Значение генетического полиморфизма для развития заболеваний человека. Генетический полиморфизм. Классификация. Генетический и мутационный груз и их биологическая сущность. По медицинской биологии и генетике

Генетическое разнообразие или генетический полиморфизм - разнообразие популяций по признакам или маркерам генетической природы. Один из видов биоразнообразия. Генетическое разнообразие представляет собой важный компонент генетической характеристики популяции, группы популяций или вида. Генетическое разнообразие, в зависимости от выбора рассматриваемых генетических маркеров, характеризуется несколькими измеряемыми параметрами:

1. Средняя гетерозиготность.

2. Число аллелей на локус.

3. Генетическое расстояние (для оценки межпопуляционного генетического разнообразия).

Полиморфизм бывает:

Хромосомный;

Переходный;

Сбалансированный.

Генетический полиморфизм наблюдается, когда ген представлен более чем одним аллелем. Пример – системы групп крови.

Хромосомный полиморфизм – между особями имеются различия по отдельным хромосомам. Это результат хромосомных аббераций. Есть различия в гетерохроматиновых участках. Если изменения не имеют патологических последствий – хромосомный полиморфизм, характер мутаций – нейтрален.

Переходный полиморфизм – замещение в популяции одного старого аллеля новым, который более полезен в данных условиях. У человека есть ген гаптоглобина - Нр1f, Hp 2fs. Старый аллель - Нр1f, новый - Нр2fs. Нр образует комплекс с гемоглобином и обусловливает слипание эритроцитов в острую фазу заболеваний.

Сбалансированный полиморфизм – возникает, когда ни один из генотипов преимущества не получает, а естественный отбор благоприятствует разнообразию.

Все формы полиморфизма очень широко распространены в природе в популяциях всех организмов. В популяциях организмов, размножающихся половым путем, всегда есть полиморфизм.

Беспозвоночные животные полиморфнее, чем позвоночные. Чем полиморфнее популяция, тем более она эволюционно пластична. В популяции большие запасы аллелей не обладают максимальной приспособленностью в данном месте в данное время. Эти запасы встречаются в небольшом количестве и гетерозиготном состоянии. После изменений условий существования они могут стать полезными и начать накапливаться – переходный полиморфизм. Большие генетические запасы помогают популяции реагировать на окружающую среду. Одним из механизмов, поддерживающих разнообразие – превосходство гетерозигот. При полном доминировании – нет проявления, при неполном доминировании наблюдается гетерозис. В популяции отбор поддерживает генетически неустойчивую гетерозиготную структуру, и такая популяция содержит 3 типа особей (АА, Аа, аа). В результате действия естественного отбора происходит генетическая гибель, снижающая репродуктивный потенциал популяции. Численность популяции падает. Поэтому генетическая гибель – бремя для популяции. Ее также называют генетическим грузом.


Генетический груз – часть наследственной изменчивости популяции, определяющая появление менее приспособленных особей, подвергающихся избирательной гибели в результате естественного отбора.

Существует 3 типа генетического груза.

1. Мутационный.

2. Сегрегационный.

3. Субституционный.

Каждый тип генетического груза коррелирует с определенным типом естественного отбора.

Мутационный генетический груз - побочное действие мутационного процесса. Стабилизирующий естественный отбор удаляет вредные мутации из популяции.

Сегрегационный генетический груз – характерен для популяций, использующих преимущество гетерозигот. Удаляются хуже приспособленные гомозиготные особи. Если обе гомозиготы летальны – половина потомков погибает.

Субституционный генетический груз – происходит замена старого аллеля новым. Соответствует движущей форме естественного отбора и переходному полиморфизму.

генетический полиморфизм создает все условия для протекающей эволюции. При появлении нового фактора в среде популяция способна адаптироваться к новым условиям. Например, устойчивость насекомых к различным видам инсектицидов.

Большинство оценок частоты использует обнаружение патологических мутаций с явным влиянием на фенотип. Тем не менее существует масса непатогенных мутаций, считающихся относительно нейтральными; а некоторые могут даже быть полезными. В ходе эволюции устойчивый приток новых изменений нуклеотидов гарантировал высокую степень генетического разнообразия и индивидуальности.

Это распространяется на все области генетики человека и медицинской генетики . Генетическое разнообразие может проявляться в виде изменений в окраске хромосом, изменения числа копий сегментов ДНК, нуклеотидных замен в ДНК, изменений в белках или же как болезнь.

ДНК последовательности каждого участка хромосомы в высшей степени сходны у большинства людей в мире. Фактически произвольно выбранный сегмент ДНК человека размером около 1000 пар оснований содержит, в среднем, только одну пару, отличающуюся на двух гомологичных хромосомах, унаследованных от родителей (если предположить, что родители не родственники).

Эта почти в 2,5 раза больше, чем оценка доли гетерозиготных нуклеотидов для кодирующих белок областей генома (примерно 1 на 2500 пар оснований). Различие неудивительное, поскольку интуитивно понятно, что регионы, кодирующие белок, находятся под более жестким давлением отбора, и таким образом встречаемость мутаций в таких регионах в эволюции должна быть более низкой.

Когда вариант встречается настолько часто , что его обнаруживают более чем в 1% хромосом в общей популяции, его называют генетическим полиморфизмом. Аллели с частотами менее чем 1% принято называть редкими вариантами. Хотя много патологических мутаций, приводящих к генетическим болезням - редкие варианты, нет простой корреляции между частотой аллеля и его влиянием на здоровье. Много редких вариантов не имеют патогенных эффектов, тогда как некоторые варианты, достаточно частые, чтобы считаться полиморфизмами, предрасполагают к тяжелым болезням.

Существует много типов полиморфизма . Некоторые полиморфизмы - следствие вариантов, вызванных делециями, дупликациями, утроениями и так далее, сотен миллионов пар оснований ДНК, и не связаны с каким-либо известным патологическим фенотипом; другие изменения аналогичного размера оказываются редкими вариантами, явно вызывающими тяжелые болезни. Полиморфизмами могут оказаться изменения в одном или нескольких основаниях ДНК, расположенных между генами или в интронах, не связанные с функционированием генов и обнаруживаемые только прямым анализом ДНК.

Изменения последовательности нуклеотидов могут располагаться в кодирующей последовательности самого гена и приводить к образованию различных вариантов белков, в свою очередь вызывающих четко очерченные фенотипы. Изменения в регуляторных областях также могут быть важными в определении фенотипа, влияя на транскрипцию или стабильность мРНК.

Полиморфизм - ключевой элемент в исследовании и практическом использовании генетики человека. Способность различать унаследованные формы генов или других сегментов генома обеспечивают инструментальные средства, необходимые для широкого спектра приложений. Как показано в этой и последующих главах, генетические маркеры - мощное научно-исследовательское инструментальное средство картирования генов на конкретном регионе хромосомы при анализе сцепления или аллельной ассоциации.

Они уже широко используются в медицине - от пренатальной диагностики наследственных болезней до обнаружения гетерозиготного носительства, а также в банках крови и тканей для типиро-вания перед переливаниями и пересадками органов (см. далее в этой главе).

Полиморфизм - основа для развивающихся мероприятий по обеспечению основанной на геномике персонализированной медицины, когда медицинские мероприятия индивидуально подбирают на основе анализа полиморфных вариантов, увеличивающих или уменьшающих риск частых болезней взрослого возраста (например, заболевания коронарных сосудов сердца, опухолей и сахарного диабета), возникновения осложнений после хирургических вмешательств или влияющих на эффективность и безопасность конкретного лекарственного препарата. Наконец, анализ полиморфизма стал мощным новым средством в судебных приложениях, например, определении отцовства, определении останков жертв преступления или для сопоставления ДНК подозреваемого и преступника.

Под генетическим полиморфизмом понимается состояние дли­тельного разнообразия генотипов, когда частота даже наиболее редко встречающихся генотипов в популяциях превышают 1%. Генетиче­ский полиморфизм поддерживается за счет мутаций и рекомбинаций генетического материала. Как показывают многочисленные исследо­вания, генетический полиморфизм широко распространен. Так, по теоретическим расчетам в потомстве от скрещивания двух особей, различающихся лишь по десяти локусам, каждый из которых пред­ставлен 4 возможными аллелями, окажется около 10 млрд. особей с различными генотипами.

Чем больше запас генетического полиморфизма в данной популя­ции, тем легче ей адаптироваться к новой среде и тем быстрее протекает эволюция. Однако, оценить количество полиморфных аллелей посредством традиционных генетических методов практически невозможно, поскольку сам факт присутствия какого-либо гена в генотипе устанавливается путем скрещивания особей, обладающих различными формами фенотипа, определяемого этим геном. Зная, какую долю в популяции составляют особи с различными фенотипами, можно выяснить, сколько аллелей участвуют в формировании данного признака.

Начиная с 60-х годов XX столетия для определения генетического полиморфизма стал широко применяться метод электрофореза белков (в том числе и ферментов) в геле. С помощью этого метода можно вызвать перемещение белков в электрическом поле в зависимости от их размера, конфигурации и суммарного заряда в разные участки ге­ля, а затем по расположению и числу проявляющихся при этом пятен проводить идентификацию исследуемого вещества. Для оценки сте­пени полиморфизма тех или иных белков в популяциях обычно ис­следуют около 20 и более локусов, а потом математическим путем определяют количество аллельных генов, соотношение гомо - и гетерозигот. Как показывают исследования, одни гены, как правило, бы­вают мономорфными, а другие - чрезвычайно полиморфными.

Различают переходный и сбалансированный полиморфизм, что зависит от селективной ценности генов и давления естественного отбора.

Переходный полиморфизм возникает в популяции, когда проис­ходит замещение аллеля, бывшего некогда обычным, другими алле­лями, придающими своим носителям более высокую приспособлен­ность (множественный аллелизм). При переходном полиморфизме наблюдается направленный сдвиг в процентном соотношении форм генотипов. Переходный полиморфизм - это главный путь эволюции, ее динамика. Примером переходного полиморфизма может быть явление индустриального механизма. Так, в результате загрязнения атмосферы в промышленных городах Англии за последние сто лет у более чем 80 видов бабочек, появились темные формы. Например, если до 1848 г. березовые пяденицы имели бледно-кремовую окраску с черными точками и отдельными темными, пятнами, то в 1848 г. в Манчестере появились первые темнотелые формы, а к 1895 г. уже 98% пядениц стало темнотелыми. Это произошло вследствие закопчения стволов деревьев и избирательного выедания светлотелых пя­дениц дроздами и малиновками. Позже было установлено, что темная окраска тела у пядениц осуществляется мутантным меланистическим аллелем.

Сбалансированный полиморфизм характеризуется отсутствием сдвига числовых соотношений различных форм, генотипов в популя­циях, находящихся в стабильных условиях среды. При этом процент­ное соотношение форм либо из поколения в поколение остается од­ним и тем же, либо колеблется вокруг какой-то постоянной величины. В противоположность переходному, сбалансированный полиморфизм - это статика эволюции. И.И. Шмальгаузен (1940) назвал его равновесным гетероморфизмом.

Примером сбалансированного полиморфизма служит наличие двух полов у моногамных животных, поскольку они обладают равно­ценными селективными преимуществами. Их соотношение в популя­циях составляет 1:1. При полигамии селективное значение у предста­вителей разных полов может отличаться и тогда представители одно­го пола либо уничтожаются, либо в большей степени, чем особи дру­гого пола, отстраняются от размножения. Другой пример - группы крови человека по АВО-системе. Здесь частота разных генотипов в различных популяциях может варьировать, однако, в каждой конкретной популяции она остается постоянной из поколения в поколение. Это объясняется тем, что ни один генотип не обладает селективным преимуществом перед другими. Так, хотя у мужчин с первой группы крови, как показывает статистка, ожидаемая продолжительность жизни, выше, чем у мужчин с другими группами крови, у них чаше, чем у других, развивается язва двенадцатиперстной кишки, которая в случае прободения может привести к смерти.

Генетическое равновесие в популяциях может нарушаться давлением спонтанных мутаций, возникающих с определенной частотой в каждом поколении. Сохранение или же элиминация этих мутаций зависит от того, благоприятствует ли им естественный отбор или про­тиводействует. Прослеживая судьбу мутаций в той или иной популя­ции, можно говорить о ее адаптивной ценности. Последняя равна 1, если отбор не исключает ее и не противодействует распространению. В большинстве случаев показатель адаптивной ценности мутантных генов оказывается меньше 1, а если мутанты совершенно не способны размножаться, то он равен нулю. Такого рода мутации отметаются естественным отбором. Однако, один и тот же ген может неоднократ­но мутировать, что компенсирует его элиминацию, производимую отбором. В таких случаях может быть достигнуто равновесие, когда появление и исчезновение мутировавших генов становится сбаланси­рованным. Примером может служить серповидноклеточная анемия, когда доминантный мутантный ген в гомозиготе приводит к ранней гибели организма, однако, гетерозиготы по этому гену оказываются устойчивыми к заболеванию малярией. В районах, где распростране­на малярия, имеет место сбалансированный полиморфизм по гену серповидноклеточной анемии, поскольку наряду с элиминацией гомо­зигот, действует контротбор в пользу гетерозигот. В результате разновекторного отбора в генофонде популяций поддерживаются в каждом поколении генотипы, обеспечивающие приспособленность организмов с учетом местных условий. Помимо гена в серповидноклеточности, в популяциях человека есть ряд других полиморфных генов, которые как предполагают, вызывают явление гетерозиса

Рецессивные мутации (в том числе и вредные), не проявляющиеся фенотипически у гетерозигот, могут накапливаться в популяциях до более высокого уровня, чем вредные доминантные мутации.

Генетический полиморфизм является обязательным условием для непрерывной эволюции. Благодаря ему в изменяющейся среде всегда могут быть генетические варианты предаптированные к этим усло­виям. В популяции диплоидных раздельнополых организмов может храниться в гетерозиготном состоянии, не проявляясь фенотипически, огромный запас генетической изменчивости. Уровень последней, оче­видно, может быть еще более высоким у полиплоидных организмов, у которых за фенотипически проявляющимся нормальным аллелем может скрываться не один, а несколько мутантных аллелей.

Генетический полиморфизм являет собой состояние, при котором отмечается явное разнообразие генов, но несмотря на это частота наименее распространённого гена в популяции будет составлять более 1% Поддержание полиморфизма происходит благодаря постоянного пере-комбинирования и мутирования генов. Согласно результатам последних исследований, проведённых учеными-генетиками, генетический полиморфизм имеет весьма широкую распространённость, ведь комбинирование гена может доходить до нескольких миллионов.

Мутирование генов

В реальной современной жизни гены являются не такими постоянными, однажды и на всю жизнь. Гены могут мутировать с различной переодичностью. Что, в свою очередь, может становиться причиной появления каких-либо ранее не имевшихся признаков, которые бывают далеко не всегда полезны.

Все мутации принято подразделять на следующие виды:

    генные - приводящие к переменам последовательности нуклеотидов ДНК в каком-либо отдельном гене, что приводит к изменениям также и в РНК и в белке, кодируемом данным геном. Генные мутирования также подразделяются на 2 категории рецессивные и доминантными. Данный вид мутаций может привести к развитию новых признаков, поддерживающих либо подавляющих жизнедеятельность живого существа.

    генеративное мутирование отражается на половых клетках и передаются при сексуальном контакте;

    соматическое мутирование не отражается на половых клетках, у животных и людей не передаётся от родителей к детям, а у растений может наследоваться в случае вегетативного размножении;

    геномное мутирование отражается на изменении численности хромосом в клеточном кариотипе;

    хромосомное мутирование напрямую затрагивает процесс перестройки структурности хромосом, изменения положений их участков, происходящих из-за разрывов либо выпадением отдельных участков.

К мутированию генов, а, значит, и к повышению распространённости недугов имеющих наследственную природу могут привести следующие составляющие современной жизни:

    Техногенные катастрофические происшествия;

    Загрязнение экологической среды (применение пестицидов, добыча и использование горючего, применение средств бытовой химии);

    Использование лекарственных средств и пищевых добавок, воздействующих на ДНК и РНК;

    Приём в пищу генетически преобразованных продуктов питания;

    Длительное, постоянное, либо особенно сильное кратковременное радиационное излучение.

Мутирование генов - процесс весьма непредсказуемый. Это связано с тем,что заранее предугадать, какой ген, каким образом и в какую сторону мутирует - предугадать практически невозможно. Мутирование генов протекает сам по себе, изменяя наследственные факторы и, на примере такого генетически обусловленного заболевания как тромбофилия, вполне очевидно, что далеко не всегда эти преобразования идут на пользу.

Виды полиморфизма

Среди учёных-генетиков принято различать преходящий и сбалансированный генный полиморфизм. Преходящий полиморфизм отмечается в популяции в том случае, если имеет место замена аллеля, бывшего ранее обыкновенным, иными аллелями, наделяющими своих носителей более высоким уровнем приспособленности. В процессе протекания преходящего полиморфизма отмечается направленное сдвигание (исчисляется в %) различных генотипных форм. Данный вид генного полиморфизма - являет собою основной путь эволюционного процесса. В качестве примера преходящего полиморфизма можно привести процесс индустриального механизма. Таким образом, в результате ухудшения экологического состояния в ряде крупнейших мегаполисов мира более чем у 80-ти разновидностей бабочек, появились более темные расцветки. Это произошло по причине постоянного загрязнения стволов деревьев и последующего уничтожения более светлых особей бабочек насекомоядными птицами. Позже выяснилось, что более темная расцветка тела у бабочек появилась по причине генного мутирования, вызванного загрязнением окружающей среды.

Сбалансированный генный полиморфизм объясняется отсутствием сдвига численного соотношения различных форм и генотипов среди популяций, проживающих в не изменяющихся условиях окружающей среды. Однако процентное соотношение форм либо остается неизменным, либо может варьироваться вокруг какой-либо не изменяющейся величины. В отличие от преходящего генного полиморфизма, сбалансированные полиморфические явления - это неотъемлемая часть непрекращающегося эволюционного процесса.

Генный полиморфизм и состояние здоровья

Современные медицинские исследования доказали, что процесс внутриутробного развития ребёнка может значительно увеличивать вероятность тромбогенных сдвигов. Особенно это ожидаемо в том случае, если женщина имеет предрасположенность либо страдает сама генетическим заболеванием. Чтобы беременность и процесс рождения долгожданного малыша проходили без серьёзных осложнений, врачи рекомендуют поднять свою родословную на предмет того, страдали ли близкие или более дальние родственники будущей мамы наследственно обусловленными заболеваниями.

На сегодняшний день стало известно, что гены такого передающегося по наследству заболевания как тромбофилия, способствуют развитию тромбофлебита и тромбоза во время вынашивания ребёнка, родовой деятельности и послеродового периода.

Кроме того полиморфические изменения генов фактора протромбина FII могут стать причиной неизлечимого бесплодия, развитию наследственно обусловленных пороков развития и даже внутриутробной гибели младенца ещё до рождения либо вскоре после рождения. Кроме того, данное генное преобразование в разы увеличивает риск развития таких недугов, как: тромбофлебит, тромбоэмболия, атеросклероз, тромбоз, инфаркт миокарда и ишемическое поражение сосудов сердца.

Генный полиморфизм фактора Лейдена FV также может значительно усложнить процесс беременности, так как он способен провоцировать привычный выкидыш и способствовать развитию генетических нарушений у ещё нерождённого ребёнка. Кроме того, он может вызвать наступление инфаркта либо инсульта в юном возрасте либо способствовать развитию тромбоэмболии;

Мутирование генов PAI-1 уменьшает активность противостоящей свертыванию системы, по этой причине его принято считать одним из важнейших факторов нормального протекания процесса свёртывания крови.

Развитие таких недугов как тромбоз либо тромбоэмболия - весьма опасны при беременности. Без профессионального медицинского вмешательства они нередко приводят к смертности во время родов как матери, так и ребёнка. Кроме того, роды при наличии этих недугов в большинстве случаев бывают преждевременными.

Когда необходимо сдавать кровь с целью выявления генетических нарушений?

Иметь некоторые сведения о предрасположенности к тем или иным генетическим заболеваниям рекомендуется каждому человеку даже если он не планирует беременность. Подобные знания могут оказать бесценную помощь в профилактике и лечении ускоренного тромбобразования, инфарктов, инсультов, ТЭЛА и других недугов. Однако на сегодняшний день значение информации о своём генетическом фонде играет огромную роль в лечении кардиологических недугов и в акушерском деле.

Таким образом, где назначение анализа на выявление тромбофилии и гемофилии играет особую роль в следующих случаях:

    При планировании беременности;

    При наличии патологических осложнений во время беременности;

    Лечении заболеваний сосудов, сердца, артерий и вен;

    Выяснении причин выкидышей;

    Лечении бесплодия;

    При подготовке к плановым операциям;

    В лечении онкологических новообразований;

    При лечении гормональных нарушений;

    Лицам, страдающим ожирением;

    При лечении эндокринологических болезней;

    При необходимости принимать контрацептивные составы;

    Лицам, занимающимся особенно тяжёлым физическим трудом и пр.

Своевременное развитие медицины позволяет заблаговременно выявить генетические аномалии, определить их полиморфизм и возможную предрасположенность к развитию генетических заболеваний путем проведения сложнейшего анализа крови. Хотя при проведении данного анализа в платных медицинских центрах подобное обследование может требовать некоторых затрат, проведение такого анализа может весьма облегчить лечение либо предупредить развитие множества генетических нарушений.

Полиморфизм человеческих популяций. Генетический груз.

    Полиморфизм. Классификация полиморфизма.

    Генетический полиморфизм популяций человека.

    Полиморфизм по группам крови.

    Генетический груз.

    Генетический груз в популяциях людей.

    Генетические аспекты предрасположенности к заболеваниям.

Процесс видообразования с участием такого фактора, как естественный отбор, создает разнообразие живых форм, приспособленных к условиям обитания. Среди разных генотипов, возникающих в каждом поколении благодаря резерву наследственной изменчивости и перекомбинации аллелей, лишь ограниченное число обусловливает максимальную приспособленность к конкретной среде.

Полиморфизм – существование в единой панмиксной популяции двух и более резко различающихся фенотипов, которые могут быть нормальными или аномальными.

Полиморфизм – явление внутрипопуляционное.

Наследственный полиморфизм создается мутациями и комбинативной изменчивостью.

Классификация полиморфизма.

Полиморфизм бывает:

Хромосомный;

Переходный;

Сбалансированный.

1. Генетический полиморфизм наблюдается, когда ген представлен более чем одним аллелем.

Пример – системы групп крови.

2. Хромосомный полиморфизм – между особями имеются различия по отдельным хромосомам. Это результат хромосомных аббераций, есть различия в гетерохроматиновых участках. (Характаций нейтрален.

3. Переходный (адаптационный) полиморфизм – замещение в популяции одного старого аллеля новым, который более полезен в данных условиях.

Так, в популяциях двухточечных божьих коровок Adalia bipuncata при уходе на зимовку преобладают черные жуки, а весной - красные. Это происходит потому, что красные формы лучше переносят холод, а черные интенсивнее размножаются в летний период.

У человека есть ген гаптоглобина - Нр1f, Hp 2fs (гаптоглобин - белок плазмы крови, с высокой аффинностью, связывающий гемоглобин и высвобождающийся из эритроцитов, тем самым ингибирующий его окислительную активность). Старый аллель - Нр1f, новый - Нр2fs. Нр обусловливает слипание эритроцитов в острую фазу заболеваний.

4. Сбалансированный (гетерозиготный) полиморфизм – возникает, если отбор благоприятствует гетерозиготам в сравнении с рецессивными и доминантными гомозиготами.

Так, в опытной численно равновесной популяции плодовых мух Drosophila elanogaster,содержащей поначалу много мутантов с более темными телами (рецессивная мутация ebony), концентрация последних быстро падала, пока не стабилизировалась на уровне 10%. Анализ показал, что в созданных условиях гомозиготы по мутации ebony и гомозиготы по аллелю дикого типа менее жизнеспособны, чем гетерозиготные мухи. Это и создает состояние устойчивого полиморфизма по соответствующему локусу.

Одним из механизмов, поддерживающих разнообразие является сверхдоминантность - явление селективного преимущества гетерозигот.

Механизм положительного отбора гетерозигот различен. Правилом является зависимость интенсивности отбора от частоты, с которой встречается соответствующий фенотип (генотип). Так, рыбы, птицы, млекопитающие предпочитают обычные фенотипические формы добычи, "не замечая" редких.

В качестве примера - раковина у обыкновенной наземной улитки Cepaea nemoralis бывает желтая, различных оттенков коричневого, розовая, оранжевая или красная. На раковине может быть от одной до пяти темных полос, при этом коричневая окраска доминирует над розовой, а обе они - над желтой. Полосатость является рецессивным признаком. Улитки поедаются дроздами, использующими камень как наковальню, чтобы разбить раковину и добраться до тела моллюска. Подсчет числа раковин разной окраски вокруг таких "наковален" показал, что на траве или на лесной подстилке, фон которых достаточно однороден, добычей птиц чаще оказывались улитки с розовой и полосатой раковиной. На пастбищах с грубыми травами или в живых изгородях с более пестрым фоном чаще поедались улитки, раковины которых окрашены в светлые тона и не имели полос.

Самцы относительно редких генотипов могут иметь повышенную конкурентоспособность за самок. Селективное преимущество гетерозигот обуславливается также явлением гетерозиса. Повышенная жизнеспособность межлинейных гибридов отражает результат взаимодействия аллельных и неаллельных генов в системе геннотипо в в условиях гетерозиготности по многим локусам. Гетерозис наблюдается в отсутствие фенотипического проявления рецессивных аллелей. Это сохраняет скрытыми от естственного отбора неблагоприятные и даже летальные рецессивные мутации.

Балансированный полиморфизм придает популяции ряд ценных свойств, что определяет его биологическое значение. Генетически разнородная популяция осваивает более широкий спектр условий жизни, используя среду обитания более полно. В её генофонде накапливается больший объем резервной наследственной изменчивости. В результате она приобретает эволюционную гибкость и может, изменяясь в том или ином направлении, компенсировать колебания среды в ходе исторического развития.

Все формы полиморфизма - генетический, хромосомный, переходный и сбалансированный - весьма обычны и очень широко распространены в природе среди популяций всех организмов.

В популяциях организмов, размножающихся половым путем, всегда есть полиморфизм.

Сегодня под термином «полиморфизм » понимают любой признак, который детерминирован генетически и не являющийся следствием фенокопии. чень часто имеются 2 альтернативных признака, тогда говорят о диморфизме. Например, половой диморфизм (различия признаков мужских и женских особей раздельнополых видов)

Первый генетический полиморфный признак у человека был выявлен Ландштейнером в 1900 г. Это была система группы крови АВО.

До 1955 г. у человека было известно только несколько полиморфных генетических систем, преимущественно разные группы крови.

В 1955 г. Смитис описал метод электрофореза в крахмальном геле, который позволял разделять белки по их заряду и молекулярной массе. Благодаря использованию этого метода, Смитису удалось показать, что полиморфным является также сывороточный белок гаптоглобин.

Было установлено, что электрофоретические варианты гаптоглобина наследуются как кодоминантные признаки.

Вскоре генетический полиморфизм был обнаружен и для некоторых других сывороточных белков, а дополнение электрофореза методами определения ферментативной активности позволило установить, что полиморфизм свойствен также многим эритроцитарным, лейкоцитарным ферментам и ферментам плазмы крови.

К 70-м годам XIX в. было известно, по-видимому, не менее 100 белковых полиморфизмов, которые можно было выявить с помощью различных вариантов электрофореза.

К сожалению, большая часть белковых полиморфизмов оказалась малопригодной для анализа сцепления с генами наследственных болезней, но сыграла исключительную роль в изучении генетической структуры популяций человека. Иные возможности для исследования сцепления и картирования генов открыли ДНК-полиморфизмы.