Если прямая параллельна какой либо прямой. Взаимное расположение прямой и плоскости в пространстве. Признаки параллельности прямой и плоскости в пространстве. Соотношение объектов: возможные варианты



Некоторые следствия из аксиом


Теорема 1:


Через прямую и не лежащую на ней точку проходит плоскость, и притом только одна .

Дано: М ₵ а

Доказать: 1) Существует α: а ∈ α , М ∈ b ∈ α

2) α - единственная


Доказательство:

1) На прямой, а выберем точки P и Q. Тогда имеем 3 точки – Р , Q, M , которые не лежат на одной прямой.

2) По аксиоме А1, через три точки, не лежащие на одной прямой, проходит плоскость, и притом только одна, т.е. плоскость α, которая содержит прямую а и точку М , существует.

3) Теперь докажем, что α единственная. Предположим, что существует плоскость β, которая проходит и через точку М, и через прямую а, но тогда эта плоскость через точки Р, Q, M. А через три точки Р, Q, M , не лежащие на одной прямой, в силу 1 аксиомы, проходит только одна плоскость.

4) Значит, эта плоскость совпадает с плоскостью α . Следовательно 1) На прямой, а выберем точки P и Q . Тогда имеем 3 точки – Р, Q, M, которые не лежат на одной прямой. Следовательно α – единственная.

Теорема доказана.

1)На прямой b возьмем точку N, которая не совпадает с точкой М, то есть N ∈ b, N≠M

2)Тогда имеем точку N, которая не принадлежит прямой a. По предыдущей теореме, через прямую и не лежащую на ней точку проходит плоскость. Назовем ее плоскостью α. Значит, такая плоскость, которая проходит через прямую a и точку N, существует.

3)Докажем единственность этой плоскости. Предположим противное. Пусть существует плоскость β, такая, которая проходит и через прямую а, и через прямую b. Но тогда она также проходит и через прямую а и точку N. Но по предыдущей теореме эта плоскость единственна, т.е. плоскость β совпадает с плоскостью α.

4)Значит, мы доказали существование единственной плоскости, проходящей через две пересекающиеся прямые.

Теорема доказана.

Теорема о параллельности прямых

Теорема:


Через любую точку пространства, не лежащей на данной прямой, проходит прямая, параллельная данной прямой.

Дано: прямая а, M ₵ а

Доказать: Существует единственная прямая b ∥ а, М ∈ b


Доказательство:
1) Через прямую а и точку М, не лежащей на ней, можно провести единственную плоскость (1 следствие). В плоскости α можно провести прямую b, параллельную а, проходящую через М.
2) Докажем, что она единственная. Предположим, что существует другая прямая с, проходящая через точку М и параллельная прямой а. Пусть параллельные прямые а и с лежат в плоскости β. Тогда β проходит через М и прямую а. Но через прямую а и точку М проходит плоскость α.
3) Значит, α и β совпадают. Из аксиомы параллельных прямых следует, что прямые b и с совпадают, так как в плоскости существует единственная прямая, проходящая через данную точку и параллельно заданной прямой.
Теорема доказана.

Все возможные случаи взаимного расположения прямой и плоскости в пространстве :

Прямая лежит на плоскости, если все точки прямой принадлежат плоскости .

Замечание . Для того, чтобы прямая лежала на плоскости, необходимо и достаточно, чтобы две любые точки этой прямой принадлежали этой плоскости.

Прямая пересекает плоскость, если прямая и плоскость имеют единственную общую точку

Прямая параллельна плоскости, если прямая и плоскость не имеют общих точек . (они не пересекаются

Утверждение 1 . Предположим, что прямая a и плоскость α параллельны, а плоскость β проходит через прямую a . Тогда возможны два случая:

Но тогда точка P оказывается точкой пересечения прямой a и плоскости α , и мы получаем противоречие с тем, что прямая a и плоскость α параллельны. Полученное противоречие и завершает доказательство утверждения 1.

Утверждение 2 (признак параллельности прямой и плоскости) . Если прямая a , не лежащая в плоскости α , параллельна некоторой прямой b , лежащей в плоскости α , то прямая a и плоскость α параллельны.

Доказательство. Докажем признак параллельности прямой и плоскости "от противного". Предположим, что прямая a пересекает плоскость α в некоторой точке P . Проведем плоскость β через параллельные прямые a и b .

Точка P лежит на прямой a и принадлежит плоскости β. Но по предположению точка P принадлежит и плоскости α , следовательно точка P лежит на прямой b , по которой пересекаются плоскости α и β . Однако прямые a и b параллельны по условию и не могут иметь общих точек.

Полученное противоречие завершает доказательство признака параллельности прямой и плоскости.

Теоремы

  • Если прямая, пересекающая плоскость, перпендикулярна двум прямым, лежащим в этой плоскости и проходящим через точку пересечения данной прямой и плоскости, то она перпендикулярна плоскости.
  • Если плоскость перпендикулярна одной из двух параллельных прямых, то она перпендикулярна и другой.
  • Если две прямые перпендикулярны одной и той же плоскости, то они параллельны.
  • Если прямая, лежащая в плоскости, перпендикулярна проекции наклонной, то она перпендикулярна и самой наклонной.
  • Если прямая, не лежащая в данной плоскости, параллельна какой-нибудь прямой, расположенной в этой плоскости, то она параллельна этой плоскости.
  • Если прямая параллельна плоскости, то она параллельна некоторой прямой на этой плоскости.
  • Если прямая и плоскость перпендикулярны одной и той же прямой, то они параллельны.
  • Все точки прямой, параллельной плоскости, одинаково удалены от этой плоскости.

Определение параллельных прямых и их свойства в пространстве такие же, как и на плоскости (см. п. 11).

Вместе с тем в пространстве возможен еще один случай расположения прямых - скрещивающиеся прямые. Прямые, которые не пересекаются и не лежат в одной плоскости, называются скрещивающимися.

На рисунке 121 изображен макет жилой комнаты. Вы видите, что прямые, которым принадлежат отрезки АВ и ВС и являются скрещивающимися.

Углом между скрещивающимися прямыми называется угол между пересекающимися параллельными им прямыми. Этот угол не зависит от того, какие взяты пересекающиеся прямые.

Градусная мера угла между параллельными прямыми считается равной нулю.

Общим перпендикуляром двух скрещивающихся прямых называется отрезок с концами на этих прямых, являющийся перпендикуляром к каждой из них. Можно доказать, что две скрещивающиеся прямые имеют общий перпендикуляр, и притом только один. Он является общим перпендикуляром параллельных плоскостей, проходящих через эти прямые.

Расстоянием между скрещивающимися прямыми называется длина их общего перпендикуляра. Оно равно расстоянию между параллельными плоскостями, проходящими через эти прямые.

Таким образом, для нахождения расстояния между скрещивающимися прямыми а и b (рис. 122) нужно провести через каждую из этих прямых параллельные плоскости а и . Расстояние между этими плоскостями и будет расстоянием между скрещивающимися прямыми а и b. На рисунке 122 этим расстоянием является, например, расстояние АВ.

Пример. Прямые а и b параллельны, а прямые с и d скрещиваются. Может ли каждая из прямых а и пересекать обе прямые

Решение. Прямые а и b лежат в одной плоскости, и поэтому любая прямая, пересекающая каждую из них, лежит в той же плоскости. Следовательно, если бы каждая из прямых а, b пересекала обе прямые с и d, то прямые лежали бы в одной плоскости с прямыми а и b, а этого быть не может, так как прямые скрещиваются.

42. Параллельность прямой и плоскости.

Прямая и плоскость называются параллельными, если они не пересекаются, т. е. не имеют общих точек. Если прямая а параллельна плоскости а, то пишут: .

На рисунке 123 изображена прямая а, параллельная плоскости а.

Если прямая, не принадлежащая плоскости, параллельна какой-нибудь прямой в этой плоскости, то она параллельна и самой плоскости (признак параллельности прямой и плоскости).

Эта теорема позволяет в конкретной ситуации доказать, что прямая и плоскость являются параллельными. На рисунке 124 изображена прямая b, параллельная прямой а, лежащей в плоскости а, т. е. по прямая b параллельна плоскости а, т. е.

Пример. Через вершину прямого угла С прямоугольного треугольника ABC параллельно гипотенузе на расстоянии 10 см от нее проведена плоскость. Проекции катетов на эту плоскость равны 30 и 50 см. Найти проекцию гипотенузы на ту же плоскость.

Решение. Из прямоугольных треугольников BBVC и (рис. 125) находим:

Из треугольника ABC находим:

Проекция гипотенузы АВ на плоскость а равна . Так как АВ параллельна плоскости а, то Итак, .

43. Параллельные плоскости.

Две плоскости называются параллельными. если они не пересекаются.

Две плоскости параллельны» если одна на них параллельна двум пересекающимся прямым, лежащим в другой плоскости (признак параллельности двух плоскостей).

На рисунке 126 плоскость а параллельна пересекающимся прямым а и b, лежащим в плоскости , тогда по эти плоскости параллельны.

Через точку вне данной плоскости можно провести плоскость, параллельную данной, и притом только одну.

Если две параллельные плоскости пересекаются третьей, то прямые пересечения параллельны.

На рисунке 127 изображены две параллельные плоскости , а плоскость у их пересекает по прямым а и b. Тогда по теореме 2.7 можно утверждать, что прямые а и b параллельны.

Отрезки параллельных прямых, заключенные между двумя параллельными плоскостями, равны.

По Т.2.8 отрезки АВ и изображенные на рисунке 128, равны, так как

Пусть данные плоскости пересекаются. Проведем плоскость, перпендикулярную прямой их пересечения. Она пересекает данные плоскости по двум прямым. Угол между этими прямыми называется углом между данными плоскостями (рис. 129). Определяемый так угол между плоскостями не зависит от выбора секущей плоскости.