Что называется степенью одночлена стандартного вида. Понятие одночлена. Стандартный вид одночлена. IV. Закрепление нового материала

Начальный уровень

Арифметическая прогрессия. Подробная теория с примерами (2019)

Числовая последовательность

Итак, сядем и начнем писать какие-нибудь числа. Например:
Писать можно любые числа, и их может быть сколько угодно (в нашем случае их). Сколько бы чисел мы не написали, мы всегда можем сказать, какое из них первое, какое - второе и так далее до последнего, то есть, можем их пронумеровать. Это и есть пример числовой последовательности:

Числовая последовательность
Например, для нашей последовательности:

Присвоенный номер характерен только для одного числа последовательности. Иными словами, в последовательности нет трех вторых чисел. Второе число (как и -ное число) всегда одно.
Число с номером называется -ным членом последовательности.

Всю последовательность мы обычно называем какой-нибудь буквой (например,), и каждый член этой последовательности - той же буквой с индексом, равным номеру этого члена: .

В нашем случае:

Допустим, у нас есть числовая последовательность, в которой разница между соседствующими числами одинакова и равна.
Например:

и т.д.
Такая числовая последовательность называется арифметической прогрессией.
Термин «прогрессия» был введен римским автором Боэцием еще в 6 веке и понимался в более широком смысле, как бесконечная числовая последовательность. Название «арифметическая» было перенесено из теории непрерывных пропорций, которыми занимались древние греки.

Это числовая последовательность, каждый член которой равен предыдущему, сложенному с одним и тем же числом. Это число называется разностью арифметической прогрессии и обозначается.

Попробуй определить, какие числовые последовательности являются арифметической прогрессией, а какие нет:

a)
b)
c)
d)

Разобрался? Сравним наши ответы:
Является арифметической прогрессией - b, c.
Не является арифметической прогрессией - a, d.

Вернемся к заданной прогрессии () и попробуем найти значение ее -го члена. Существует два способа его нахождения.

1. Способ

Мы можем прибавлять к предыдущему значению числа прогрессии, пока не дойдем до -го члена прогрессии. Хорошо, что суммировать нам осталось немного - всего три значения:

Итак, -ой член описанной арифметической прогрессии равен.

2. Способ

А что если нам нужно было бы найти значение -го члена прогрессии? Суммирование заняло бы у нас не один час, и не факт, что мы не ошиблись бы при сложении чисел.
Разумеется, математики придумали способ, при котором не нужно прибавлять разность арифметической прогрессии к предыдущему значению. Присмотрись внимательно к нарисованному рисунку… Наверняка ты уже заметил некую закономерность, а именно:

Например, посмотрим, из чего складывается значение -го члена данной арифметической прогрессии:


Иными словами:

Попробуй самостоятельно найти таким способом значение члена данной арифметической прогрессии.

Рассчитал? Сравни свои записи с ответом:

Обрати внимание, что у тебя получилось точно такое же число, как и в предыдущем способе, когда мы последовательно прибавляли к предыдущему значению членов арифметической прогрессии.
Попробуем «обезличить» данную формулу - приведем ее в общий вид и получим:

Уравнение арифметической прогрессии.

Арифметические прогрессии бывают возрастающие, а бывают убывающие.

Возрастающие - прогрессии, в которых каждое последующее значение членов больше предыдущего.
Например:

Убывающие - прогрессии, в которых каждое последующее значение членов меньше предыдущего.
Например:

Выведенная формула применяется в расчете членов как в возрастающих, так и в убывающих членах арифметической прогрессии.
Проверим это на практике.
Нам дана арифметическая прогрессия, состоящая из следующих чисел: Проверим, какое получится -ое число данной арифметической прогрессии, если при его расчете использовать нашу формулу:


Так как, то:

Таким образом, мы убедились, что формула действует как в убывающей, так и в возрастающей арифметической прогрессии.
Попробуй самостоятельно найти -ой и -ый члены этой арифметической прогрессии.

Сравним полученные результаты:

Свойство арифметической прогрессии

Усложним задачу - выведем свойство арифметической прогрессии.
Допустим, нам дано такое условие:
- арифметическая прогрессия, найти значение.
Легко, скажешь ты и начнешь считать по уже известной тебе формуле:

Пусть, а, тогда:

Абсолютно верно. Получается, мы сначала находим, потом прибавляем его к первому числу и получаем искомое. Если прогрессия представлена маленькими значениями, то ничего сложного в этом нет, а если нам в условии даны числа? Согласись, есть вероятность ошибиться в вычислениях.
А теперь подумай, можно ли решить эту задачу в одно действие с использованием какой-либо формулы? Конечно да, и именно ее мы попробуем сейчас вывести.

Обозначим искомый член арифметической прогрессии как, формула его нахождения нам известна - это та самая формула, выведенная нами в начале:
, тогда:

  • предыдущий член прогрессии это:
  • последующий член прогрессии это:

Просуммируем предыдущий и последующий члены прогрессии:

Получается, что сумма предыдущего и последующего членов прогрессии - это удвоенное значение члена прогрессии, находящегося между ними. Иными словами, чтобы найти значение члена прогрессии при известных предыдущих и последовательных значениях, необходимо сложить их и разделить на.

Все верно, мы получили это же число. Закрепим материал. Посчитай значение для прогрессии самостоятельно, ведь это совсем несложно.

Молодец! Ты знаешь о прогрессии почти все! Осталось узнать только одну формулу, которую по легендам без труда вывел для себя один из величайших математиков всех времен, «король математиков» - Карл Гаусс...

Когда Карлу Гауссу было 9 лет, учитель, занятый проверкой работ учеников других классов, задал на уроке следующую задачу: «Сосчитать сумму всех натуральных чисел от до (по другим источникам до) включительно». Каково же было удивление учителя, когда один из его учеников (это и был Карл Гаусс) через минуту дал правильный ответ на поставленную задачу, при этом, большинство одноклассников смельчака после долгих подсчетов получили неправильный результат…

Юный Карл Гаусс заметил некоторую закономерность, которую без труда заметишь и ты.
Допустим, у нас есть арифметическая прогрессия, состоящая из -ти членов: Нам необходимо найти сумму данных членов арифметической прогрессии. Конечно, мы можем вручную просуммировать все значения, но что делать, если в задании необходимо будет найти сумму ее членов, как это искал Гаусс?

Изобразим заданную нам прогрессию. Присмотрись внимательно к выделенным числам и попробуй произвести с ними различные математические действия.


Попробовал? Что ты заметил? Правильно! Их суммы равны


А теперь ответь, сколько всего наберется таких пар в заданной нам прогрессии? Конечно, ровно половина всех чисел, то есть.
Исходя из того, что сумма двух членов арифметической прогрессии равна, а подобных равных пар, мы получаем, что общая сумма равна:
.
Таким образом, формула для суммы первых членов любой арифметической прогрессии будет такой:

В некоторых задачах нам неизвестен -й член, но известна разность прогрессии. Попробуй подставить в формулу суммы, формулу -го члена.
Что у тебя получилось?

Молодец! Теперь вернемся к задаче, которую задали Карлу Гауссу: посчитай самостоятельно, чему равна сумма чисел, начиная от -го, и сумма чисел начиная от -го.

Сколько у тебя получилось?
У Гаусса получилось, что сумма членов равна, а сумма членов. Так ли ты решал?

На самом деле формула суммы членов арифметической прогрессии была доказана древнегреческим ученым Диофантом еще в 3 веке, да и на протяжении всего этого времени остроумные люди вовсю пользовались свойствами арифметической прогрессии.
Например, представь Древний Египет и самую масштабную стройку того времени - строительство пирамиды… На рисунке представлена одна ее сторона.

Где же здесь прогрессия скажешь ты? Посмотри внимательно и найди закономерность в количестве песчаных блоков в каждом ряде стены пирамиды.


Чем не арифметическая прогрессия? Посчитай, сколько всего блоков необходимо для строительства одной стены, если в основание кладется блочных кирпичей. Надеюсь, ты не будешь считать, водя пальцем по монитору, ты же помнишь последнюю формулу и все, что мы говорили об арифметической прогрессии?

В данном случае прогрессия выглядит следующим образом: .
Разность арифметической прогрессии.
Количество членов арифметической прогрессии.
Подставим в последние формулы наши данные (посчитаем количество блоков 2 способами).

Способ 1.

Способ 2.

А теперь можно и на мониторе посчитать: сравни полученные значения с тем количеством блоков, которое есть в нашей пирамиде. Сошлось? Молодец, ты освоил сумму -ных членов арифметической прогрессии.
Конечно, из блоков в основании пирамиду не построишь, а вот из? Попробуй рассчитать, сколько необходимо песчаных кирпичей, чтобы построить стену с таким условием.
Справился?
Верный ответ - блоков:

Тренировка

Задачи:

  1. Маша приходит в форму к лету. Ежедневно она увеличивает количество приседаний на. Сколько раз будет приседать Маша через недели, если на первой тренировке она сделала приседаний.
  2. Какова сумма всех нечетных чисел, содержащихся в.
  3. Лесорубы при хранении бревен укладывают их таким образом, что каждый верхний слой содержит на одно бревно меньше, чем предыдущий. Сколько бревен находится в одной кладке, если основанием кладки служат бревен.

Ответы:

  1. Определим параметры арифметической прогрессии. В данном случае
    (недели = дней).

    Ответ: Через две недели Маша должна приседать раз в день.

  2. Первое нечетное число, последнее число.
    Разность арифметической прогрессии.
    Количество нечетных чисел в - половина, однако, проверим этот факт, используя формулу нахождения -ного члена арифметической прогрессии:

    В числах действительно содержится нечетных чисел.
    Имеющиеся данные подставим в формулу:

    Ответ: Сумма всех нечетных чисел, содержащихся в, равна.

  3. Вспомним задачу про пирамиды. Для нашего случая, a , так как каждый верхний слой уменьшается на одно бревно, то всего в кучке слоев, то есть.
    Подставим данные в формулу:

    Ответ: В кладке находится бревен.

Подведем итоги

  1. - числовая последовательность, в которой разница между соседними числами одинакова и равна. Она бывает возрастающей и убывающей.
  2. Формула нахождения -го члена арифметической прогрессии записывается формулой - , где - количество чисел в прогрессии.
  3. Свойство членов арифметической прогрессии - - где - количество чисел в прогрессии.
  4. Сумму членов арифметической прогрессии можно найти двумя способами:

    , где - количество значений.

АРИФМЕТИЧЕСКАЯ ПРОГРЕССИЯ. СРЕДНИЙ УРОВЕНЬ

Числовая последовательность

Давай сядем и начнем писать какие-нибудь числа. Например:

Писать можно любые числа, и их может быть сколько угодно. Но всегда можно сказать, какое из них первое, какое - второе и так далее, то есть, можем их пронумеровать. Это и есть пример числовой последовательности.

Числовая последовательность - это множество чисел, каждому из которых можно присвоить уникальный номер.

Другими словами, каждому числу можно поставить в соответствие некое натуральное число, причем единственное. И этот номер мы не присвоим больше никакому другому числу из данного множества.

Число с номером называется -ым членом последовательности.

Всю последовательность мы обычно называем какой-нибудь буквой (например,), и каждый член этой последовательности - той же буквой с индексом, равным номеру этого члена: .

Очень удобно, если -ый член последовательности можно задать какой-нибудь формулой. Например, формула

задает последовательность:

А формула - такую последовательность:

Например, арифметической прогрессией является последовательность (первый член здесь равен, а разность). Или (, разность).

Формула n-го члена

Рекуррентной мы называем такую формулу, в которой чтобы узнать -ый член, нужно знать предыдущий или несколько предыдущих:

Чтобы найти по такой формуле, например, -ый член прогрессии, нам придется вычислить предыдущие девять. Например, пусть. Тогда:

Ну что, ясно теперь какая формула?

В каждой строке мы к прибавляем, умноженное на какое-то число. На какое? Очень просто: это номер текущего члена минус:

Теперь намного удобнее, правда? Проверяем:

Реши сам:

В арифметической прогрессии найти формулу n-го члена и найти сотый член.

Решение:

Первый член равен. А чему равна разность? А вот чему:

(она ведь потому и называется разностью, что равна разности последовательных членов прогрессии).

Итак, формула:

Тогда сотый член равен:

Чему равна сумма всех натуральных чисел от до?

По легенде, великий математик Карл Гаусс, будучи 9-летним мальчиком, посчитал эту сумму за несколько минут. Он заметил, что сумма первого и последнего числа равна, сумма второго и предпоследнего - тоже, сумма третьего и 3-го с конца - тоже, и так далее. Сколько всего наберется таких пар? Правильно, ровно половина количества всех чисел, то есть. Итак,

Общая формула для суммы первых членов любой арифметической прогрессии будет такой:

Пример:
Найдите сумму всех двузначных чисел, кратных.

Решение:

Первое такое число - это. Каждое следующее получается добавлением к предыдущему числа. Таким образом, интересующие нас числа образуют арифметическую прогрессию с первым членом и разностью.

Формула -го члена для этой прогрессии:

Сколько членов в прогрессии, если все они должны быть двузначными?

Очень легко: .

Последний член прогрессии будет равен. Тогда сумма:

Ответ: .

Теперь реши сам:

  1. Ежедневно спортсмен пробегает на м больше, чем в предыдущий день. Сколько всего километров он пробежит за недели, если в первый день он пробежал км м?
  2. Велосипедист проезжает каждый день на км больше, чем в предыдущий. В первый день он проехал км. Сколько дней ему надо ехать, чтобы преодолеть км? Сколько километров он проедет за последний день пути?
  3. Цена холодильника в магазине ежегодно уменьшается на одну и ту же сумму. Определите, на сколько каждый год уменьшалась цена холодильника, если, выставленный на продажу за рублей, через шесть лет был продан за рублей.

Ответы:

  1. Здесь самое главное - распознать арифметическую прогрессию, и определить ее параметры. В данном случае, (недели = дней). Определить нужно сумму первых членов этой прогрессии:
    .
    Ответ:
  2. Здесь дано: , надо найти.
    Очевидно, нужно использовать ту же формулу суммы, что и в предыдущей задаче:
    .
    Подставляем значения:

    Корень, очевидно, не подходит, значит, ответ.
    Посчитаем путь, пройденный за последний день с помощью формулы -го члена:
    (км).
    Ответ:

  3. Дано: . Найти: .
    Проще не бывает:
    (руб).
    Ответ:

АРИФМЕТИЧЕСКАЯ ПРОГРЕССИЯ. КОРОТКО О ГЛАВНОМ

Это числовая последовательность, в которой разница между соседними числами одинакова и равна.

Арифметическая прогрессия бывает возрастающей () и убывающей ().

Например:

Формула нахождения n-ого члена арифметической прогрессии

записывается формулой, где - количество чисел в прогрессии.

Свойство членов арифметической прогрессии

Оно позволяет легко найти член прогрессии, если известны его соседние члены - где - количество чисел в прогрессии.

Сумма членов арифметической прогрессии

Существует два способа нахождения суммы:

Где - количество значений.

Где - количество значений.

В математике существует множество различных математических выражений, и кекоторые из них имеют свое закрепившиеся названия. С одним из таких понятий нам и предстоит познакомиться – это одночлен.

Одночлен - это математическое выражение, которое состоит из произведения чисел, переменных, каждая из которых может входить в произведение в некоторой степени. Для того, чтобы лучше разобраться с новым понятием, необходимо ознакомиться с несколькими примерами.

Примеры одночленов

Выражения 4, x^2 , -3*a^4, 0.7*c, ¾*y^2 являются одночленами. Как видите, одно только число или переменная (в степени или без) тоже является одночленом. А вот, например, выражения 2+с, 3*(y^2)/x, a^2 –x^2 уже не являются одночленам , так как они не подходят под определения. В первом выражении используется «сумма», а это недопустимо, во втором – «деление», в третьем – разность.

Рассмотрим еще несколько примеров.

Например, выражение 2*a^3*b/3 тоже является одночленом, хотя там и присутствует деление. Но в данном случае деление происходит на число, и поэтому соответствующее выражение можно переписать следующим образом: 2/3*a^3*b. Еще один пример: какое из выражений 2/х и х/2 является одночленом, а какое нет? правильно ответить, что первое выражение не одночлен, а второе одночлен.

Стандартный вид одночлена

Посмотрите на следующие два выражения-одночлена: ¾*a^2*b^3 и 3*a*1/4*b^3*a. На самом деле это два одинаковых одночлена. Не правда ли, что первое выражение выглядит более удобным, чем второе?

Причиной этого является то, что первое выражение записано в стандартном виде. Стандартный вид многочлена - это произведение, составленное из числового множителя и степеней различных переменных. Числовой множитель называется коэффициентом одночлена.

Для того, чтобы привести одночлен к его стандартному виду, достаточно перемножить все числовые множители, присутствующие в одночлене, и поставить получившееся число на первое место. Затем перемножить все степени, у которых одинаковые буквенные основания.

Приведение одночлена к его стандартному виду

Если в нашем примере во втором выражении перемножить все числовые множители 3*1/4 и потом умножить a*a, то получится первый одночлен. Это действие называется приведение одночлена к его стандартному виду.

Если два одночлена различаются только числовым коэффициентом или равны между собой, то такие одночлены называются в математике подобными.

В этом уроке мы дадим строгое определение одночлена, рассмотрим различные примеры из учебника. Вспомним правила умножения степеней с одинаковыми основаниями. Дадим определение стандартного вида одночлена, коэффициента одночлена и его буквенной части. Рассмотрим два основных типовых действия над одночленами, а именно приведение к стандартному виду и вычисление конкретного численного значения одночлена при заданных значениях входящих в него буквенных переменных. Сформулируем правило приведения одночлена к стандартному виду. Научимся решать типовые задачи с любыми одночленами.

Тема: Одночлены. Арифметические операции над одночленами

Урок: Понятие одночлена. Стандартный вид одночлена

Рассмотри некоторые примеры:

3. ;

Найдем общие черты для приведенных выражений. Во всех трех случаях выражение является произведением чисел и переменных, возведенных в степень. На основании этого дадим определение одночлена : одночленом называют такое алгебраическое выражение, которое состоит из произведения степеней и чисел.

Теперь приведем примеры выражений, не являющихся одночленами:

Найдем отличие этих выражений от предыдущих. Оно состоит в том, что в примерах 4-7 есть операции сложения, вычитания или деления, тогда как в примерах 1-3, являющихся одночленами, этих операций нет.

Приведем еще несколько примеров:

Выражение под номером 8 является одночленом, так как это произведение степени на число, тогда как пример 9 не является одночленом.

Теперь выясним действия над одночленами .

1.Упрощение. Рассмотрим пример №3 ;и пример №2 /

Во втором примере мы видим только один коэффициент - , каждая переменная встречается только один раз, то есть переменная «а » представлена в единственном экземпляре, как «», аналогично переменные «» и «» встречаются только один раз.

В примере №3 наоборот, есть два различных коэффициента - и , переменную «» мы видим дважды - как «» и как «», аналогично переменная «» встречается два раза. То есть, данное выражение следует упростить, таким образом, приходим к первому действию, выполняемому над одночленами - приведение одночлена к стандартному виду . Для этого приведем к стандартному виду выражение из примера 3, затем определим эту операцию и научимся приводить к стандартному виду любой одночлен.

Итак, рассмотри пример:

Первым действием в операции приведения к стандартному виду всегда нужно перемножить все числовые множители:

;

Результат данного действия будет называться коэффициентом одночлена .

Далее необходимо перемножить степени. Перемножим степени переменной «х » согласно правилу умножения степеней с одинаковыми основаниями, в котором говорится, что при умножении показатели степени складываются:

теперь перемножим степени «у »:

;

Итак, приведем упрощенное выражение:

;

Любой одночлен можно привести к стандартному виду. Сформулируем правило приведения к стандартному виду :

Перемножить все числовые множители;

Поставить полученный коэффициент на первое место;

Перемножить все степени, то есть получить буквенную часть;

То есть, любой одночлен характеризуется коэффициентом и буквенной частью. Забегая вперед, отметим, что одночлены, имеющие одинаковую буквенную часть, называются подобными.

Теперь нужно наработать технику приведения одночленов к стандартному виду . Рассмотри примеры из учебника:

Задание: привести одночлен к стандартному виду, назвать коэффициент и буквенную часть.

Для выполнения задания воспользуемся правилом приведения одночлена к стандартному виду и свойствами степеней.

1. ;

3. ;

Комментарии к первому примеру : Для начала определим, действительно ли данное выражение является одночленом, для этого проверим, есть ли в нем операции умножения чисел и степеней и нет ли в нем операций сложения, вычитания или деления. Можем сказать, что данное выражение является одночленом, так как вышеуказанное условие выполняется. Далее, согласно правилу приведения одночлена к стандартному виду, перемножим численные множители:

- мы нашли коэффициент заданного одночлена;

; ; ; то есть, получена буквенная часть выражения:;

запишем ответ: ;

Комментарии ко второму примеру : Следуя правилу выполняем:

1) перемножить числовые множители:

2) перемножить степени:

Переменные и представлены в единственном экземпляре, то есть их перемножить ни с чем нельзя, они переписываются без изменений, степень перемножается:

запишем ответ:

;

В данном примере коэффициент одночлена равен единице, а буквенная часть .

Комментарии к третьему примеру: а налогично предыдущим примерам выполняем действия:

1) перемножить численные множители:

;

2) перемножить степени:

;

выпишем ответ: ;

В данном случае коэффициент одночлена равен «», а буквенная часть .

Теперь рассмотрим вторую стандартную операцию над одночленами . Поскольку одночлен это алгебраическое выражение, состоящее из буквенных переменных, которые могут принимать конкретные числовые значения, то мы имеем арифметическое числовое выражение, которое следует вычислить. То есть, следующая операция над многочленами состоит в вычислении их конкретного числового значения .

Рассмотрим пример. Задан одночлен:

данный одночлен уже приведен к стандартному виду, его коэффициент равен единице, а буквенная часть

Ранее мы говорили, что алгебраическое выражение не всегда можно вычислить, то есть переменные, которые в него входят, могут принимать не любое значение. В случае одночлена же входящие в него переменные могут быть любыми, это является особенностью одночлена.

Итак, в заданном примере требуется вычислить значение одночлена при , , , .