > 4, то два корня;
если 0 < a < 3, a = 4, то четыре корня;

если a = 3, то пять корней;
если 3 < a < 4, то шесть корней.

Задача 3. Сколько корней имеет уравнение

в зависимости от параметра a ?

Решение. Построим в системе координат (x; y) график функции

но сначала представим ее в виде:

Прямые x = 1, y = 1 являются асимптотами графика функции. График функции y = | x | + a получается из графика функции y = | x | смещением на a единиц по оси Oy.

Графики функций пересекаются в одной точке при a > - 1; значит, уравнение (1) при этих значениях параметра имеет одно решение.

При a = - 1, a = - 2 графики пересекаются в двух точках; значит, при этих значениях параметра уравнение (1) имеет два корня.
При - 2 <
a < - 1, a < - 2 графики пересекаются в трех точках; значит, уравнение (1) при этих значениях параметра имеет три решения.

Ответ: если a > - 1, то одно решение;
если a = - 1, a = - 2, то два решения;
если - 2 < a < - 1, a < - 1, то три решения.

Замечание. При решении уравнения задачи особо следует обратить внимание на случай, когда a = - 2, так как точка (- 1; - 1) не принадлежит графику функции но принадлежит графику функции y = | x | + a .

Задача 4. Сколько корней имеет уравнение

x + 2 = a | x - 1 |

в зависимости от параметра a ?

Решение. Заметим, что x = 1 не является корнем данного уравнения, так как равенство 3 = a 0 не может быть верным ни при каком значении параметра a . Разделим обе части уравнения на | x - 1 |(| x - 1 | 0), тогда уравнение примет вид В системе координат xOy построим график функции

График этой функции изображен на рисунке. Графиком функции y = a является прямая, параллельная оси Ox или с ней совпадающая (при a = 0).