Занятия по обучению грамоте. Осваиваем устный счет. Соревнования по устному счёту

Обучение грамоте осуществляется два раза в неделю (9 – 12-я недели обучения).

Одновременно с окончательным усвоением звуков с, с’, э, з’ происходит знакомство с буквами н, я, з, х. Закрепляются приобретенные ранее знания и навыки. Продолжаются упражнения в выкладывании из цветных фишек и букв разрезной азбуки обратных и прямых слогов, слов типа СГС, их чтение и письмо. На этом этапе обучения особенно важно продолжать вырабатывать навык ориентировки при чтении прямых слогов на гласную букву, поскольку согласные буквы в большинстве случаев обозначают и твердые, и мягкие звуки. Для того чтобы прочитать прямой слог (например, са или ся ), необходимо сначала увидеть гласную букву. Только после этого появляется возможность правильно прочитать слог. Для выработки указанного навыка детям предлагается читать прямые слоги, установив ту или иную согласную букву в первом окошке и изменяя гласные во втором. Логопед говорит: «Поставьте букву о . Читайте. Поставьте букву и . Читайте. Поставьте букву я . Читайте». Таким образом дети читают слоги, например: со, си, ся и т.д. Выполнение задания в этом случае облегчается тем, что согласная буква повторяется во всех слогах и, следовательно, все внимание детей направлено на второе окошечко, т.е. на гласные буквы. Несколько позднее включаются упражнения в чтение слогов, выложенных детьми из разрезной азбуки (например, па, зи, мя, ко ), или по таблице. Эти упражнения сложнее, так как теперь меняется не только гласная, но и согласная буква. Следовательно, чтобы прочитать слог, надо посмотреть сначала на гласную букву, затем на согласную, сообразить, твердый или мягкий звук обозначает согласная буква в читаемом слоге. Прочитанные слоги по возможности (если есть знакомые детям слова, состоящие из правильно произносимых звуков) добавляются до слов (устно). Постепенно, после того как дети познакомятся со слоговым делением слов, включаются упражнения в составлении звуко-слоговых схем слов с последующей заменой фишек, обозначающих звуки, буквами разрезной азбуки. Переход от чтения слогов к осмысленному чтению слов – важный и очень ответственный этап работы. Первые упражнения в составлении схем слов проводятся параллельно с устным анализом. После того как будет произнесено слово, кладется длинная полоска, обозначающая слово, затем определяется количество слогов и кладется соответствующее количество полосок меньшего размера, наконец, называются звуки каждого слога с указанием мягкости или твердости согласных, выкладывание схемы заканчивается и слово «прочитывается». По схеме задаются различные вопросы (см. занятия на букву з ). Затем фишки заменяются буквами и слово прочитывается. По мере закрепления навыка составления схемы упражнение усложняется – в начале проводится полный анализ слова, а затем дети выкладывают схему. Несколько позднее детям предлагается самостоятельно (без предварительного анализа) выкладывать схемы слов по возможности разного типа (мак, кит, косы, Сима, утка, паук… ) по заданию, картинкам, выставленной схеме. После замены фишек буквами слова читаются. Кроме того, проводится чтение слов по таблицам, по продержкам, с доски и т.п.



Звук и буква н

В начале второго периода обучения дети знакомятся с буквой н . Одновременно они продолжают работать над усвоением буквы с . Специальных занятий по произношению на звуки н и н’ не проводилось, поэтому в занятия по грамоте рекомендуется включить ряд упражнений в произношении этих звуков. Это могут быть слоговые упражнения типа на – ня; ан – ан’ и т.п. Это может быть и произношение слов с последующим отбором слов с твердым звуком н и мягким н’ . Примерные слова: Нина, Ваня, канава, осень, ванна, сосна, поднос, кони, окно, комната, танк, кнут, ноги, окуни и т.п.

Затем проводятся упражнения в чтении по продержкам слогов с твердыми и мягкими согласными, например: на, но, ни, ны, ну . Аналогично с согласными буквами с, п, к, м . Может быть предложено выкладывание из букв разрезной азбуки прямых и обратных слогов и их последующее чтение. Особое внимание обращается на преобразования типа ны – ни; си – сы. После подробного анализа выкладываются схемы слов типа Ната, Нина, косы, Сима. Фишки заменяются буквами. Слова читаются.

Буква я

Более подробно остановимся на подборе материала при планировании занятия по грамоте, цель которого знакомство с буквой я и употребление ее после согласных.

Примерный ход занятия

I. Сравнение мягких звуков с твердыми.

Логопед говорит: «Сядет тот, кто правильно произнесет слог, который я скажу, и правильно определит, какой согласный звук в этом слоге – мягкий или твердый».

Логопед произносит прямые слоги с гласными звуками ы, и, а, например: пы, та, ся, ми, си, сы, пя и т.п. Дети постепенно садятся.

II. Буква я после согласных.

1. Детям предлагается произносить слоги сы и си . Затем логопед задает вопрос: «В чем разница между этими слогами?» (В слоге сы звук с твердый и звук ы . В слоге си звук с мягкий и звук и .)

2. Дети выкладывают, а затем читают слог сы . Логопед спрашивает: «Как сделать из слога сы слог си ?» (Надо убрать букву ы и положить букву и .) Дети выкладывают и читают слог си .

3. Детям дается задание сложить слог са и ответить на вопросы: «Какие звуки в этом слоге?» (Твердый звук с и звук а .) «Какой согласный звук в слоге ся ?» (Мягкий звук с .)

Логопед на наборном полотне складывает слог са , убирает букву а и говорит: «Для того чтобы сложить слог ся , надо после мягкого звука с вместо буквы а поставить гласную букву я ». Затем он ставит букву я и читает слог ся .

Логопед предлагает детям убрать букву а из слога са , взять приготовленные заранее буквы и положить я после с . Сложенный слог ся читается хором и отдельными детьми.

4. Затем логопед на наборном полотне заменяет букву с буквой н и читает слог ня . То же проделывают дети. Аналогично выкладываются и читаются слоги пя и мя . Буква я выставляется в таблицу гласных букв под буквой а .

III. Затем (по усмотрению логопеда) могут быть предложены следующие упражнения.

Чтение слогов типа са – ся и с другими согласными (по таблице).

Составление и чтение по продержкам всех знакомых слогов, т.е. са – си – су – сы – ся – со и со всеми другими согласными.

Преобразование слогов путем замены гласной буквы, например: сложить слог са , прочитать его, заменить букву а буквой я , вновь прочитать и т.п. Или: детям предлагается сложить какой-либо слог, например, на, затем заменить одну букву так, чтобы получился слог ня , и т.д.

IV. Устные упражнения.

Дети становятся в круг. Предлагается произносить поочередно слоги то с твердым, то с мягким согласным (слоги даются только с гласным а ), т.е. если первый ребенок произнесет слог пя , то второй па , затем опять пя и т.д. Время от времени меняется согласный звук. Логопед говорит, обращаясь к одному из детей: «А теперь скажи ма ». Следующий ребенок должен сказать мя и т.д., пока не будет другого задания.

В форме игры с мячом проводится следующее упражнение. Логопед бросает мяч и называет первый слог – начало имени мальчика или девочки. Ребенок должен дополнить слово так, чтобы во втором слоге был мягкий звук. Примерные имена: Валя, Ваня, Вася, Коля, Леля, Леня, Маня, Паня, Таня, Люся, Дуся.

V. Чтение всех знакомых слов, в частности: Аня, Маня, Таня, Паня.

Эта статья была написана мною несколько лет назад для одного репетиторского сайта. При размещении администратор сайта исказил не только мою фамилию, но и цель моей статьи. Я предназначал ее школьникам, а администратор того сайта переадресовал ее.... начинающим репетиторам, озаглавив "Какие вычисления производит репетитор по математике в уме?" При этом обозначенный им потолок устного счета в его статье на эту тему сводится только к вычислению в уме умножения двузначного числа на однозначное. Он пишет: "Допустим, это 29x7 . «Звуковая дорожка» от репетитора может быть следующей: «29 это двадцать и 9. Двадцать на 7 будет …. (ученик отвечает 14) , а 9 на 7 будет …. (ученик отвечает 63). Сто сорок и шестьдесят три будет …» " Мало того, что в этом тексте есть ошибка (Двадцать на семь будет 140, а не 14) - надо же проверять, считывать написанное (!!!), мало того, что гораздо удобнее тридцать умножить на семь и вычесть семь, так этот приём в статье того репетитора - единственный (????) в вопросе устного счета.
Что же получается? Навыки быстрого устного счета излишни для школьников и ими могут пользоваться только репетиторы? А вот и нет! На моих занятиях я всегда приветствую, когда ученик стремится считать в уме. Да, этому, как правило, не учат в школе. Но как показывает опыт, использовать навыки быстрого устного счета при желании может каждый школьник. И это само по себе полезно, поскольку позволяет "чувствовать" числа и понимать, сколько может получиться при умножении, а сколько не может. Важно только научиться мыслить немножко не так, как учат в школе. И ведь эти приемы могут пригодится школьнику в течение всей школьной программы, и на экзаменах, где, как известно, не разрешается пользоваться калькулятором.
Например, требуется из 11531 вычесть 9487. Как учат в школе? Надо написать столбик, при этом постоянно занимая, считая разность. Между тем, если несколько раз занять, то можно легко ошибиться, где занял, а где нет. А можно подсчитать это в уме совсем другим способом, даже не думая столбиком. Можно заметить, что в уменьшаемом цифры в основном маленькие, а в вычитаемом в основном большие. Тогда считаем таким образом: На сколько 11531 больше, чем 11000? - На 531. На сколько 9487 меньше, чем 10000? - На 513. Между 11000 и 10000 - одна тысяча.

11531 – 9487 = 11000 + 531 – (10000 – 513) = 11000 – 10000 + 531 + 513 = 2044
Этот приём удобнее всего запомнить с помощью рисунка:

А теперь разберём пример посложнее - умножение. Сколько будет 64 * 15? Что такое 15? 15 - это 1,5 * 10. Как число умножается на 1,5, т.е. на полтора? Для этого надо к этому числу прибавить половинку от него самого. Если в примере фигурирует не 1,5, а 15, или 150, то надо приписать ещё справа определённое количество нулей. Таким образом, 64 плюс половинка от этого числа, то есть 32 и ноль приписываем.
То есть 64 + 32 = 96; 96 * 10 = 960.

64 * 15 = 64 * 1,5 * 10 = (64 + 32) * 10 = 960

Теперь умножим 84 на 25. Аналогичный пример, но в этом случае можно подсчитать разными способами. Можно рассматривать 25 как 2,5 * 10. Иными словами, взять 84 два раза и прибавить к полученному результату 42, а потом умножить на 10.

84 * 25 = (84 + 84 + 42) * 10 = 2100
И приписываем ноль. А можно и по-другому. 84 * 0,25 * 100. То есть разбиваем 25 на 0,25 и 100. Зачем нам это надо? Дело в том, что 0,25 это ¼ (одна четвёртая). Иными словами, 84 делим на 4, получается 21, и приписываем два ноля. Получается те же 2100:

84 * 25 = 84 * 0,25 * 100 = 84: 4 * 100 = 2100
Может показаться, что подобные приемы едва ли могут понадобиться в школе, что в школьной программе встречаются только примеры типа 29x7. Между тем в некоторых учебниках полным полно примеров, которые подразумевают применение методов быстрого счета, важно только суметь распознать эти методы. Важно отметить в этой связи, что в учебниках 6-го класса нередко встречаются задания "Вычислить наиболее рациональным способом", а в учебниках следующих классов такие задания обычно отсутствуют. Это не означает, что такие методы надо забыть в старших классах. Вот, пример из реального занятия с учеником 8-го класса. Ему встретилось в одной задаче
375 * 48. Казалось бы, умножать трехзначные числа на двузначные можно только столбиком. Но результат умножения этих двух чисел легче получить в уме. Что такое 375?
- Это 125 * 3. Число 125 - это 0,125 * 1000 (одна восьмая умноженная на тысячу). Следовательно, превращаем 375 в 0,375 (три восьмых) * 1000. Получаем

48 * 375 = 48 * 0,375 * 1000 = 48 * 3: 8 * 1000 = 48: 8 * 3 * 1000 = 18000
Зная этот приём все действия получаются в уме автоматически и ученик может быть уверен, что он нигде не ошибся. Тогда как при подсчете столбиком, где фактически необходимо выполнить несколько действий, вероятность ошибки куда больше.
Для быстрого устного счета неплохо знать наизусть не только таблицу умножения, но и таблицу квадратов, хотя бы до тридцати. Практика показывает, что это относительно несложно, и есть школьники с такими знаниями. К тому же это знание порой позволяет не только возводить в квадрат, но и считать в уме примеры типа 39 * 26, применяя приём разложения на "известные" множители. Нетрудно заметить, что 39 это 13 * 3,
а 26 - это 13 * 2. Зная наизусть, что 13 * 13 = 169, осталось только 169 * 6. 170 * 6 будет 170 * 3 * 2 = 1020 и минус 6, получается 1014.

39 * 26 = 3 * 13 * 2 * 13 = 169 * 6 = 170 * 6 – 6 = 1014

Кстати, о таблице квадратов. Да, таблица квадратов публикуется на форзаце учебников, она публикуется в сборниках для подготовки к экзаменам, ею разрешают пользоваться на экзамене. Получается, что знать таблицу квадратов наизусть необязательно. Однако до революции, когда не было калькуляторов и компьютеров, школьники, по крайней мере, в школе Рачинского (у художника Н.П. Богданова-Бельского есть картина "Устный счёт", напоминающая об этом), умели возводить в квадрат числа до 100 в уме. Не столбиком, а именно в уме. Как они это делали? Казалось бы, процесс достаточно трудоёмкий, даже если применять, например, формулы сокращённого умножения. Действительно, возьмем, например, число 96 и возведём его в квадрат по формуле квадрата суммы (90 + 6) 2 . Получатся три слагаемых, складывать которые подчас неудобно. Еще менее удобно, если взять формулу квадрата разности (100 – 4) 2 . Однако есть приём попроще, но пока стоит сделать отступление и поговорить о формулах сокращённого умножения. Любопытно, но в школьной программе эти формулы используются в самых разных разделах математики - от алгебраической дроби до тригонометрических преобразований, но только не для быстрого умножения чисел. Только при непосредственном изучении темы приводится несколько примеров на счёт с помощью этих формул, да такого рода задания встречаются на вступительных экзаменах в лицеи. Почему? Да потому что производить вычисления в уме с помощью этих формул не слишком удобно, да и методы не универсальны. Конечно в некоторых случаях эти формулы можно использовать для быстрого счёта. Особенно это относится к формуле разность квадратов. Действительно, если надо умножить 37 на 43, 26 на 32, 35 на 25 и т.д. (если разница между числами чётная), то формулой разность квадратов можно добиться быстрого результата, хотя для этого требуется опять-таки знать ещё и таблицу квадратов (37 * 43 = (40 – 3) * (40 + 3) = 1600 – 9 = 1591; 26 * 32 = (29 – 3) * (29 + 3) = 841 – 9 = 832;
35 * 25 = (30 + 5) * (30 – 5) = 900 – 25 = 875). Более удобен другой способ возведения в квадрат, чем применение формул сокращённого умножения. Для примера возьмем то же самое число 96 в квадрате.
Для начала разберёмся с правилом быстрого возведения в квадрат чисел, оканчивающихся на 5. Например, 25 в квадрате, 35 в квадрате, 45 в квадрате, 95 в квадрате. Правило такое. Для этого, количество десятков возводимого в квадрат числа (например, 9 в числе 95) умножить на число, которое на единицу больше (то есть на 10 в случае 95) и приписать 25. Получается 9025. Подсчитаем таким способом, например 85 2:

85 2 = 8 * 9 * 100 + 25 = 7225
(на 100 умножаем потому что произведение 8 * 9 даёт нам первые две цифры конечного результата).
Почему так получается комментировать в рамках данной статьи не буду, отмечу лишь, что это правило действует и для трехзначных чисел, что стало встречаться, например, на ОГЭ, причем и в обратную сторону - в виде извлечения арифметического квадратного корня из пятизначного числа, оканчивающегося на...25. По всей вероятности, составители заданий стали учитывать, что публикуемая везде таблица квадратов включает в себя возведение в квадрат только двузначных чисел, и надо проверить школьников чем-нибудь выходящим за рамки этой таблицы. Справедливости ради надо сказать, что и в школах некоторые учителя знакомят учеников с этим приёмом. Хотя обычно не говорится, что с его помощью можно легко получить результат возведения в квадрат любого числа из таблицы. Как это делается? Среди чисел, которые возводятся квадрат, есть т.н. «опорные» числа. Это, во-первых, 10, 20, 30, 40, ….90 и, во-вторых, 15, 25, 35… 95. Это те числа, возвести которые в квадрат очень просто. Теперь берём число 96 и возводим его в квадрат. Для этого к 9025 надо прибавить 95 и 96. Прибавляем 200 и отнимаем (5 + 4 – числа, дополняющие 95 и 96 до 100). Пишем результат – 9216. Почему так?

96 * 96 = (95 + 1) * 96 = 95 * 96 + 1 * 96 = 95 * (95 + 1) + 1 * 96 = 95 * 95 + 95 + 96 = 9216.
Аналогичным способом при соответствующей тренировке можно возводить в квадрат любое число из таблицы квадратов, вплоть до того, чтобы показывать фокусы быстрого счета или феноменальной памяти перед одноклассниками. Для тех, кто всё еще побаивается столь больших чисел, принцип действий можно объяснить на простом примере. 4 в квадрате. Это будет 16. Теперь возведём в квадрат 5. Это будет 25. Зная 4 в квадрате, результат следующего числа в квадрате получается прибавлением к предыдущему суммы возводимых в квадрат чисел. Например, 5 в квадрате это 4 в квадрате + 5 + 4 (т.е. 16 + 9).
Ученик, поднаторевший в применении этих приемов быстрого устного счета вполне может придумать свои приемы, внимательно вглядываясь в числа и находить в них свои закономерности. Как показывает опыт, это стремление приучает его не ошибаться в счете, а поиск своих приемов прививает ему интерес к предмету, позволяет творчески подходить к его изучению и находить в нем что-то свое. Некоторые школьники стремятся блеснуть такими своими умениями перед одноклассниками, а то и вовсе про-демон-стри-ро-вать "фокус" по подсчёту в уме больших чисел. Это надо только приветствовать, хотя и не во всех школах учителя верят, что школьники могут считать что-то в уме, а не на калькуляторе. На моей памяти есть и вовсе анекдотический случай из серии "нарочно не придумаешь", когда ученик в 5-м классе написал: 22 + 33 = 55. Казалось бы, что здесь неправильно? Но ему это учительница зачеркнула, предложив переписать то же самое... столбиком. Вместо того, чтобы учить детей считать в уме, порой встречаются "недоверчивые" учителя, которые полагают, что если столбик не написан, то значит, ученик считал калькулятором.
На индивидуальных занятиях с репетитором по математике бывает полезно уделять внимание изучению приёмов быстрого устного счёта.

© Александр Миров, репетитор по математике, Москва

«Математику уже за то любить следует, что она ум в порядок приводит» - говорил Михаил Ломоносов. Умение считать в уме остается полезным навыком и для современного человека, несмотря на то, что он владеет всевозможными устройствами, способными считать за него. Возможность обходиться без специальных девайсов и в нужный момент оперативно решить поставленную арифметическую задачу - это не единственное применение данного навыка. Помимо утилитарного назначения, приемы устного счета позволят вам научиться организовывать себя в различных жизненных ситуациях. Кроме того, умение считать в уме, несомненно, положительно скажется на имидже ваших интеллектуальных способностей и выделит вас среди окружающих «гуманитариев».

Тренировка устного счета

Есть люди, которые умеют совершать несложные арифметические операции в уме. Умножить двузначное число на однозначное, умножать в пределах 20, перемножить два небольших двузначных числа и т.д. - все эти действия они могут производить в уме и достаточно быстро, быстрее среднего человека. Часто этот навык оправдан необходимостью постоянного практического использования. Как правило, люди, которые хорошо считают в уме, имеют математическое образование или, по крайней мере, опыт решения многочисленных арифметических задач.

Несомненно, опыт и тренировка играет важнейшую роль в развитии любых способностей. Но навык устного счета не опирается на один лишь опыт. Это доказывают люди, которые, в отличие от вышеописанных, способны считать в уме гораздо более сложные примеры. Например, такие люди могут умножать и делить трехзначные числа, совершать сложные арифметические операции, которые не каждый человек и в столбик сможет посчитать.

Что же необходимо знать и уметь обычному человеку, чтобы овладеть такой феноменальной способностью? На сегодняшний день существуют различные методики, помогающие научиться быстро считать в уме. Изучив многие подходы к обучению навыку считать устно, можно выделить 3 основных составляющих данного навыка:

1. Способности. Способность концентрировать внимание и умение удерживать в краткосрочной памяти несколько вещей одновременно. Предрасположенность к математике и логическому мышлению.

2. Алгоритмы. Знание специальных алгоритмов и умение оперативно подобрать нужный, максимально эффективный алгоритм в каждой конкретной ситуации.

3. Тренировка и опыт , значение которых для любого навыка никто не отменял. Постоянные тренировки и постепенное усложнение решаемых задач и упражнения позволят вам улучшить скорость и качество устного счета.

Нужно отметить, что третий фактор имеет ключевое значение. Не обладая необходимым опытом, вы не сможете удивить окружающих быстрым счетом, даже если вы знаете самый удобный алгоритм. Однако не стоит недооценивать важность первых двух составляющих, поскольку имея в своем арсенале способности и набор нужных алгоритмов, вы сможете «переплюнуть» даже самого опытного «счетовода», при условии, что вы тренировались одинаковое время.

Уроки на сайте

Уроки устного счета, представленные на сайте, направлены именно на развитие этих трех составляющих. В первом уроке рассказано, как развить в себе предрасположенность к математике и арифметике, а также описаны основы счета и логики. Затем дан ряд уроков по специальным алгоритмам для совершения различных арифметических операций в уме. И наконец, в данном тренинге представлены дополнительные материалы, помогающие тренировать и развивать умение считать устно, для того, чтобы суметь применить свой талант и свои знания в жизни.

Именно в первые годы обучения закладываются основные приёмы устных вычислений, которые активизируют мыслительную деятельность учеников, развивают у детей память, речь, способность воспринимать на слух сказанное, повышают внимание и быстроту реакции .

Феноменальные счётчики

Феномен особых способностей в устном счёте встречается с давних пор. Как известно, ими обладали многие учёные, в частности, Андре Ампер и Карл Гаусс . Однако, умение быстро считать было присуще и многим людям, чья профессия была далека от математики и науки в целом.

До второй половины XX века на эстраде были популярны выступления специалистов в устном счёте . Иногда они устраивали показательные соревнования между собой, проводившиеся в том числе и в стенах уважаемых учебных заведений, включая, например, Московский государственный университет имени М. В. Ломоносова .

Среди известных российских «супер счётчиков»:

Среди зарубежных:

Хотя некоторые специалисты уверяли, что дело во врождённых способностях , другие аргументировано доказывали обратное: «дело не только и не столько в каких-то исключительных, „феноменальных“ способностях, а в знании некоторых математических законов, позволяющих быстро производить вычисления» и охотно раскрывали эти законы .

Истина, как обычно, оказалась на некоей «золотой середине» сочетания природных способностей и грамотного, трудолюбивого их пробуждения, взращивания и использования. Те, кто следуя Трофиму Лысенко уповают исключительно на волю и напористость, со всеми уже хорошо известными способами и приёмами устного счёта обычно при всех стараниях не поднимаются выше очень и очень средних достижений. Более того, настойчивые попытки «хорошенько нагрузить» мозг такими занятиями как устный счёт, шахматы вслепую и т. п. легко могут привести к перенапряжению и заметному падению умственной работоспособности, памяти и самочувствия (а в наиболее тяжёлых случаях - и к шизофрении). С другой стороны и одарённые люди при беспорядочном использовании своих талантов в такой области как устный счёт быстро «перегорают» и перестают быть в состоянии длительно и устойчиво показывать яркие достижения.

Соревнования по устному счёту

Метод Трахтенберга

Среди практикующихся в устном счёте пользуется популярностью книга «Системы быстрого счёта» цюрихского профессора математики Якова Трахтенберга . История её создания необычна . В 1941 году немцы бросили будущего автора в концлагерь . Чтобы сохранить ясность ума и выжить в этих условиях, учёный стал разрабатывать систему ускоренного счёта. За четыре года ему удалось создать стройную систему для взрослых и детей, которую впоследствии он изложил в книге. После войны учёный создал и возглавил Цюрихский математический институт .

Устный счёт в искусстве

В России хорошо известна картина русского художника Николая Богданова-Бельского «Устный счёт. В народной школе С. А. Рачинского », написанная в 1895 году. Приведённая на доске задача, над которой размышляют ученики, требует достаточно высоких навыков устного счёта и смекалки. Вот её условие:

Феномен быстрого счёта больного аутизмом раскрывается в фильме «Человек дождя » Барри Левинсона и в фильме «Пи » Даррена Аронофски .

Некоторые приёмы устного счёта

Для умножения числа на однозначный множитель (например, 34*9) устно, необходимо выполнять действия, начиная со старшего разряда, последовательно складывая результаты (30*9=270, 4*9=36, 270+36=306) .

Для эффективного устного счёта полезно знать таблицу умножения до 19*9. В этом случае умножение 147*8 выполняется в уме так: 147*8=140*8+7*8= 1120 + 56= 1176 . Однако, не зная таблицу умножения до 19*9, на практике удобнее вычислять все подобные примеры как 147*8=(150-3)*8=150*8-3*8=1200-24=1176

Если одно из умножаемых раскладывается на однозначные множители, действие удобно выполнять, последовательно перемножая на эти множители, например, 225*6=225*2*3=450*3=1350 . Также, проще может оказаться 225*6=(200+25)*6=200*6+25*6=1200+150=1350.

Существует ещё несколько способов устного счета, например при умножении на 1,5 умножаемое нужно разделить пополам и прибавить к умножаемому, например 48*1,5= 48/2+48=72

Также есть особенности при умножение на 9. для того чтобы умножить число на 9 надо к множимому приписать 0 и к получаемому числу отнять множимое, например 45*9=450-45=405

Умножать на 5 удобнее так: сначала умножить на 10, а потом разделить на 2

Возведение числа вида X5 (оканчивающегося пятеркой) в квадрат производится по схеме: умножаем X на X+1 и приписываем 25 справа, т.е. (X5)² = (X*(X+1))*100 + 25. Например, 65² = 6*7 и приписываем справа 25 = 4225 или 95² = 9025 (9*10 и приписать 25 справа). Доказательство: (X*10+5)² = X²*100 + 2*X*10*5 + 25 = X*100*(X+1) + 25.

См. также

Примечания

Литература

  • Бантова М. А. Система формирования вычислительных навыков. //Нач. шк - 1993.-№ 11.-с. 38-43.
  • Белошистая А. В. Приём формирования устных вычислительных умений в пределах 100 // Начальная школа. - 2001.- № 7
  • Берман Г. Н. Приемы счёта, изд. 6-е, М.: Физматгиз, 1959.
  • Боротьбенко Е И. Контроль навыков устных вычислений. //Нач. шк. - 1972. - № 7.- с. 32-34.
  • Воздвиженский А. Умственные вычисления. Правила и упрощённые примеры действий с числами. - 1908.
  • Волкова СИ., Моро М. И. Сложение и вычитание многозначных чисел. //Нач. шк.- 1998.-№ 8.-с.46-50
  • Воскресенский М. П. Приёмы сокращённых вычислений. - М.Д905.-148с.
  • Вроблевский . Как научится легко и быстро считать. - М.-1932.-132с.
  • Гольдштейн Д. Н. Курс упрощённых вычислений. М.: Гос. учебно-пед. изд., 1931.
  • Гольдштейн Д. Н. Техника быстрых вычислений. М.: Учпедгиз, 1948.
  • Гончар Д. Р. Устный счёт и память: загадки, приёмы развития, игры // В сб. Устный счёт и память. Донецк:Сталкер, 1997 г.
  • Демидова Т. Е., Тонких А. П. Приёмы рациональных вычислений в начальном курсе математики // Начальная школа. - 2002. - № 2. - С. 94-103.
  • Катлер Э. Мак-Шейн Р. Система быстрого счёта по Трахтенбергу. - М.: Учпедгиз.- 1967. −150с.
  • Липатникова И. Г. Роль устных упражнений на уроках математики //Начальная школа. - 1998. - № 2.
  • Мартель Ф. Приемы быстрого счёта. - Пб. −1913. −34с.
  • Мартынов И. И. Устный счёт для школьника, что гаммы для музыканта. // Начальная школа. - 2003. - № 10. - С. 59-61.
  • Мелентьев П. В. «Быстрые и устные вычисления.» М.: «Гостехиздат», 1930.
  • Перельман Я. И. Быстрый счёт. Л.: Союзпечать, 1945.
  • Пекелис В. Д. «Твои возможности, человек!» М.: «Знание», 1973.
  • Робер Токэ «2 + 2 = 4» (1957) (англоязычное издание: «Магия чисел» (1960)).
  • Сорокин А. С. Техника счёта. М.: «Знание», 1976.
  • Сухорукова А. Ф. Больше внимания устным вычислениям. //Нач. шк. - 1975.-№ 10.-с. 59-62.
  • Фаддейчева Т. И. Обучение устным вычислениям // Начальная школа. - 2003. - № 10.
  • Фаермарк Д. С. «Задача пришла с картины.» М.: «Наука».

Ссылки

  • В. Пекелис. Чудо-счётчики // Техника-молодёжи , № 7, 1974 г.
  • С. Транковский. Устный счёт // Наука и жизнь , № 7, 2006 год.
  • 1001 задача для умственного счёта С.А. Рачинского .

Wikimedia Foundation . 2010 .

Смотреть что такое "Устный счёт" в других словарях:

    устный - устный … Русский орфографический словарь

    Произносимый, словесный, вербальный, изустный. Ant. письменный Словарь русских синонимов. устный изустный, словесный; вербальный (спец.) Словарь синонимов русского языка. Практический справочник. М.: Русский язык. З. Е. Александрова. 2011 … Словарь синонимов

    - [сн], устная, устное. 1. Произносимый, письменно не закрепленный. Устная речь. Устная традиция. Устный зачет. Устно (нареч.) передать ответ. 2. прил. к уста, ротовой (анат.). Устные мышцы. ❖ Устная словесность (филол.) то же, что фольклор.… … Толковый словарь Ушакова

    УСТНЫЙ, см. уста. Толковый словарь Даля. В.И. Даль. 1863 1866 … Толковый словарь Даля

    УСТНЫЙ, ая, ое; устна, устно. Произносимый, не письменный. Устная речь. У. ответ. Устное заявление. Передать устно (нареч.). | сущ. устность, и, жен. (спец.). У. судебного разбирательства. Толковый словарь Ожегова. С.И. Ожегов, Н.Ю. Шведова. 1949 … Толковый словарь Ожегова

    устный - устный. Произносится [усный] … Словарь трудностей произношения и ударения в современном русском языке

    I прил. Не закрепленный письменно. II прил. соотн. с сущ. уста, связанный с ним (в анатомии) Толковый словарь Ефремовой. Т. Ф. Ефремова. 2000 … Современный толковый словарь русского языка Ефремовой

Первомайский филиал

МОУ Подбельской СОШ

Похвистневского района

Самарской области

План – конспект внеклассного мероприятия

во 2 классе

«Клуб весёлых математиков»

Учитель: Тихомирова Т.П.

с. Первомайск

2008/2009 учебный год

Клуб весёлых математиков.

Ведущий: Друзья, на КВМ весёлый

Мы снова в гости к вам пришли.

Мы очень ждали этой встречи

И постарались, как могли.

(Выходит команда БАМ)

Вас приветствует команда БАМ.

Наш девиз: «Будем активно мыслить».

Капитан команды : Привет, друзья! Сегодня в школе

Большой и интересный день,

Мы приготовили весёлый

Наш школьный вечер КВМ.

КВМ – соревнованье

В остроумии и знании.

Чтоб этот вечер КВМ

Вам по душе пришёлся всем,

Нужно знанья иметь прочные,

Быть весёлым и находчивым.

А этот КВМ сейчас

Науке посвящается,

Что математикой у нас

С любовью называется.

Она поможет воспитать

Такую точность мысли,

Чтоб в нашей жизни всё познать,

Измерить и исчислить.

(Выходит команда ПУПС)

Вас приветствует команда ПУПС.

Наш девиз: «Пусть ум победит силу».

Капитан команды: мы весёлые ребята,

И не любим мы скучать.

С удовольствием мы с вами

В КВМ будем играть.

Мы отвечаем дружно,

И здесь сомнений нет.

Сегодня будет дружба

Владычицей побед.

И пусть острей кипит борьба,

Сильней соревнование.

Успех решает не судьба,

А только наши знания.

И, соревнуясь вместе с вами,

Мы остаёмся друзьями.

Итак, пусть борьба кипит сильней

И наша дружба крепнет с ней.

Разминка команд.

(Каждая команда получает по 3 задания)

(Для команды БАМ)

  1. Найди существенное.

Сумма (минус, плюс, равенство, слагаемое, делитель)

Геометрия (фигура, точка, свойства, теорема, уравнение).

  1. Проверка определений.

Дав определение тому или иному понятию, вы должны быть уверены в том, что оно верно. Правильность можно проверить, переставив местами условие и заключение в определении. Если при перемене мест предложение остаётся верным, то определение нами дано верно.

Проверить правильность определений:

Квадрат – это четырёхугольник.

Сложение – это математическое действие.

а) 2,4, 7, 9, 6;

б) 13, 18, 25, 33, 48, 57.

(Для команды ПУПС)

  1. Найди существенное.

Треугольник (плоскость, вершина, центр, сторона, перпендикуляр)

Разность (вычитание, плюс, минус, сумма, слагаемое)

  1. Поверить определения:

Круг – это геометрическая фигура.

Чётное число – это натуральное число.

  1. Назвать группу чисел одним словом:

а) 2, 4, 8, 12, 44, 56;

б) 1, 13, 77, 83, 95.

Соревнование «шестиклеточный логион»

(Для команды БАМ)

а) 6 1 7

14 4 ?

б) 9 2 11

26 8 ?

в) 35 7 5

48 8 ?

г) 92 46 2

72 ? 8

(Для команды ПУПС)

а) 16 7 9

36 11 ?

б) 44 18 26

33 14

в) 32 8 4

56 ? ?

г) 22 4 88

12 ? 96

Поработаем на ЭВМ.

На доске изображена ЭВМ. ЭВМ выполняет все четыре арифметических действия. На табло появилось число 36. какое число было заложено в машину?

Х 3 -19 +10: 9 +86: 3 +

← 2: 41+

Пока команда находит нужное число, болельщики отгадывают шарады.

Перва буква есть в слове «сурок»,

Но её нет в слове «урок».

Средь умных ребят ты найдёшь у любого.

Две буквы у мамы мозьми без смущенья,

А в целом получишь итог от сложения. (Сумма)

Предлог стоит в моём начале,

В конце же – загородный дом.

А целое мы все решали

И у доски и за столом. (Задача)

В начале слова – устный счёт,

Затем согласный звук идёт.

Жёсткий волос животных потом,

А в целом результат найдём. (Разность)

Наборщик

Составьте как можно больше слов из букв, входящих в данное слово. Какая команда быстрее и больше составит слов.

Для команды БАМ – сложение

Для команды ПУПС – вычитание

Решение задач

(Для команды БАМ)

Мама – сороконожка купила трём дочкам сапожки. Сколько всего пар сапожек пришлось купить маме?

Чтобы найти свою невесту, принц заставил своих солдат обойти 12 населённых пунктов. В каждом из них было по 40 девушек. Сколько всего девушек примеряло туфельку?

Как пятью единицами записать число 100? (111 – 11 =100)

Для команды ПУПС

У зайца было 4 сыночка и лапочка – дочка. Как-то раз он принёс домой мешок с 60 яблоками. Сколько яблок досталось каждому из зайчат, если заяц разделил их между ними поровну?

Храбрый портняжка одним ударом убил 7 мух. Сколько всего мух он убил, если сделал 11 ударов?

Ребята со своими собаками пошли гулять. Один дед говорит им: «Смотрите-ка, ребята, голов не растеряйте и ног не поломайте». Один мальчик сказал: «А у нас всего 36 ног и 13 голов, так что не потеряемся». Сколько же собак, а сколько мальчиков? (5 собак и 8 мальчиков)

Сказочные задачи.

Никому неизвестное число увеличилось вдвое, посмотрело на себя в зеркало и увидело там 811. каким было число до увеличения?

В лифте кнопка первого этажа находится на высоте 1м20см от пола. Кнопка каждого следующего этажа выше предыдущего на 10 см. до какого этажа сможет доехать в лифте маленький мальчик, рост которого 90 см, если, подпрыгивая, он может дотянуться до высоты, превышающий его рост на 45 см?

Красная Шапочка помогала маме печь пирожки для бабушки. Мама замесила тесто из 2 стаканов муки и сказала, что должно получиться 30 пирожков. Красная Шапочка попросила испечь 60 пирожков. Сколько муки для этого потребуется?

Капитан Флирт решил вознаградить своих пиратов. У него было 720 монет. Половину он решил оставить себе, а остальные монеты разделил поровну между 9 пиратами. Сколько монет получил каждый пират?

Задачи на смекалку.

У мальчика Саши столько сестёр, сколько и братьев, а у его сестры вдвое меньше сестёр, чем братьев. Сколько всего братьев и всех сестёр? (4 брата и 3 сестры)

На трёх деревьях сидели 36 галок. Когда с первого дерева на второе перелетели 6 галок, а со второго на третье – 4 галки, то на всех трёх деревьях галок оказалось поровну. Сколько галок первоначально сидело на каждом дереве? (18, 10, 8)

Игоря спросили, сколько ему лет. Он подумал и сказал: «Я втрое моложе папы, но зато вдвое старше брата Витальки». А Виталька прибежал и сказал, что он на 35 лет моложе папы. Сколько лет Игорю, Виталику и папе?

14 лет Игорю, 7 лет Виталику, 42 года папе)

Внук спросил дедушку: «Сколько тебе лет?». ДЕДУШКА ОТВЕТИЛ: «Если я проживу ещё половину того, что я прожил, да ещё год, то инее будет 100 лет». Сколько лет дедушке? (66 лет)

Учитель : Тихомирова Т.П.