Значение квантовые генераторы и усилители в словаре кольера. Смотреть что такое "Квантовый генератор" в других словарях

Ква́нтовый генера́тор - общее название источников электромагнитного излучения, работающих на основе вынужденного излучения атомов и молекул.

Сл

В зависимости от того, какую длину волны излучает квантовый генератор, он может называться по-разному:

лазер (оптический диапазон);

мазер (микроволновой диапазон);

разер (рентгеновский диапазон);

газер (гамма-диапазон).

Сл

Реально работа данных устройств базируются на использовании постулатов Бора:

Атом и атомные системы могут длительно пребывать только в особенных стационарных или квантовых состояниях, каждому из которых отвечает определенная энергия. В стационарном состоянии атом не излучает электромагнитных волн.

Излучение света происходит при переходе электрона из стационарного состояния с большей энергией в стационарное состояние с меньшей энергией. Энергия излученного фотона равна разности энергий стационарных состояний.

Наиболее распространены сегодня именно лазеры, то есть оптические квантовые генераторы. Кроме детских игрушек они получили распространение в медицине, физике, химии, компьютерной технике и прочих отраслях. Лазеры выступили в качестве «готового решения» множества проблем.

Рассмотрим детально принцип работы лазера

Сл4-14

Лазер - оптический квантовый генератор, создающий мощный узконаправленный когерентный монохроматический луч света. (слайды 1, 2)

    ( 1. Спонтанное и вынужденное излучение.

Если электрон находится на нижнем уровне, то атом поглотит падающий фотон, и электрон перейдет с уровня Е 1 на уровень Е 2 . Это состояние неустойчивое, электрон самопроизвольно перейдет на уровень Е 1 с испусканием фотона. Спонтанное излучение происходит самопроизвольно, следовательно, атом будет испускать свет несогласованно, хаотично, поэтому световые волны несогласованны друг с другом ни по фазе, ни по поляризации, ни по направлению. Это естественный свет.


Но возможно и индуцированное (вынужденное) излучение. Если электрон находится на верхнем уровне Е 2 (атом в возбужденном состоянии), то при падении фотона может произойти вынужденный переход электрона на нижний уровень испусканием второго фотона.

Сл

Излучение при переходе электрона в атоме с верхнего энергетического уровня на нижний с испусканием фотона под влиянием внешнего электромагнитного поля (падающего фотона) называют вынужденным, или индуцированным .

Свойства вынужденного излучения:

    одинаковая частота и фаза фотонов первичного и вторичного;

    одинаковое направление распространения;

    одинаковая поляризация.

Следовательно, при вынужденном излучении образуются два одинаковых фотона-близнеца.

Сл

2. Использование активных сред.

Состояние вещества среды, в котором меньше половины атомов находится в возбужденном состоянии, называется состоянием с нормальной заселенностью энергетических уровней . Это обычное состояние среды.

Сл

Среду, в которой больше половины атомов находится в возбужденном состоянии, называют активной средой с инверсной заселенностью энергетических уровней . (слайд 9)

В среде с инверсной заселенностью энергетических уровней обеспечивается усиление световой волны. Это активная среда.

Усиление света можно сравнить с нарастанием лавины.


Сл

Для получения активной среды используют трехуровневую систему.


На третьем уровне система живет очень мало, после чего самопроизвольно переходит в состояние Е 2 без испускания фотона. Переход из состояния 2 в состояние 1 сопровождается излучением фотона, что и используется в лазерах.

Процесс перехода среды в инверсное состояние называется накачкой . Чаще всего для этого используют облучение светом (оптическая накачка), электрический разряд, электрический ток, химические реакции. Например, после вспышки мощной лампы система переходит в состояние 3 , спустя малый промежуток времени в состояние 2 , в котором живет сравнительно долго. Так создается перенаселенность на уровне 2 .

Сл

3. Положительно обратная связь.

Для того чтобы из режима усиления света перейти к режиму генерации в лазере используют обратную связь.

Обратная связь осуществляется с помощью оптического резонатора, который обычно представляет собой пару параллельных зеркал. (слайд 11)

В результате одного из спонтанных переходов с верхнего уровня на нижний возникает фотон. При движении в сторону одного из зеркал фотон вызывает целую лавину фотонов. После отражения от зеркала лавина фотонов движется в противоположном направлении, попутно заставляя испускать фотоны все новые атомы. Процесс будет продолжаться до тех пор, пока существует инверсная заселенность уровня

Инверсная заселенность энергетических уровней - неравновесное состояние среды, при котором число частиц (атомов, молекул), находящихся на верхних энергетических уровнях, т. Е. В возбужденном состоянии, больше, чем число частиц, находящихся на нижних энергетических уровнях. .

Активный элемент

накачка

накачка

Оптический резонатор

Потоки света, идущие в боковых направлениях, быстро покидают активный элемент, не успевая набрать значительной энергии. Световая волна, распространяющаяся вдоль оси резонатора, многократно усиливается. Дно из зеркал делается полупрозрачным, и из него лазерная волна выходит наружу в окружающую среду.

Сл

4. Рубиновый лазер .

Основная деталь рубинового лазера – рубиновый стержень . Рубин состоит из атомов Al и O с примесью атомов Cr . Именно атомы хрома придают рубину цвет и имеют метастабильное состояние.

Сл

На стержень навита трубка газоразрядной лампы, называемой лампой накачки . Лампа кратковременно вспыхивает, происходит накачка.

Рубиновый лазер работает в импульсном режиме. Существуют и другие типы лазеров: газовые, полупроводниковые... Они могут работать в непрерывном режиме.

Сл

5. Свойства лазерного излучения :

    самый мощный источник света;

Р Солнца = 10 4 Вт/см 2 , Р лазера = 10 14 Вт/см 2 .

    исключительная монохроматичность(монохроматические волны неограниченные в пространстве волны одной определенной и строго постоянной частоты) ;

    дает очень малую степень расхождения угла;

    когерентность (т.е. согласованное протекание во времени и пространстве нескольких колебательных или волновых процессов) .

Сл3

Для работы лазера

необходима система накачки. То есть мы придадим атому либо атомной системе какую-либо энергию, тогда, согласно 2 постулату Бора атом перейдет на более высокий уровень с большим количеством энергии. Далее задача состоит в том, чтобы вернуть атом на прежний уровень, при этом, он излучает фотоны в качестве энергии.

    При достаточной мощности лампы большинство ионов хрома переводится в возбужденное состояние.

    Процесс сообщения рабочему телу лазера энергии для перевода атомов в возбужденное состояние называется накачкой.

    Излученный при этом фотон может вызвать вынужденное испускание дополнительных фотонов, которые в свою очередь вызовут вынужденное излучение)

Сл15

Физической основой работы лазера служит явление . Суть явления состоит в том, что возбуждённый способен излучить под действием другого фотона без его поглощения, если последнего равняется разности энергий

Мазер излучает микроволны , разер – рентгеновские , а газер – гамма-излучение.

Сл16

Мазер - квантовый генератор, излучающий

когерентные электромагнитные волны сантиметрового диапазона (микроволны).

Мазеры используются в технике (в частности, в космической связи), в физических исследованиях, а также как квантовые генераторы стандартной частоты.

Сл

Разер (рентгеновский лазер) - источник когерентного электромагнитного излучения в рентгеновском диапазоне, основанный на эффекте вынужденного излучения. Является коротковолновым аналогом лазера.

Сл

Применение когерентного рентгеновского излучения включают в себя исследования в области плотной плазмы, рентгеновской микроскопии, медицинской визуализации фазы с разрешением, исследование поверхности материала, и оружия. Мягкий рентгеновский лазер может выполнять функции лазера двигательной установки.

Сл

Работы в области газера ведутся, так как не создана эффективная система накачки.

Лазеры же используются в целом списке отраслей :

6. Применение лазеров : (слайд 16)

    в радиоастрономии для определения расстояний до тел Солнечной системы с максимальной точностью (светолокатор);

    обработка металлов (резка, сварка, плавка, сверление);

    в хирургии вместо скальпеля (например, в офтальмологии);

    для получения объемных изображений (голография);

    связь (особенно в космосе);

    запись и хранение информации;

    в химических реакциях;

    для осуществления термоядерных реакций в ядерном реакторе;

    ядерное оружие.

Сл

Таким образом, квантовые генераторы прочно вошли в быт человечества, позволив решить множество актуальных на тот момент проблем.

Квантовый генератор

Ква́нтовый генератор - общее название источников электромагнитного излучения, работающих на основе вынужденного излучения атомов и молекул. В зависимости от того, какую длину волны излучает квантовый генератор, он может называться по разному: лазер , мазер , разер, газер .

История создания

Квантовый генератор основан на принципе вынужденного излучения , предложенного А. Эйнштейном: когда квантовая система возбуждена и одновременно присутствует излучение соответствующей квантовому переходу частоты, вероятность скачка системы на более низкий энергетический уровень повышается пропорционально плотности уже присутствующих фотонов излучения. На возможность создания квантового генератора на этой основе указал советский физик В. А. Фабрикант в конце 40-х годов.

Литература

Ландсберг Г.С. Элементарный учебник физики. Том 3. Колебания и волны. Оптика. Атомная и ядерная физика. - 1985.

Херман Й., Вильгельми Б. "Лазеры для генерации сверхкоротких световых импульсов" - 1986.


Wikimedia Foundation . 2010 .

  • Ноткер Заика
  • Ресинтез

Смотреть что такое "Квантовый генератор" в других словарях:

    КВАНТОВЫЙ ГЕНЕРАТОР - генератор эл. магн. волн, в к ром используется явление вынужденного излучения (см. КВАНТОВАЯ ЭЛЕКТРОНИКА). К. г. радиодиапазона, так же как и квантовый усилитель, наз. мазером. Первый К. г. был создан в диапазоне СВЧ в 1955. Активной средой в нём … Физическая энциклопедия

    КВАНТОВЫЙ ГЕНЕРАТОР - источник когерентного электромагнитного излучения, действие которого основано на вынужденном излучении фотонов атомами, ионами и молекулами. Квантовые генераторы радиодиапазона называются мазерами, квантовые генераторы оптического диапазона… … Большой Энциклопедический словарь

    квантовый генератор - Источник когерентного излучения, основанный на использовании вынужденного испускания и обратной связи. Примечание Квантовые генераторы разделяются по типу активного вещества, способу возбуждения и по другим признакам, например, пучковые, газовые … Справочник технического переводчика

    КВАНТОВЫЙ ГЕНЕРАТОР - источник монохроматического когерентного электромагнитного излучения (оптического или радиодиапазона), действующий на основе вынужденного излучения возбуждённых атомов, молекул, ионов. В качестве рабочего вещества используют газы, кристаллические … Большая политехническая энциклопедия

    квантовый генератор - устройство для генерирования когерентного электромагнитного излучения. Когерентность – это согласованное протекание во времени и пространстве нескольких колебательных или волновых процессов, проявляющееся при их сложении, напр. при интерференции … Энциклопедия техники

    квантовый генератор - источник когерентного электромагнитного излучения, действие которого основано на вынужденном излучении фотонов атомами, ионами и молекулами. Квантовые генераторы радиодиапазона называются мазерами, квантовые генераторы оптического диапазона … … Энциклопедический словарь

    квантовый генератор - kvantinis generatorius statusas T sritis Standartizacija ir metrologija apibrėžtis Elektromagnetinių bangų generatorius, kurio veikimas pagrįstas sužadintųjų atomų, molekulių, jonų priverstinio spinduliavimo reiškiniu. atitikmenys: angl. quantum… … Penkiakalbis aiškinamasis metrologijos terminų žodynas

    квантовый генератор - kvantinis generatorius statusas T sritis fizika atitikmenys: angl. quantum generator vok. Quantengenerator, m rus. квантовый генератор, m pranc. oscillateur quantique, m … Fizikos terminų žodynas

    Квантовый генератор - генератор электромагнитных волн, в котором используется явление вынужденного излучения (См. Вынужденное излучение) (см. Квантовая электроника). К. г. радиодиапазона сверхвысоких частот (СВЧ), так же как и Квантовый усилитель этого… … Большая советская энциклопедия

Успехи, достигнутые при разработке и исследовании кванто­вых усилителей и генераторов в радиодиапазоне, послужили базой для реализации предложения об усилении и генерации света на ос­нове индуцированного излучения и привели к созданию квантовых генераторов оптического диапазона. Оптические квантовые гене­раторы (ОКГ) или лазеры являются единственными источниками мощ­ного монохроматического света. Принцип усиления света с помощью атомных систем был впервые предложен в 1940 г. В.А. Фабри­кантом. Однако обоснование возможности создания оптического квантового генератора было дано лишь в 1958 г. Ч. Таунсом и А. Шавловым на основе достижений разработок квантовых приборов в радиодиапазоне. Первый оптический квантовый генератор был ре­ализован в I960 г. Это был ОКГ с кристаллом рубина в качестве рабочего вещества. Создание инверсии населенностей в нем осу­ществлялось методом трехуровневой накачки, применявшимся обыч­но в парамагнитных квантовых усилителях.

В настоящее время разработано множество разнообразных оп­тических квантовых генераторов, отличающихся рабочими вещест­вами (в этом качестве используются кристаллы, стекла, пласт­массы, жидкости, газы, полупроводники) и способами создания ин­версии населенностей (оптическая накачка, разряд в газах, химические реакции и т.д.).

Излучение существующих оптических квантовых генераторов охватывает диапазон длин волн от ультрафиолетовой до дальней инфракрасной области спектра, примыкающей к миллиметровым вол­нам. Аналогично квантовому генератору в радиодиапазоне оптический квантовый генератор состоит из двух основных частей: рабочего (активного) вещества, в котором тем или иным способом

создается инверсия населенностей, и резонансной системы (рис.62). В качестве последней в ОКГ используются открытые резонаторы ти­па интерферометра Фабри - Перо, образуемые системой из двух зеркал, удаленных друг от друга.

Рабочее вещество осуще­ствляет усиление оптического излучения благодаря индуциро­ванному испусканию активных частиц. Резонансная система, вызывая многократное прохо­ждение возникающего оптиче­ского индуцированного излуче­ния через активную среду, об­условливает эффективное вза­имодействие поля с ней. Если рассматривать ОКГ как автоколеба­тельную систему, то резонатор обеспечивает положительную обрат­ную связь в результате возвращения части распространяющегося между зеркалами излучения в активную среду. Дяя возникновения колебаний мощность в ОКГ, получаемая от активной среды, должна быть равна мощности потерь в резонаторе иди превышать ее. Это эквивалентно тому, что интенсивность волны генерации после про­хождения через усиливающую среду, отражения от зеркал -/ и 2 , возвращения в исходное сечение должна оставаться неизменной или превышать первоначальное значение.

При прохождении через активную среду интенсивность волны 1^ изменяется по экспоненциальному закону (при пренебрежении насыщением) L, ° 1^ ежр [ (ос,^ - b())-c ] , а при отражении от зеркала она изменяется в г раз (т - коэффициент. отражения зеркала), поэтому условие возникновения генерации можно запи­сать как

где L - длина рабочей активной среды; r1 и r2 - коэффициенты отражения зеркал 1 и 2 ; a u - коэффициент усиления активной среды; b 0 - постоянная затухания, учитывающая потери энергии в рабочем веществе в результате рассеяния на неоднородностях и дефектах.


I. Резонаторы оптических квантовых генераторов

Резонансные системы ОКГ, как отмечалось, представляют со­бой открытые резонаторы. В настоящее время наиболее широко при­меняются открытые резонаторы с плоскими и сферическими зерка­лами. Характерная особенность открытых резонаторов - их геоме­трические размеры во много раз превышают длину волны. Подобно объемным открытые резонаторы обладают набором собственных ти­пов колебаний, характеризующихся определенным распределением поля в них и собственными частотами. Собственные типы колеба­ний открытого резонатора представляют собой решения уравнений поля, удовлетворяющие граничным условиям на зеркалах.

Существует несколько методов расчета объемных резонаторов, позволяющих находить собственные типы колебаний. Строгая и наи­более полная теория открытых резонаторов дана в работах Л.А.Вайв-штейна.* Наглядный метод расчета типов колебаний в открытых резонаторах развит в работе А.Фокса и Т.Ли.

(113)
В ней используется. численный расчет, моделирующий процесс установления типов ко­лебаний в резонаторе в результате многократного отражения от зеркал. Первоначально задается произвольное распределение поля на поверхности одного из зеркал. Затем, применяя принцип Гюй­генса, вычисляют распределение поля на поверхности другого зер­кала. Подученное распределение принимают за исходное и вычис­ление повторяется. После многократных отражений распределение амплитуды и фазы поля на поверхности зеркала стремится к ста­ционарному значению, т.е. поле на каждом зеркале самовоспроиз­водится в неизменном виде. Полученное распределение поля пред­ставляет собой нормальный тип колебаний открытого резонатора.

Расчет А.Фокса и Т.Ли базируется на следующей формуле Кирх­гофа, являющейся математическим выражением принципа Гюйгенса, которая позволяет находить поде в точке наблюдения А по задан­ному полю на некоторой поверхности Sb

где Eb - поле в точке B на поверхности Sb; k- волновое чи­сло; R - расстояние между точками А и В; Q - угол между ли­нией, соединяющей точки А и В, и нормалью к поверхности Sb

С увеличением числа проходов поде на зеркалах стремится к стационарному распределению, которое можно представить так:

где V(x ,у) - функция распределения, зависящая от координат на поверхности зеркал, не меняющаяся от отражения к отражению;

у - комплексная постоянная, не зависящая от пространственных координат.

Подставив формулу (112) в выражение (III). получим инте­гральное уравнение

Оно имеет решение лишь при определенных значениях [Гамма] =[гамма миним.] назы­ваемых собственными значениями, Функции Vmn, удовлетворяющие интегральному уравнению, характеризуют структуру поля различ­ных типов колебаний резонатора, которые называют поперечными колебаниями и обозначают как колебания типа ТЕМmn Символ ТЕM указывает на то, что водны внутри резонатора близки к попереч­ным электромагнитным, т.е. не имеющим составляющих поля вдоль направления распространения волны. Индексы m и n обозначают число изменений направления поля вдоль сторон зеркала (для пря­моугольных зеркал) или по углу и вдоль радиуса (для круглых зеркал). На рис.64 показана конфигурация электрического поля для простейших поперечных типов колебаний открытых резонаторов с круглыми зеркалами. Собственные типы колебаний открытых резо­наторов характеризуются не только поперечник распределением поля, но и распределением его вдоль оси резонаторов, которое представляет собой стоячую волну и отличается числом полуволн, укладывающихся по длине резонатора. Для учета этого в обозна­чения типов колебаний вводится третий ивдекс а , характеризую­щий число полуволн, укладывающихся вдоль оси резонатора.


Оптические квантовые генераторы на твердом теле

В оптических квантовых генераторах на твердом теле, или твердотельных ОКГ, в качестве активной усиливающей среды ис­пользуются кристаллы или аморфные диэлектрики. Рабочими части­цами, переходы меяду энергетическими состояниями которых опре­деляют генерацию, как правило, являются ионы атомов переходных групп Периодической таблицы Менделеева, Наиболее часто используются ионы Na 3+ , Cr 3+ , Но 3+ , Pr 3+ . Активные частицы состав­ляют доли или единицы процента от общего числа атомов рабочей среды, так что они как бы образуют "раствор" слабой концентра­ции и потому мало взаимодействуют друг с другом. Используемые энергетические уровни представляют собой уровни рабочих частиц, расщепленные и уширенные сильными неоднородными внутренними полями твердого вещества. В качестве основы активной усиливаю­щей среды используются наиболее часто кристаллы корунда (Al2O3), иттриево-алюминиевого граната YAG (Y3Al5O12), разные марки стекол и т.д.

Инверсия населенностей в рабочем веществе твердотельных ОКГ создается методом, анало­гичным используемому в парамаг­нитных усилителях. Она осуще­ствляется с помощью оптической накачки, т.е. воздействием на вещество светового излучения вы­сокой интенсивности.

Как показывают исследова­ния, большинство существующих в настоящее время активных сред, используемых- в твердотельных ОКГ, удовлетворительно описыва­ются двумя основными идеализи­рованными энергетическими схе­мами: трех- и четырехуровневой (рис.71).

Рассмотрим вначале метод создания инверсии населенностей в средах, описываемых трехуровневой схемой (см.рис.71,а). В нормальном состоянии заселен лишь нижний основной уровень 1 (энер­гетическое расстояние между уровнями значительно больше kT), так как переходы 1->2, и 1->3) принадлежат оптическому диапа­зону. Переход между уровнями 2 и 1 является рабочим. Уровень 3 вспомогательный и используется для создания инверсии рабо­чей пары уровней. Он в действительности занимает широкую поло­су допустимых значений энергии, обусловленную взаимодействием рабочих частиц с внутрикристаллическими полями.

источник электромагнитного когерентного излучения (оптич. или радиодиапазона), в к-ром используется явление индуцированного излучения возбуждённых атомов, молекул, ионов и т. д. В качестве рабочего в-ва в К. г. используют газы, жидкости, твёрдые диэлектрики и ПП кристаллы. Возбуждение рабочего в-ва, т. е. подача энергии, необходимой для работы К. г., осуществляется сильным электрич. полем, светом от внеш. источника, электронными пучками и т. д. Излучение К. г., помимо высокой монохроматичности и когерентности, обладает узкой направленностью и значит. мощностью. См. также Лазер, Мазер, Молекулярный генератор.

  • - то же, что Лазер...

    Начала современного Естествознания

  • - ква́нтовый генера́тор устройство для генерирования когерентного электромагнитного излучения...

    Энциклопедия техники

  • - опти́ческий ква́нтовый генера́тор то же, что лазер...

    Энциклопедия техники

  • - источник когерентного эл.-магн. излучения, действие к-рого основано на вынужденном излучении фотонов атомами, ионами и молекулами. К. г. радиодиапазона наз. мазерами, К. г. оптич. диапазона -лазерами...
  • - то же, что лазер...

    Естествознание. Энциклопедический словарь

  • - техническое устройство для импульсного или непрерывного генерирования монохроматического когерентного излучения оптического диапазона спектра...

    Большой медицинский словарь

  • - источник электромагнитного когерентного излучения, в к-ром используется явление индуцированного излучения возбуждённых атомов, молекул, ионов и т. д. В качестве рабочего в-ва в К. г. используют газы, жидкости,...

    Большой энциклопедический политехнический словарь

  • - генератор электромагнитных волн, в котором используется явление вынужденного излучения...
  • - то же, что Лазер...

    Большая Советская энциклопедия

  • - то же, что лазер...

    Современная энциклопедия

  • - источник когерентного электромагнитного излучения, действие которого основано на вынужденном излучении фотонов атомами, ионами и молекулами...
  • - то же, что лазер...

    Большой энциклопедический словарь

  • - КВАНТ, -а, м. В физике: наименьшее количество энергии, отдаваемое или поглощаемое физической величиной в её нестационарном состоянии. К. энергии. К. света...

    Толковый словарь Ожегова

  • - КВА́НТОВЫЙ, квантовая, квантовое. прил. к квант. Квантовые лучи. Квантовая механика...

    Толковый словарь Ушакова

  • - ква́нтовый прил. 1. соотн. с сущ. квант, связанный с ним 2...

    Толковый словарь Ефремовой

  • - кв"...

    Русский орфографический словарь

"КВАНТОВЫЙ ГЕНЕРАТОР" в книгах

Квантовый переход

Из книги Антисемитизм как закон природы автора Бруштейн Михаил

Квантовый переход Новейшие реформаторы, которые на бумаге измышляют образцовые социальные системы, хорошо бы сделали, если бы бросили взгляд на социально-общественную систему, по которой жили первые евреи. К произошедшему на Синае можно относиться по-разному.

Квантовый скачёк

Из книги Я и Мой Большой Космос автора Климкевич Светлана Титовна

Квантовый скачёк 589 = Человек несёт в себе творческую энергию Бога – Любовь = 592 = Великое духовное пробуждение – Знак Космических циклов = «Числовые коды». Книга 2. Крайон Иерархия 27 01.2012 г.«Пространство Времени – Время Пространства…» – слова при просыпании.Я Есмь Что Я

4.1. Квантовый процессор

Из книги Квантовая магия автора Доронин Сергей Иванович

4.1. Квантовый процессор

Квантовый скачек

Из книги Закон притяжения автора Хикс Эстер

Квантовый скачек Джерри: Легко сделать небольшой шаг оттуда, где мы находимся, и просто сделать чуть больше, чем мы делаем, быть собой немного больше, и иметь чуть больше, чем у нас есть сейчас. А как насчет того, что можно назвать «квантовым скачком», то есть достичь чего-то,

Квантовый скачок

Из книги Играющий в пустоте. Мифология многоликости автора Демчог Вадим Викторович

Квантовый скачок Результатом очищения является осознание, что все происходит «на наших ладонях». Метод, который помогает утвердиться в этом, называется в игре квантовым скачком. И он базируется на природной доверчивости смотрящего в нас пространства.Дело в том, что

Квантовый мозг

Из книги Играющий в пустоте. Карнавал безумной мудрости автора Демчог Вадим Викторович

Квантовый мозг Начнем с поэзии: сэр Чарльз Шеррингтон, общепризнанный отец нейрофизиологии, уподобляет мозг «…волшебному самоткущему станку, в котором миллионы сверкающих челноков ткут тающий на глазах узор (обратите внимание – «тающий на глазах». – В. Д.), всегда

Квантовый мир

автора Гардинер Филип

Квантовый мир Меня вдохновляет мысль, что во Вселенной (от микро- до макроуровня, от космического передвижения планет до взаимодействия электронов, от микроскопического диоксида кремния до созданной человеком египетской пирамиды) заложена универсальная модель, не

Квантовый бог

Из книги Ворота в другие миры автора Гардинер Филип

Квантовый бог Во время работы над этой книгой я позволил себе один день отдыха от квантовой физики и поехал в Личфилд, в графство Стаффордшир. Я прекрасно провел время в красивом, исполненном чувства эзотерического Личфилдском соборе, рассматривая его изумительный фасад

КВАНТОВЫЙ СКАЧОК

Из книги Шестая раса и Нибиру автора Бязырев Георгий

КВАНТОВЫЙ СКАЧОК Когда достигаешь самадхи - душа превращается в Божественный Свет Дорогие читатели, вы уже знаете, что в 2011 году на нашем небе будет видна двенадцатая планета солнечной системы - Нибиру. В феврале 2013 года Планета Х приблизится на ближайшее к Земле

Приложение III. УМЫ: Квантовый ум

Из книги Сила безмолвия автора Минделл Арнольд

Приложение III. УМЫ: Квантовый ум На последующих страницах я резюмирую некоторые из многих значений, которые я связываю с термином «квантовый ум».Техническое - и в то же время, популярно изложенное - описание квантового ума можно найти в книгах Ника Херберта

Квантовый дуализм

Из книги Конец науки: Взгляд на ограниченность знания на закате Века Науки автора Хорган Джон

Квантовый дуализм Есть один вопрос, с которым соглашаются Крик, Эдельман и почти все неврологи: свойства разума существенным образом не зависят от квантовой механики. Физики, философы и другие ученые размышляли о связях между квантовой механикой и сознанием, по крайней

Квантовый ум и процессуальный ум

Из книги Процессуальный ум. Руководство по установлению связи с Умом Бога автора Минделл Арнольд

Квантовый ум и процессуальный ум Процессуальный ум – это развитие всей моей предшествующей работы и, в особенности, книги «Квантовый ум», написанной около десяти лет тому назад. В этой книге я обсуждал квантово-подобные характеристики нашей психологии и показывал, как

ЭЛЕКТРОНЫ - КВАНТОВЫЙ ГАЗ

Из книги Живой кристалл автора Гегузин Яков Евсеевич

ЭЛЕКТРОНЫ - КВАНТОВЫЙ ГАЗ В истории изучения кристаллов в начале нашего века был период, когда среди прочих проблема «электроны в металле» была весьма загадочной, интригующей, казалось - тупиковой. Посудите сами. Экспериментаторы, изучающие электрические свойства

Квантовый генератор

Из книги Большая Советская Энциклопедия (КВ) автора БСЭ

Оптический квантовый генератор

Из книги Большая Советская Энциклопедия (ОП) автора БСЭ