В чем особенность переменных звезд. Виды, типы и общая классификация переменных звезд. Что такое переменные звезды

ПЕРЕМЕННЫЕ ЗВЕЗДЫ

Что такое переменные звезды?

В отличие от Луны с переменностью ее фазы или планет, движущихся на фоне звезд, сами звезды в античное время считались постоянными и неподвижными, в отличие от суетливой жизни на Земле. Время от времени хроники регистрировали появление "звезды-гостьи", которую бы в наше время назвали "Новой" или "Сверхновой", что свидетельствовало, что и в звездном мире не все так постоянно. Однако, современное представление о различных типах переменных звезд было заложено открытием в 1596г. Фабрициусом звезды, названной "Мира" (т.е. "удивительная") Кита, которая показывала периодичекое появление и исчезновение, а также периодических ослаблений блеска у звезды Алголь (бета Персея), открытых первоначально Монтанари, а потом переоткрытых в 1782 году Джоном Гудрайком и интерпретированных им затмениями одной звезды другой.

"Переменной называется звезда, которая показывает изменение своих характеристик за время ее исследований на заданном уровне точности". Это определение показывает не только факт переменности звезды, но и субъективные условия ее наблюдения. Амплитуда изменения блеска для разных звезд находится в диапазоне от тысячных звездной величины до двадцати звездных величин, а характерное время изменения блеска составляет от долей секунды до тысяч лет. Исходя из современных представлений о структуре звезд, все звезды эволюционируют, меняют свои характеристики со временем. Однако, по "презумпции невиновности", "пока не доказана вина"="не подтверждена переменность", звезда переменной не считается и в Общий каталог переменных звезд (ОКПЗ) не заносится. В настоящее время в ОКПЗ занесено около 43 тысячи переменных звезд, еще примерно впятеро больше содержится в других каталогах (VSX и др.). Однако, пока не будет подтверждены факт и тип их переменности, они считаются "заподозренными в переменности" и не имеют собственного названия.

Причин изменений блеска очень много. Основные группы - это физически переменные звезды (характеристики которых меняются, например, эруптивные и пульсирующие) и геометрически переменные - т.е. системы с несимметричной диаграммой направленности излучения, которые поворачиваются к наблюдателю в результате вращения (затменные двойные системы, незатменные системы с асимметричными компонентами). К последним, относят и звезды, периодически затмеваемые экзопланентами. В этом случае неуместно говорить "затменная двойная звезда", но вполне правильно "затменная двойная система".

Различные причины переменности приводят к различным наблюдательным проявлениям, т.е. кривым блеска (зависимость звездной величины от времени, а для периодических звезд - от фазы). Поэтому была разработана официальная система классификации, принятая в ОКПЗ. В настоящее время в ОКПЗ принято 79 типов и подтипов переменности. Классификация и описание приведены в книге: Н.Н.Самусь "Переменные звезды".

Естественно, с обнаружением новых звезд становятся известными все новые и новые объекты, которые со временем могут стать "прототипами" новых типов. Поэтому часто типы называют по имени звезд (напр., "мирида" = звезда типа Миры Кита, "лирида" = звезда типа RR Лиры, "цефеида" = звезда типа дельта Цефея) или двойственно, например, "карликовая новая" = звезда типа U Близнецов, "поляр" = звезда типа AM Геркулеса, "промежуточный поляр" = звезда типа DQ Геркулеса, "рентгеновский пульсар" = звезда типа HZ Геркулеса, "вспыхивающая" = звезда типа UV Кита и т.д.

Систему классификации ОКПЗ можно сравнить со справочником или учебником - изменения в нее вносятся после того, как в отдельных статьях или группах статей обосновывается необходимость введения новых типов. Например, в очереди на рассмотрение "асинхронные поляры" = звезды типа BY Жирафа, "магнитные карликовые новые" = звезды типа DO Дракона, "импакторы" = звезды типа V361 Лиры и др.

Зачем наблюдать переменные звезды?

Вселенная является лабораторией, в которой происходят все возможные процессы, которые разрешены законами Природы. Не имея возможности проводить эксперименты в космических масштабах, ученые наблюдают планеты, звезды и звездные системы. Такие исследования позволяют не только уточнять имеющиеся физические модели, но и обобщать их при экзотически гигантских расстояниях, давлениях, плотностях, температурах. Список астрономических открытий, которые привели к внедрению в навигацию, науку и технику, огромен. Астрономия, математика и физика и ряд других наук находятся на переднем крае естествознания, взаимно дополняя и обобщая друг друга.

Переменные звезды - одни из наиболее интересных классов космических объектов, которые находятся на активных стадиях эволюции, и потому проявляют действие большего числа физических законов в разных комбинациях.

Их необходимо систематически наблюдать на протяжении десятилетий для того, чтобы изучать историю их поведения. Однако, число переменных звезд значительно превышает количество профессиональных астрономов и тем более количество телескопов. Кроме того, трудно представить столетия наблюдений какого-либо объекта одним из астрономов на одном телескопе.

Таким образом, астрономы-любители вносят реальный и весьма полезный вклад в науку своими визуальными, фотографическими, фотоэлектрическими и ПЗС наблюдениями переменных звезд. Эти данные важны для анализа поведения переменных звезд, планирования наблюдений некоторых звезд с наземных и космических обсерваторий, компьютеризированных теоретических моделей.

Исследование переменных звезд очень важно для исследования характеристик звезд и их эволюции. Часть этой информации было бы трудно или невозможно получить другими методами. Во многих случаях характер переменности (часто состоящей из нескольких компонент) позволяет выбрать между моделями.

Переменные звезды продолжают играть важную роль в нашем понимании Вселенной. Вспышки Сверхновых приводят к обогащению тяжелыми элементами межзвездного пространства, что позволяет образовываться планетам с твердыми оболочками. Вряд ли жизнь могла бы образоваться, если бы в протозвездном облаке не было элементов тяжелее водорода и гелия. Но и взрывы очень близких Сверхновых вблизи Солнечной системы могут катастрофически повлиять на жизнь на Земле. Наблюдения Сверхновых привели нас к осознанию того, что расширение Вселенной ускоряется, а не замедляется, как можно было ожидать.

Новые звезды показывают регулярные вспышки с интервалом от десятков до сотен тысяч лет, что объясняется термоядерными взрывами в их атмосферах по мере накопления падающего на них вещества, богатого водородом. Затменные двойные звезды являются наилучшими лабораториями для определения не только температур, но и масс и радиусов. Цефеиды сыграли важную роль в определении расстояний до далеких галактик и определения возраста Вселенной. Переменные звезды типа Миры Кита дают нам возможность заглянуть в будущее развитие нашей собственной звезды, Солнца. Аккреционные диски катаклизмических переменных помогают нам понять поведение дисков на еще больших масштабах, как и процессы внутри ядер активных галактик с сверхмассивными черными дырами. Даже поиск внеземной жизни связан с исследованием переменных звезд. Транзиты внесолнечных планет помогают понять процессы образования планет и самой жизни. А, как мы знаем, тяжелые химические элементы, необходимые для жизни, возникают при термоядерных реакциях в ядрах звезд.

Что и как наблюдать?

В предыдущих выпусках "Одесского Астрономического Календаря" были приведены карты окрестностей ярких переменных звезд, доступных для любительских наблюдений в бинокль или небольшой телескоп. Методы их визуальных и фотографических наблюдений были описаны в классических книгах Владимира Платоновича Цесевича "Что и как наблюдать на небе" и "Переменные звезды и их наблюдение". В последние годы увеличилось количество личных обсерваторий, оснащенных телескопами с диаметром зеркала 15-40 см и ПЗС матрицами, что позволяет наблюдать слабые объекты. Для обработки таких изображений различными авторами разработано несколько программ, которые работают под операционными системами Linux (IRAF, MIDAS и др.) и Windows (бесплатные MuniPack, WinFits, IRIS, популярная коммерческая MaximDL и др.). Методика таких наблюдений описана в книге: А.В.Миронов "Прецизионная фотометрия".

Результаты наблюдений представляют ценность для астрономического сообщества, когда они правильно и тщательно обработаны, и приведены в формате, принятым в том или ином сообществе. По терминологии, астрономы делятся на профессионалов (которые работают в специальных учреждениях и получают за научную работу зарплату) и любителей (которые зарабатывают другими видами деятельности, но занимаются астрономией "по любви" в свободное от работы время). Есть еще одно слово "дилетант", которое свидетельствует о низком уровне подготовки или малом опыте, и оно может относиться и к некоторым любителям, и к некоторым профессионалам. Популяризаторская деятельность ставит своей целью инициировать переход от дилетантов к любителям, а от них и к профессионалам. В данной статье мы рассматриваем возможные направления деятельности любителей, которые могут принести реальный вклад в науку.

Для публикации патрульных визуальных (и реже фотографических или ПЗС) наблюдений используется стандартный формат - время в Юлианских датах (инструкция и таблица приведены в предыдущих выпусках ОАК), звездная величина и трехбуквенный код наблюдателя (напр., VER= Michel Verdenet, Франция). Таблицы таких измерений блеска для каждой из звезд присылают в базы данных ассоциаций наблюдателей переменных звезд. Ассоциации созданы практически во всех развитых странах, однако, с учетом роста международной кооперации, идет тенденция использования международных баз данных, объединяющих результаты наблюдений из многих стран.

Наибольшей в мире является American Association of Variable Stars Observers (AAVSO, Американская ассоциация наблюдателей переменных звезд), в которой насчитывается в настоящее время более 22 миллионов индивидуальных оценок блеска около 10 тысяч переменных звезд разных типов, и это число увеличивается в последнее время примерно на полмиллиона в год. Отметим, что в 2011 году AAVSO отпраздновали свой 100-летний юбилей, и мы поздравляем коллег с этим знаменательным событием.

Согласно недавнему рейтингу AAVSO, украинские наблюдатели занимали 11-е место по количеству наблюдений, присланных в международную базу данных этой общественной организации. О важности таких наблюдений для профессиональной науки свидетельствует тот факт, что в США данная база данных находится в знаменитом Гарвардском университете. Аналогичные базы данных в других странах также помещаются на университетские интернет-серверы (Страсбург, Франция; Киото, Япония; Брно, Чехия и др.).

Весьма важными являются "новые наблюдения" на основании "старых фотонегативов". Новооткрытую звезду можно исследовать и "в прошлом", используя полученные ранее патрульные наблюдения. Наибольшая по численности в СНГ (и третья в мире) коллекция, насчитывающая более 100 тысяч негативов, хранится в "Стеклотеке" Астрономической обсерватории Одесского национального университета, и используется профессионалами и любителями, в том числе, по проекту "Украинская виртуальная обсерватория". Великолепная коллекция негативов с существенно более слабыми звездами (и соответственно, меньшим полем зрения) получена в Государственном астрономическом институте им. П.К.Штернберга при Московском государственном университете.

Другое важное направление, которое основано на результатах обработки исходных наблюдений - это моменты минимумов затменных двойных звезд или максимумов пульсирующих. Такое различие связано с тем, что в максимуме блеска звезда ярче, и большее число звезд доступно для наблюдений с одним и тем же инструментом. Кроме того, для большинства звезд, максимумы более узкие, чем минимумы, поэтому требуют меньшую продолжительность наблюдений и определяются с лучшей точностью. Для затменных звойных звезд, наоборот, более узкими и явно выраженными являются именно затмения. Для определения используются несколько методов. Один из них, использующий аппроксимацию кривой блеска полиномом с выбором статистически оптимальной степени, реализован в программе VSCalc (автор В.В.Бреус).

Разные экстремумы используются и для весьма популярных исследований промежуточных поляров - определение максимумов более быстрых колебаний блеска, связанных с вращением магнитного белого карлика, но минимумов орбитальной переменности, которые обычно связаны с полными или частными затмениями. Для определения сглаживающей кривой с использованием мультипериодической мультигармонической аппроксимации с учетом полиномиального тренда, рекомендуем использовать программу MCV (авторы И.Л.Андронов и А.В.Бакланов).

Использование экстремумов позволяет проводить исследования так называемых "O-C" диаграмм - зависимостей от времени или номера цикла отклонений моментов экстремумов от теоретически предсказанных значений (напр., по простейшей формуле T E =T 0 +P . E, где T E - теоретический момент времени, соответствующий номеру цикла E, P- период и T 0 - начальная эпоха). Проводя математическое моделирование этой наблюдательной зависимости, можно уточнять значения периода и начальной эпохи, исследовать возможные "вековые" изменения периода (связанные в двойных системах с перетеканием вещества, магнитным или немагнитным звездным ветром, гравитационным излучением, в пульсирующих с медленным изменением структуры звезды) или периодические, связанные с наличием в системе третьего (и более) компонента. Существует несколько электронных баз данных моментов экстремумов, созданных в различных организациях - B.R.N.O., BAV, BBSAG, AAVSO, GEOS и др. Наиболее полные результаты исследований в бумажном виде были опубликованы 6-томной монографии (авторы Й.Крейнер (Польша), И.С.Нха, Ч.Х.Ким (Корея)). Однако, в последующее десятилетие основными стали электронные публикации.

Хотя составители стараются использовать всю доступную литературу, некоторые различия все же есть. Если Вы заинтересовались определением моментов экстремумов, то желательно посылать эти данные либо самостоятельно в журнал в соответствии с правилами для авторов (один из последних примеров такой компиляции в журнале "Open European Journal on Variable Stars" N 137), либо в одну или несколько из указанных баз данных, чтобы войти в очередную регулярную статью - отчет.

Как и в случае публикации исходных наблюдений, сравнительно редко можно сделать открытие на основании небольшого числа собственных данных.

Моменты экстремумов вместо оригинальных наблюдений имеют некоторые преимущества - компактность (вместо десятков наблюдений блеска одно значение) и подготовка предварительных значений для последующего анализа. Однако, развитие компьютерных методов математического моделирования с использованием различных алгоритмов позволило бы переобработать наблюдательные данные другим исследователям, поэтому таблица значений блеска была бы желательна.

Таким образом, есть широкая возможность выбора типа наблюдений - патрульные (одна оценка блеска для долгопериодических звезд, напр. мирид, полуправильных, цефеид, когда за всю ночь или за вечер можно сделать оценки блеска нескольких единиц или десятков звезд), или временные ряды (одна или несколько звезд в ночь с продолжительностью ряда от нескольких часов до всей ночи). Последнее стало весьма популярным, поскольку не требует наведения телескопа на разные объекты. Такой тип наблюдений требуют короткопериодические объекты - катаклизмические двойные звезды (классические и промежуточные поляры, карликовые новые, новоподобные) - желательно несколько ночей наблюдений за сезон, затменные звезды, а также мультипериодические пульсирующие переменные звезды типа RR Лиры с эффектом Блажко и типа Дельта Щита.

Конечно, к наблюдениям следует готовиться. Посмотреть, какие из заинтересовавших Вас звезд будут ночью достаточно высоко над горизонтом, чтобы атмосферное поглощение не поглощало значительную часть света. Некоторые исследователи стараются не наблюдать, когда звезда ниже 30 градусов над горизонтом. "Охотникам за экстремумами" следует рассчитать эфемериды - т.е. теоретические значения моментов времени, вблизи которых выбрать интервал времени наблюдений (чтобы охватить восходящую и нисходящую части кривой блеска если не полностью, то хотя бы частично). Кроме того, моменты времени "по эфемериде" приведены на центр Солнца (гелиоцентрические) или центр Солнечной системы (барицентрические), но мы наблюдаем на Земле (время геоцентрическое), поэтому сигнал может наблюдаться раньше или позже из-за того, что свет проходит расстояние, равное радиусу земной орбиты, за 8 минут 18 секунд. Более подробно об этом эффекте "гелиоцентрической поправки" можно прочитать в литературе, а вычислить, например, при помощи программы MCV.

Поскольку предполагается, что возможны изменения периодов, то наблюдаемый момент может быть смещен относительно вычисленного. Поэтому интервал времени наблюдений не должен быть слишком узким. Если объектов несколько, то распределить время на соответствующие интервалы. Для катаклизмических и мультипериодических звезд используется кривая блеска, поэтому желательно наблюдать все доступное время.

Что именно наблюдать в ближайшие ночи, зависит от пристрастий исследователя, времени года, широты места наблюдения и координат звезды, ее блеска, амплитуды и точности измерений. По приведенным ниже интернет-ссылкам можно найти списки и карты окрестностей объектов, предлагаемых различными организациями - затменных двойных, промежуточных поляров, пульсирующих и других переменных звезд.

Среди множества объектов, обнаруженных в мире, выделяется группа новых переменных, которую открыла в Одессе студентка (ныне аспирантка) Наталья Вирнина. За 2 года по ее собственным наблюдениям с использованием ПЗС-матрицы она открыла более 60 новых периодических (затменных и пульсирующих) переменных звезд. 32 из них представлены в статье, приведенной в списке интернет-ссылок. Хотя основные характеристики уже определены, новые наблюдения в различных фильтрах были бы полезны как для уточнения периода и начальной эпохи, так и для определения температур по показателям цвета.

Как оформлять и где публиковать результаты?

Публикации о переменных звездах можно разделить на несколько категорий - аналитические статьи, содержащие разностороннее исследование; сообщения об открытиях, содержащие необходимый минимум информации; сообщения об открытии непериодических интересных событий в известных звездах; таблицы экстремумов блеска; таблицы индивидуальных значений блеска и, возможно, других характеристик. Наиболее сложными являются аналитические статьи, однако, они невозможны без получения исходных наблюдений. Поэтому каждая из этих категорий по-своему важна и привлекает своих авторов.

"Законодателями мод" в наименовании и классификации переменных звезд является группа, занимающаяся по поручению Международного Астрономического Союза разработкой "Общего каталога переменных звезд" (ОКПЗ=GCVS, General Catalogue of Variable Stars). После Победы в Великой отечественной войне, это право было передано в Советский Союз, и авторский коллектив работает в Москве на базе Государственного астрономического института им. П.К.Штернберга (Московский государственный университет) и Астрономического института Российской академии наук. Почти 30 лет работой руководит доктор физико-математических наук Николай Николаевич Самусь.

Кроме того, издаются журналы "Переменные звезды" (ПЗ) и "Переменные звезды. Приложение" (ПЗП), в которых могут быть опубликованы важные научные результаты не только профессионалов, но и любителей.

Естественно, что каждый журнал предлагает "свои правила для авторов", однако, существуют минимальные требования по характеристикам звезды или звезд, которые обязательно должны войти в статью. С учетом колоссального количества объектов, была разработана электронная форма, в которой авторы заполняют необходимые поля, и после этого текст статьи создается автоматически. Для журнала "Переменные звезды. Приложение", это: название заметки,имена и фамилии авторов, страна, город, организация, официальное название переменной звезды по ОКПЗ или по NVS (Каталог звезд, заподозренных в переменности), а также названия по другим каталогам, координаты, тип переменности, пределы изменения блеска (максимум и минимум) и фотометрическая система, для периодических звезд - период и начальная эпоха (минимум блеска затменных и максимум блеска пульсирующих), графические файлы с изображением кривой блеска и окрестностей звезды и соответствующие подписи, файл с таблицей наблюдений, замечания и комментарии в произвольной форме, ссылки на другие публикации. Аналогичные правила и для публикаций статей о переменных звездах в других журналах, однако, эта необходимая информация приводится в структурированном тексте самой статьи, а таблицы наблюдений все чаще публикуются отдельно в виде файлов - приложений, а не тексте статьи.

Последнее "бумажное" издание ОКПЗ вышло в 1985-1987гг., и к нему регулярно публикуются дополнения в журнале "Information Bulletin on Variable Stars" ("Информационный бюллетень по переменным звездам", Будапешт, Венгрия), который является официальным изданием Международного астрономического союза. В последние годы этот бюллетень (обычно объемом до 2 или 4 страниц) принимает результаты исследований переменных звезд, полученных только по высокоточным ПЗС или фотоэлектрическим наблюдениям, однако, не принимаются более статьи на основе фотографических или визуальных оценок блеска. Краткие сообщения об открытиях новых переменных звезд группируются в каждый сотый номер с указанием авторов только внутри сообщения. Несмотря на сжатый научный характер информации, это издание "отпугивает" любителей малодоступностью информации о самих авторах открытий.

Существуют еще множество журналов в разных странах (Journal of the AAVSO (США); Journal of the British Astronomical Association, The Astronomer (Великобритания); Bulletin de l"AFOEV (Франция); BAV Rundbrief (Германия); BBSAG (Швейцария); GEOS (Италия)) и др., которые публикуют результаты наблюдений переменных звезд и иногда других астрономических объектов.

Для того, чтобы попытаться объединить любителей и профессионалов, несколько лет назад был организован международный "Open European Journal on Variable Stars" ("Открытый европейский журнал о переменных звездах"), официально зарегистрированный в Чехии. Журнал публикует на английском языке результаты ПЗС, фотоэлектрических и реже фотографических наблюдений переменных звезд. Статьи рецензируются 7 членами редколлегии, и статья публикуется (часто после доработки и учета замечаний рецензентов) при наличии более 70% голосов. В журнале обычно публикуются более подробные исследования звезд, чем в других журналах. Члены редколлегии представляют не только европейские страны (Чехия, Словакия, Швейцария, Италия, Германия, Украина), но и США. А публикуют свои результаты также ученые Кореи, США, Аргентины, Австралии и других неевропейских стран.

Однако, самыми быстрыми по скорости публикаций являются электронные циркуляры, рассылаемые некоторыми обществами. Наиболее используемыми являются циркуляры IAU, AAVSO, CBA (США), а особенно японский "VSNET" ("Сеть переменных звезд"), который подразделяется на более десятка циркуляров по интересом (chat - обсуждение; alert - срочное сообщение; campaign-dn - кампании по карликовым новым, campaign-ip - кампании по промежуточным полярам, obs - таблицы наблюдений и т.д.). Особенностью электронных циркуляров является скорость - они доходят до подписчиков за несколько секунд, со скоростью электронной почты. Однако, лишь некоторые из циркуляров оформлены в виде статей. В основном, они содержат краткие сообщения об открытиях непериодических явлений в уже известных звездах (вспышки, ослабления блеска, возникновение и прекращение временных квазипериодических или периодических изменений), и, существенно реже, открытиях новых переменных звезд. Такие сообщения информируют других потенциальных наблюдателей, которые могут своевременно корректировать программу своих наблюдений и продолжать наблюдения на разных долготах.

Во избежание недоброкачественных рассылок посторонними авторами, письма от авторов посылаются одному из "членов редколлегии", который может отредактировать и послать сообщение от своего имени с указанием автора наблюдений или открытий. Наиболее активным участникам дается право самим посылать свои сообщения для срочности. Это наиболее быстрый способ общения, поскольку информация об открытии (новой переменной звезды, вспышки, изменения характера переменности, появление и исчезновение сверхгорбов) доходит до адресатов практически мгновенно, и каждый наблюдатель может принять для себя решение о том, наблюдать ли ему ранее запланированные звезды или навести свой телескоп на звезду, именно сегодня (и, может быть, в несколько последующих ночей) показывающую интересное поведение.

Следует отметить, что такие сообщения от любителей используют и профессионалы. Есть специальный термин "target of opportunity" ("цель от события") при наблюдениях на больших наземных телескопах или даже космических телескопах. При получении наблюдательного времени, есть только некоторая вероятность, что произойдет в звезде то или иное событие (напр., вспышка). Поэтому заявка подается на несколько потенциально интересных объектов. А вот на какой из них наводить телескоп - зависит от состояния объекта. Поэтому профессионалы направляют информацию в электронные циркуляры, доступные любителям с хорошими телескопами. Обычно ее называют "Call for observations" ("приглашение к наблюдениям"), где описывают, чем та или иная звезда интересна, и приглашают сообщать срочно в случае обнаружения начала вспышки и присылать наблюдения в последующем.

Как уже отмечалось, звезда получает официальное название, как переменная, только после занесения в "Общий каталог переменных звезд". Для более быстрого централизованного обозначения, активно используется "Variable Stars indeX".

Наличие нескольких взаимодополняющих журналов способствует свободе выбора и созданию "индивидуальности" каждого из них. Еще раз отметим, что при публикации следует придерживаться как правил журнала, так и достижения необходимого минимума информации. Например, при открытии следует указывать хотя бы необходимо минимальные параметры, которые вносятся в "Общий каталог переменных звезд" - координаты; пределы изменения блеска с указанием фотометрической системы; тип переменности; для периодических звезд - период и начальную эпоху (максимум для пульсирующих звезд и минимум для затменных), асимметрию M-m для пульсирующих звезд (отношение интервала времени от минимума до ближайшего максимума к периоду в процентах) или ширину минимума D для затменных двойных звезд (отношение продолжительности минимума к периоду в процентах). Именно такой стиль характерен для журнала "Переменные звезды. Приложение" и каждого сотого номера "Information Bulletin on Variable Stars".

Более полезным для других авторов, которые, возможно, захотят использовать опубликованные данные с своими собственными, является стиль добавления карты окрестностей с указанием звезд сравнения, их характеристик (координаты, названия по каталогам, блеск в разных фотометрических системах), а также таблиц исходных наблюдений. В былые времена таблицы значений блеска публиковали в печатном виде в журналах. В последние пару десятилетий большинство журналов переходит на смешанную "бумажно-электронную" форму, полностью публикуя статьи в электронном виде и распечатывая лишь небольшой тираж, а приложения (таблицы наблюдений и их результатов) публикуя лишь в электронном виде. Такой подход позволяет публиковать очень длинные таблицы. Но, если кому-то надо их использовать (например, чтобы применить другой метод математической обработки), то удобнее использовать готовый файл, чем сканировать и распознавать цифры из напечатанного журнала. Такой стиль используется в наиболее престижных журналах "The Astrophysical Journal", "Astronomy and Astrophysics" и др. а также, в специализированных журналах по переменным звездам IBVS и особенно OEJV.

pochta. ru/ Gamow-2010-175-177- Virnina. pdf - статья с характеристиками 32 новых переменных звезд, которые открыла в Одессе, которые желательно продолжать наблюдать.

http:// asd. gsfc. nasa. gov/ Koji. Mukai/ iphome/ - сайт по промежуточным полярам

ftp://ftp.aavso.org/public/calib/ - многоцветные BVRI стандарты звездных полей Arne Henden

Переменные звезды – одно из наиболее любопытных явлений на небе, доступное для наблюдений невооруженным глазом. Мало того, здесь есть простор для научной деятельности простого любителя астрономии, и есть даже возможность совершить открытие. Переменных звезд сегодня известно очень много, и наблюдать за ними довольно интересно.

Переменные звезды – это звезды, со временем меняющие свою яркость, то есть блеск. Конечно, этот процесс занимает какое-то время, а не происходит буквально на глазах. Однако если периодически наблюдать за такой звездой, изменения её блеска станут отчетливо заметны.

Причинами изменения яркости могут быть разные причины, и в зависимости от них все переменные звезды поделены на разные типы, которые рассмотрим ниже.

Как открыли переменные звезды

Всегда считалось, что яркость звезд – нечто постоянное и незыблемое. Вспышка или просто появление звезды с древних времен относили к чему-то сверхъестественному и это явно имело какой-то знак свыше. Все это можно легко увидеть по тексту той же Библии.

Однако и многие века назад люди знали, что некоторые звезды все-таки могут менять свою яркость. Например, бета Персея не зря названа Эль Гулем (сейчас она называется Алголем), что в переводе означает не что иное, как «звезда дьявола». Названа она так из-за своего необычного свойства менять яркость с периодом чуть меньше 3 суток. Эту звезду как переменную открыл в 1669 году итальянский астроном Монтанари, а в конце XVIII века изучал английский любитель астрономии Джон Гудрайк, и он же 1784 году открыл вторую переменную того же типа – β Лиры.

В 1893 году в обсерваторию Гарварда пришла работать Генриетта Льюит. Её задачей было измерение яркости и каталогизация звезд на фотопластинках, накопленных в этой обсерватории. В итоге Генриетта за 20 лет обнаружила более тысячи переменных звезд. Особенно хорошо она исследовала пульсирующие переменные звёзды – цефеиды, и сделала некоторые важные открытия. В частности, она открыла зависимость периода цефеиды от ее яркости, что позволяет точно определять расстояние до звезды.


Генриетта Льюитт.

После этого, с бурным развитием астрономии, были открыты тысячи новых переменных.

Классификация переменных звёзд

Все переменные звёзды меняют свой блеск по разным причинам, поэтому была разработана классификация по этому признаку. Сначала она была довольно простой, но по мере накопления данных все более усложнялась.

Сейчас в классификации переменных звезд выделено несколько больших групп, каждая из которых содержит в себе подгруппы, куда относятся звезды с одинаковыми причинами переменности. Таких подгрупп очень много, поэтому коротко рассмотрим основные группы.

Затменно-переменные звёзды

Затменно-переменные, или просто затменные переменные звезды меняют свою яркость по очень простой причине. На самом деле они представляют собой не одну звезду, а двойную систему, притом довольно тесную. Плоскость их орбит расположена таким образом, что наблюдатель видит, как одна звезда закрывает собой другую – происходит как-бы затмение.

Если бы мы находились немного в стороне, то ничего подобного не смогли бы увидеть. Также, возможно, существует множество таких звезд, но мы не видим их как переменные, потому что плоскость их орбит не совпадает с плоскостью нашего взгляда.

Видов затменных переменных звезд также известно немало. Один из самых известных примеров – Алголь, или β Персея. Эта звездабыла открыта итальянским математиком Монтанари в 1669 году, а исследовал её свойства Джон Гудрайк, английский любитель астрономии, в конце XVIII века. Звезды, образующие эту двойную систему, нельзя увидеть по отдельности – они расположены настолько тесно, что период обращения их составляет всего 2 суток и 20 часов.

Если посмотреть на график изменения блеска Алголя, то можно увидеть в середине небольшой провал – вторичный минимум. Дело в том, что одна из компонент ярче (и меньше), а вторая – более слабая (и больше по размерам). Когда слабая компонента закрывает яркую, мы видим сильное падение блеска, а когда яркая закрывает слабую, падение блеска не очень выражено.


В 1784 году Гудрайк открыл другую затменную переменную – β Лиры. Её период составляет 12 суток 21 час и 56 минут. В отличие от Алголя, график изменения блеска у этой переменной более плавный. Дело в том, что здесь двойная система очень тесная, звезды настолько близко друг к другу, что имеют вытянутую, эллиптическую форму. Поэтому мы видим не только затмения компонент, но и изменения яркости при повороте эллиптических звезд широкий или узкой ст


График изменения блеска β Лиры.

ороной. Из-за этого изменение блеска здесь более плавное.

Еще одна типичная затменная переменная – W Большой Медведицы, открытая в 1903 году. Здесь на графике виден вторичный минимум почти такой же глубины, как и основной, а сам график плавный, как у β Лиры. Дело в том, что здесь компоненты практически одинаковы по размерам, также вытянуты, и настолько тесно расположены, что их поверхности почти соприкасаются.


Бывают и другие типы затменных переменных звезд, но они встречаются реже. Также сюда относятся эллипсоидальные звезды, которые при вращении поворачиваются к нам то широкой, то узкой стороной, из-за чего их блеск меняется.

Пульсирующие переменные звёзды

Пульсирующие переменные звезды – большой класс объектов такого рода. Изменения блеска происходит из-за изменения объема звезды – она то расширяется, то снова сжимается. Происходит это из-за нестабильности равновесия между основными силами – гравитацией и внутреннего давления.

При таких пульсациях происходит увеличение фотосферы звезды и увеличение площади излучающей поверхности. Одновременно изменяется температура поверхности и цвет звезды. Блеск, соответственно, также меняется. У некоторых типов пульсирующих переменных блеск меняется периодически, а у некоторых нет никакой стабильности – их называют неправильными.

Первой пульсирующей звездой была Мира Кита, открытая в 1596 году. Когда её блеск достигает максимума, её можно хорошо видеть невооруженным глазом. В минимуме же требуется хороший бинокль или телескоп. Период блеска Миры составляет 331.6 суток, а подобные звезды называют миридами или звездами типа ο Кита – их известно несколько тысяч.

Другой широко известный тип пульсирующих переменных – цефеиды, названных в честь звезды такого типа Ϭ Цефея. Это гиганты с периодами от 1.5 до 50 суток, иногда больше. Даже Полярная звезда принадлежит к цефеидам с периодом почти 4 суток и с колебаниями блеска от 2.50 до 2.64 зв. величины. Цефеиды также делятся на подклассы, а наблюдения их сыграли немалую роль в развитии астрономии в целом.


Пульсирующие переменные типа RR Лиры отличаются быстрым изменением блеска – их периоды составляют менее суток, а колебания в среднем достигают одной звездной величины, что позволяет легко наблюдать их визуальным методом. Этот тип переменных также разделен на 3 группы, в зависимости от асимметрии их графика блеска.

Еще более короткие периоды у карликовых цефеид – это еще один вид пульсирующих переменных. Например, CY Водолея имеет период 88 минут, а SX Феникса – 79 минут. График их блеска похож на график обычных цефеид. Они представляют большой интерес для наблюдений.

Существует еще немало видов пульсирующих переменных звёзд, хотя они не так распространены или не очень удобны для любительских наблюдений. Например, звезды типа RV Тельца имеют периоды от 30 до 150 суток, и на графике блеска имеются некоторые отклонения, отчего звезды этого типа относят к полуправильным.

Неправильные переменные звёзды

Неправильные переменные звезды также относятся к пульсирующим, но это большой класс, включающий множество объектов. Изменения их блеска очень сложные, и зачастую их невозможно предвидеть заранее.


Однако у некоторых неправильных звезд в долговременной перспективе удается выявить периодичность. При наблюдениях в течении нескольких лет, например, можно заметить, что неправильные колебания складываются в некую среднюю кривую, которая повторяется. К таким звездам, например, относится Бетельгейзе – α Ориона, у которого поверхность покрыта светлыми и темными пятнами, что и объясняет колебания блеска.

Неправильные переменные звезды недостаточно изучены и представляют большой интерес. На этом поле еще предстоит сделать много открытий.

Как наблюдать переменные звёзды

Чтобы заметить изменения блеска звезды, используются разные методы. Самый доступный – визуальный, когда наблюдатель сравнивает блеск переменной звезды с блеском соседних звезд. Затем на основе сравнения вычисляется блеск переменной и по мере накопления этих данных строится график, на котором отчетливо заметны колебания яркости. Несмотря на кажущуюся простоту, определение яркости на глаз можно производить достаточно точно, и такой опыт приобретается довольно быстро.

Методов визуального определения блеска переменной звезды существует несколько. Самые распространенные из них – метод Аргеландера и метод Нейланда-Блажко. Есть и другие, но эти довольно просты для освоения и дают достаточную точность. Более подробно про них расскажем в отдельной статье.

Достоинства визуального метода:

  • Не требуется никакого оборудования. Для наблюдения слабых звезд может понадобиться бинокль или телескоп. Звезды с блеском в минимуме до 5-6 зв. величины можно наблюдать невооруженным глазом, их тоже довольно много.
  • В процессе наблюдения происходит реальное «общение» со звездным небом. Это дает приятное ощущение единства с природой. Кроме того, это вполне научная работа, которая приносит удовлетворение.

К недостаткам можно отнести все-таки неидеальную точность, из-за чего возникают погрешности в отдельных наблюдениях.

Другой метод оценки блеска звезды – с применением аппаратуры. Обычно делается снимок переменной звезды с окрестностями, а затем по снимку можно точно определить яркость переменной.

Стоит ли астроному-любителю заниматься наблюдениями переменных звезд? Однозначно стоит! Ведь это не только одни из самых простых и доступных для изучения объектов. Эти наблюдения имеют и научную ценность. Профессиональные астрономы просто не в состоянии охватить регулярными наблюдениями такую массу звезд, а для любителя здесь даже открывается возможность внести свой вклад в науку, и такие случаи бывали.



Звезды, светимость которых меняется за относительно короткие промежутки времени, называются физическими переменными звездами . Изменения светимости этого типа звезд вызваны физическими процессами, которые происходят в их недрах. По характеру переменности различают пульсирующие переменные и эруптивные переменные. В отдельный вид выделяют также новые и сверхновые звезды, которые являются частным случаем эруптивных переменных. Все переменные звезды имеют специальные обозначения, кроме тех, которые были ранее обозначены буквой греческого алфавита. Первые 334 переменные звезды каждого созвездия обозначаны последовательностью букв латинского алфавита (например, R, S, Т, RR, RS, ZZ, AA, QZ) с добавлением названия соответствующего созвездия (например, RR Lyr). Следующие переменные обозначаются V 335, V 336 и т.д. (например, V 335 Cyg).

Физические переменные звезды


Звезды, которые характеризуются особой формой кривой блеска, отображающей плавное периодическое изменение видимой звездной величины и изменение светимости звезды в несколько раз (обычно от 2 до 6), называют физическими переменными звездами или цефеидами . Данный класс звезд был назван именем одной из типичных его представительниц – звезды δ (дельта) Цефея. Цефеиды можно отнести к гигантам и сверхгигантам спектральных классов F и G. Благодаря этому обстоятельству имеется возможность наблюдать их с огромных расстояний, в том числе и далеко за пределами нашей звездной системы - Галактики. Одна из важнейших характеристик цефеид - период. Для каждой отдельно взятой звезды он постоянен с большой степенью точности, но у разных цефеид периоды различны (от суток до нескольких десятков суток). У цефеид одновременно с видимой звездной величиной меняется и спектр. Это означает, что вместе с изменением светимости цефеид происходит и изменение температуры их атмосфер в среднем на 1500°. По смещению спектральных линий в спектрах цефеид обнаружено периодическое изменение их лучевых скоростей. Кроме того, периодически меняется и радиус звезды. Такие звезды как δ Цефея относятся к молодым объектам, которые располагаются преимущественно вблизи основной плоскости нашей звездной системы - Галактики. Цефеиды встречаются и в , но отличаются большим возрастом и несколько меньшей светимостью. Эти звезды, достигшие стадии цефеид, менее массивные, поэтому эволюционируют медленнее. Их называют звездами типа W Девы. Такие наблюдаемые особенности цефеид свидетельствуют о том, что атмосферы этих звезд испытывают регулярные пульсации. Таким образом, в них имеются условия для поддержания в течение долгого времени на постоянном уровне особого колебательного процесса.


Рис. Цефеиды


Задолго до того, как удалось выяснить природу пульсаций цефеид , было установлено существование зависимости между их периодом и светимостью. При наблюдении цефеид в Малом Магеллановом Облаке – одной из ближайших к нам звездных систем - было замечено, что чем меньше видимая звездная величина цефеиды (т.е. чем ярче она кажется), тем больше период изменения ее блеска. Эта зависимость оказалась линейной. Из того, что все принадлежали одной и той же системе, следовало, что расстояния до них практически одинаковы. Следовательно, обнаруженная зависимость одновременно оказалась зависимостью между периодом Р и абсолютной звездной величиной М (или светимостью L) для цефеид. Существование зависимости между периодом и абсолютной звездной величиной цефеид играет значительно важную роль в астрономии: благодаря ей определяют расстояния до очень далеких объектов, когда другие методы не могут быть применены.

Кроме цефеид, существуют также другие типы пульсирующих переменных звезд . Самыми известными среди них являются звезды типа RR Лиры, которые ранее назывались короткопериодическими цефеидами из-за своего сходства с обычными цефеидами. Звезды типа RR Лиры - гиганты спектрального класса А, светимость которых превышающей светимость Солнца более чем в 100 раз. Периоды звезд типа RR Лиры заключены в пределах от 0,2 до 1,2 суток, а амплитуда изменения блеска достигает одной звездной величины. Другим интересным типом пульсирующих переменных является небольшая группа звезд типа β Цефея (или типа β Большого Пса), принадлежащих преимущественно к гигантам ранних спектральных подклассов В. По характеру переменности и форме кривой блеска эти звезды напоминают звезды типа RR Лиры, отличаясь от них исключительно малой амплитудой изменения звездной величины. Периоды заключены в пределах от 3 до 6 часов, причем, как и у цефеид, наблюдается зависимость периода от светимости.



Кроме пульсирующих звезд с правильным изменением светимости существует также несколько типов звезд, характер кривой блеска которых меняется. Среди них можно выделить звезды типа RV Тельца , изменения светимости которых характеризуются чередованием глубоких и мелких минимумов, происходящим с периодом от 30 до 150 дней и с амплитудой от 0,8 до 3,5 звездных величин. Звезды типа RV Тельца принадлежат к спектральным классам F, G или К. Звезды типа m Цефея принадлежат к спектральному классу М и называются красными полуправильными переменными . Они отличаются иногда очень сильными неправильностями изменения светимости, происходящими за время от нескольких десятков до нескольких сотен суток. Рядом с полуправильными переменными на диаграмме спектр – светимость располагаются звезды класса М, в которых не удается обнаружить повторяемости изменения светимости (неправильные переменные). Ниже их находятся звезды с эмиссионными линиями в спектре плавно меняющие свою светимость за очень большие промежутки времени (от 70 до 1300 дней) и в очень больших пределах. Замечательной представительницей звезд этого типа является о (омикрон) Кита, или, как иначе называемая Мира. Этот класс звезд называют долгопериодическими переменными типа Миры Кита . Длина периода у долгопериодических переменных звезд колеблется около среднего значения в пределах от 10% в обе стороны.


Среди звезд-карликов с меньшей светимостью также имеются переменные различных типов, общее число которых примерно в 10 раз меньше количества пульсирующих гигантов. Эти звезды проявляют свою переменность в виде периодически повторяющихся вспышек, природа которых объясняется различного рода выбросами вещества, или эрупциями. Поэтому всю эту группу звезд вместе с новыми звездами называют эруптивными переменными . Стоит отметить, что среди них есть звезды самой различной природы, как находящиеся на ранних этапах своей эволюции, так и завершающие свой жизненный путь. Самыми молодыми звездами, по-видимому, еще не завершившими процесса гравитационного сжатия, следует считать переменные типа τ (тау) Тельца . Это карлики спектральных классов чаще всего F - G, в большом количестве обнаруженные, например, в туманности Ориона. Очень похожи на них звезды типа RW Возничего, принадлежащие спектральным классам от В до М. У всех этих звезд изменение светимости происходит настолько неправильно, что нельзя установить никакой закономерности.



Эруптивные переменные звезды особого типа, у которых хотя бы один раз наблюдалась вспышка (внезапное резкое увеличение светимости) не менее чем на 7-8 звездных величин, называются новыми . Обычно во время вспышки новой звезды видимая звездная величина уменьшается на 10m-13m, что соответствует росту светимости в десятки и сотни тысяч раз. После вспышки новые звезды являются очень горячими карликами. В максимальной фазе вспышки они напоминают сверхгиганты классов А - F. Если вспышка одной и той же новой звезды наблюдалась не менее двух раз, то такая новая называется повторной. Возрастание светимости у повторных новых звезд несколько меньше, чем у типичных новых. Всего в настоящее время известно около 300 новых звезд, из них около 150 появились в нашей Галактике и свыше 100 - в туманности Андромеды. У известных семи повторных новых в сумме наблюдалось около 20 вспышек. Многие (возможно даже все) новые и повторные новые являются тесными двойными системами. После вспышки новые звезды часто обнаруживают слабую переменность. Изменение светимости новой звезды показывает, что во время вспышки происходит внезапный взрыв, вызванный неустойчивостью, возникшей в звезде. Согласно различным гипотезам, эта неустойчивость может возникать у некоторых горячих звезд в результате внутренних процессов, определяющих выделение энергии в звезде, либо вследствие воздействия каких-либо внешних факторов.

Сверхновые

Сверхновыми называются звезды, которые вспыхивают так же, как новые и достигают абсолютной звездной величины от -18m до -19m и даже -21m в максимуме. У сверхновых происходит возрастание светимости более чем в десятки миллионов раз. Общая энергия, излучаемая сверхновой за время вспышки, в тысячи раз больше, чем для новых. Фотографически зарегистрировано около 60 вспышек сверхновых в других галактиках, причем нередко их светимость оказывалась сравнимой с интегральной светимостью всей галактики, в которой произошла вспышка. По описаниям более ранних наблюдений, выполненных невооруженным глазом, установлено несколько случаев вспышек сверхновых в нашей Галактике. Самой интересной из них является Сверхновая 1054 г., вспыхнувшая в созвездии Тельца и наблюдавшаяся китайскими и японскими астрономами в виде внезапно появившейся "звезды-гостьи", которая казалась ярче Венеры и была видна даже днем. Хотя это явление похоже на вспышку обычной новой, оно отличается от нее своим масштабом, плавной и медленно меняющейся кривой блеска и спектром. По характеру спектра вблизи эпохи максимума различаются два типа сверхновых звезд. Большой интерес представляют быстро расширяющиеся , которые в нескольких случаях удалось обнаружить на месте вспыхнувших сверхновых звезд I типа. Самой замечательной из них является знаменитая Крабовидная туманность в созвездии Тельца. Форма эмиссионных линий этой туманности говорит о ее расширении со скоростью около 1000 км/сек. Современные размеры туманности таковы, что расширение с этой скоростью могло начаться не более 900 лет назад, т.е. как раз в эпоху вспышки Сверхновой 1054 г.


Пульсары

В августе 1967 г. в английском городе Кембридж было зафиксировано космическое радиоизлучение, которое исходило от точечных источников в виде следующих друг за другом четких импульсов. Продолжительность отдельного импульса у таких источников может составлять от нескольких миллисекунд до нескольких десятых долей секунды. Резкость импульсов и правильность их повторений позволяют с большой точностью определить периоды пульсаций этих объектов, которые названы пульсарами . Период одного из пульсаров равен примерно 1,34 сек, в то время как у других периоды заключены в пределах от 0,03 до 4 сек. В настоящее время известно около 200 пульсаров. Все они дают сильно поляризованное радиоизлучение в широком диапазоне длин волн, интенсивность которого круто возрастает с ростом длины волны. Это означает, что излучение имеет нетепловую природу. Удалось определить расстояния до многих пульсаров, оказавшиеся в пределах от сотен до тысяч парсеков, что говорит о сравнительной близости объектов, заведомо принадлежащих нашей Галактике.

Самый известный пульсар , который принято обозначать номером NP 0531, в точности совпадает с одной из звезд в центре Крабовидной туманности. Наблюдения показали, что оптическое излучение этой звезды также меняется с тем же периодом. В импульсе звезда достигает 13m, а между импульсами она не видна. Такие же пульсации у этого источника испытывает и рентгеновское излучение, мощность которого в 100 раз превышает мощность оптического излучения. Совпадение одного из пульсаров с центром такого необычного образования, как Крабовидная туманность, наводит на мысль о том, что они являются как раз теми объектами, в которые после вспышек превращаются сверхновые звезды. Если вспышки сверхновых звезд действительно завершаются образованием таких объектов, то весьма возможно, что пульсары – это нейтронные звезды, В этом случае при массе порядка 2 масс Солнца они должны иметь радиусы около 10 км. При сжатии до таких размеров плотность вещества становится выше ядерной, а вращение звезды ускоряется до нескольких десятков оборотов в секунду. По-видимому, промежуток времени между последовательными импульсами равен периоду вращения нейтронной звезды. Тогда пульсация объясняется наличием неоднородностей, своеобразных горячих пятен, на поверхности этих звезд. Здесь уместно говорить о "поверхности", так как при столь высоких плотностях вещество по своим свойствам ближе к твердому телу. Нейтронные звезды могут служить источниками энергичных частиц, все время поступающих в связанные с ними туманности, подобные Крабовидной.


фото: Радиоизлучение крабовидной туманности


Продолжаю серию статей «астрономический справочник». И сегодня рассмотрю ещё одну важную тему, которая пригодится вам при чтении статей из раздела - переменные звёзды . По прошествии времени звёзды могут менять свою яркость (блеск), такие звёзды называются переменными. Переменные звёзды меняют свой блеск из-за физических изменений состояния самой звезды, а также из-за затмений, если речь идёт о двойных (кратных) системах - это затменно-переменные звёзды.

Бывают следующие типы физических переменных звёзд:

  • пульсирующие - характеризуются непрерывными и плавными изменениями блеска: цефеиды, мириды, типа RR Лиры, неправильные, полуправильные;
  • эруптивные - характеризуются неправильными, быстрыми и сильными изменениями блеска, вызванными процессами, носящими взрывообразный (эруптивный) характер: новые звёзды, сверхновые.

Переменные звёзды имеют специальные обозначения. Эти звёзды в каждом созвездии обозначают последовательностью букв латинского алфавита: R, S, Т, …, Z, RR, RS, …, RZ, SS, ST, …. ZZ, АА, …, AZ, QQ, …, QZ с добавлением названия соответствующего созвездия (RR Lyr). Таким образом можно обозначить 334 переменных звезды в каждом созвездии. Если количество превышает 334, то следующие обозначаются V 335, V 336 и т. д.

Затменно-переменные звёзды

Затменно-переменные звёзды - тесные пары звёзд, которые нельзя разделить даже в самые мощные телескопы, видимая звёздная величина меняется из-за периодически наступающих для наблюдателя с Земли затмений одного компонента системы другим. Звезда с большей светимостью - главная, с меньшей - спутник. Самыми популярными примерами являются: β Персея (Алголь) и β Лиры.

Из-за перекрытия одной звезды другой суммарная звёздная величина изменяется периодически.

Кривая блеска - график, который изображает изменение потока излучения звезды в зависимости от времени. Когда звезда имеет максимальную яркость, то это эпоха максимума , минимальную (или наибольшую ) - эпохой минимума . Разность между максимумом и минимумом звёздных величин называется амплитуда , а временной интервал между двумя максимумами (минимумами) - периодом переменности .

График изменения потока излучения звезды от времени

Исходя из данных графика можно определить относительные размеры компонентов, получить общее представление об их форме. Минимальные значение (впадины) на графике могут отличаться по значению звёздной величины в зависимости от того, какая из звёзд перекрыла своего компонента: главная спутника или спутник главную.

На сегодня известно около 4000 затменных звёзд разных типов. Минимальный известный астрономами период обращения звёзд - чуть меньше часа, максимальный - 57 лет.

Физические переменные звёзды

Цефеиды

Цефеиды - пульсирующие гиганты F и G, которые получили своё название в честь звезды δ (дельта) Цефея. Период пульсации колеблется в диапазоне от 1,5 до 50 суток. Амплитуда (разница между максимумом и минимумом) блеска цефеид может достигать 1,5 m . Типичным представителем цефеид является Полярная звезда.

При изменении блеска изменяются температура фотосферы, показатели цвета, радиус фотосферы. Пульсация звезды происходит когда непрозрачность наружных слоёв звезды задерживает некоторую часть излучения внутренних слоёв. Это связано с веществом гелий, который вначале ионизируется, а затем охлаждается и рекомбинируется.

График изменения блеска η Aql (эта Орла) и δ Cep (дельта Цефея)

В нашей галактике Млечный Путь на сегодня насчитывается больше 700 цефеид.

В свою очередь цефеиды делятся ещё на 3 группы:

  1. Дельта цефеиды (Cδ) - классические цефеиды.
  2. Цефеиды типа W Девы (CW) - расположены не в плоскости галактики. Как правило встречаются в . Интересно то, что максимальной температуры они достигают в промежутках между максимумом и минимумом светимости.
  3. Дзета цефеиды (Cζ) - малоамплитудные цефеиды. Обладают симметричными кривыми блеска.

Звёзды типа RR Лиры

В отдельный тип относятся звёзды типа RR Лиры . Это гиганты спектрального класса A. Период переменности для этих звёзд 0,2 - 1,2 суток. Они очень быстро меняют блеск, при этом амплитуда достигает одной звёздной величины. С изменением блеска изменяется показатель цвета, что связано с изменением температуры фотосферы. При максимуме звезда светлеет (белеет), т.е. становится горячее. Также изменяется радиус звезды (лучевые скорости).

Подавляющее большинство звёзд этого типа сосредоточено в шаровых звёздных скоплениях. Ниже на (спектр-светимость) показано примерное расположение цефеид и звёзд типа RR Лиры:

Изображение взято с сайта Википедия

Мириды

Мириды по-другому называют долгопериодическими переменными звёздами . Это звёзды типа ω (омега) Кита. Амплитуда изменения блеска достигает 10-й (!) звёздной величины. Период переменности сильно разнится и лежит в интервале 90 - 730 суток.

К миридам относятся спектрального класса M (и дополнительных S и N - ещё более холодных).

Переменность блеска возникает из-за колебаний температуры. К миридам относятся звёзды, у которых в спектрах появляются эмиссионные линии.

Неправильные переменные

Это звёзды, у которых происходит непредсказуемое изменение блеска. Их сложно наблюдать и приходится затрачивать больше времени на определение их характеристик. Представителем это типа звёзд является μ (мю) Цефея.

Амплитуда изменения блеска не превышает одну звёздную величину. Моменты максимумов или минимумов нельзя определить по формулам, или посчитать их периодичность. Кривая изменения блеска может иметь период до 4500 суток. В книге по астрономии нашел график звезды μ Цефея, яркость которого вычислялась с 1916 по 1928 года:

Если получается определить среднее значение цикла и наблюдается некоторая периодичность, их называют полуправильными , в ином случае - неправильными .

Эруптивные переменные

Переменная карликовая звезда, которая проявляет свою переменность в виде повторяющихся вспышек, объясняющихся различного рода выбросами вещества (эрупций) называется эруптивной переменной. Эруптивные звёзды могут быть как молодыми, так и старыми.

Молодые звёзды

Звёзды, которые не завершили процесс гравитационного сжатия называются молодыми . Например, T Тельца. К молодым звёздам относятся карлики спектральных классов F и G с эмиссионными линиями в спектре. Много молодых звёзд можно обнаружить в туманности Ориона (в созвездии Ориона), где идёт процесс активного звёздообразования. Установить закономерность изменения таких звёзд невозможно. Амплитуда изменения блеска может достигать 3 m .

Хаотическую переменность объясняют тем, что вокруг молодых звёзд наблюдаются небольшие яркие туманности, что говорит о существовании у них обширных газовых оболочек.

Отдельно выделяют вспыхивающие звёзды типа UV Кита . Это карлики спектральных классов K и M. Они отличаются очень быстрым возрастанием светимости во время вспышек. Менее чем за одну минуту поток излучения может увеличиться в несколько раз. Однако, есть большая группа вспыхивающих звёзд, у которых вспышки длятся продолжительное время, превышающее несколько минут. В скоплении Плеяды все звёзды относятся к таким звёздам.

На сегодня обнаружено всего около 80 вспыхивающих звёзд, имеющих небольшую светимость и их можно наблюдать на небольшом удалении от Солнца.

В общем-то и всё, что вам необходимо знать и понимать о переменных звёздах . И теперь, встречая непонятные названия или обозначения типа переменной звезды, вы всегда сможете обратиться к этой статье, чтобы узнать что есть что.

Спасибо что уделили своё время на чтение этой важной темы. Если есть вопросы, не стесняйтесь, пишите в комментариях, будем вместе разбираться.

Под эруптивными переменными звездами мы подразумеваем звезды, меняющие блеск вследствие активных процессов и вспышек, происходящих в их хромосферных и корональных областях. Изменения блеска обычно сопровождаются образованием или сбрасыванием протяженных оболочек, истечением вещества в виде звездного ветра переменной интенсивности и/или взаимодействием с окружающей межзвездной средой.

Сброс оболочки звезды. За счет резкого увеличения размеров отражающего свет пятна, видимая яркость звезды также резко возрастает. Но со временем, по мере рассеивания пылевого облака, яркость вновь упадет

Делятся на типы:

  • FU — орионовы переменные типа FU Ориона (FU Ori). Характеризуются продолжающимся несколько месяцев возрастанием блеска примерно на 5-6m, после чего наступает относительное постоянство блеска. В максимуме блеск сохраняется иногда на протяжении десятилетий, иногда наблюдается медленное ослабление его на 1-2m. Спектральные классы в максимуме блеска заключены в пределах Aea-Gpea.
    После вспышки наблюдается постепенное развитие эмиссий в спектре, который становится более поздним. Может быть, эти переменные характеризуют один из этапов эволюции орионовых переменных типа Т Тельца (INT), так как одна из таких переменных (V1057 Cyg) показала подобную вспышку, но ослабление ее блеска (на 2.5m за 11 лет) началось сразу же после достижения максимума. Все известные в настоящее время переменные типа FU Ori связаны с отражательными кометообразными туманностями.
  • GCAS — эруптивные неправильные переменные типа (гамма) Кассиопеи ((гамма) Cas). Быстро вращающиеся звезды спектрального класса Be III — V; характеризуются истечением вещества в их экваториальной зоне. Образование экваториальных колец или дисков сопровождается временным ослаблением блеска звезды. Амплитуды изменения блеска могут достигать l.5m V.
  • I — плохо изученные неправильные переменные, особенности изменения блеска и спектральные классы которых неизвестны. Очень разнородная группа объектов.
  • IА — плохо изученные неправильные переменные ранних (О-А) спектральных классов.
  • IВ — плохо изученные неправильные переменные промежуточных (F-G) и поздних (К-М) спектральных классов.
  • IN — орионовы переменные. Неправильные эруптивные переменные, связанные со светлыми и темными диффузными туманностями или наблюдаемые в районах таких туманностей. У некоторых из них может наблюдаться цикличность изменений блеска, связываемая с осевым вращением. На диаграмме спектр-светимость расположены в районе главной последовательности и в области субгигантов. По-видимому, молодые объекты, превращающиеся в ходе дальнейшей эволюции в звезды начальной главной последовательности постоянного блеска. Пределы изменения блеска могут достигать нескольких величин. Если у звезды наблюдаются быстрые изменения блеска (до 1m за l-10d), символ типа сопровождается символом S(INS). Делятся на следующие подтипы:
    • INA — орионовы переменные ранних спектральных классов В-А или Ае. Характеризуются наблюдаемыми время от времени резкими алголеподобными ослаблениями блеска (Т Or i).
    • INB- орионовы переменные промежуточных и поздних спектральных классов F-M или Fe-Me (ВН Сер, АН Ori). У звезд класса F могут наблюдаться алголеполобные ослабления блеска, как у звезд подтипа INA; у звезд классов К-М, наряду с неправильными изменениями блеска, могут наблюдаться вспышки.
    • INT- орионовы переменные типа Т Тельца (Т Таu). Относятся к этому типу на основании следующих (исключительно спектральных) признаков. Спектральные классы заключены в пределах Fe-Me. Спектр наиболее типичных звезд напоминает спектр солнечной хромосферы. Специфическим признаком типа является наличие флюоресцентных эмиссионных линий Fel (лямбда)(лямбда)4046, 4132 (аномально интенсивных у этих звезд), эмиссионных линий [ S II ] и [ OI ], а также линии поглощения Li I (лямбда) 6707. Эти переменные наблюдаются обычно только в диффузных туманностях. Если связь с туманностью незаметна, буква N в символе типа может быть опущена – IT (RW Aur).
    • IN(YY) — В спектрах некоторых орионовых переменных (YY Ori) наблюдаются темные компоненты с длинноволновой стороны эмиссионных линий, что свидетельствует о падении вещества на поверхность звезды. В этом случае символ типа может сопровождаться символом YY, заключенным в скобки.
  • IS — быстрые неправильные переменные, явным образом не связанные с диффузными туманностями и показывающие изменения блеска на 0.5-1.0m в течение нескольких часов или суток. Резкой границы между быстрыми неправильными и орионовыми переменными не существует.
    Если быстрая неправильная наблюдается в районе диффузной туманности, она относится к орионовым переменным и обозначается символом INS .Относить переменные к типу IS следует с большой осторожностью, лишь убедившись, что изменения их блеска действительно непериодичны. Очень многие из звезд, отнесенных к этому типу в третьем издании ОКПЗ, оказались затменно-двойными системами, переменными типа RR Lyr и даже внегалактическими объектами типа ВL Lac.
    • ISA — быстрые неправильные ранних спектральных классов В-А или Ае.
    • ISB — быстрые неправильные промежуточных и поздних спектральных классов F-M или Fe-Me.
  • RCB — переменные типа R Северной Короны (R СгВ). Бедные водородом, богатые углеродом и гелием звезды высокой светимости спектральных классов Bpe-R, одновременно являющиеся эруптивными и пульсирующими. Характеризуются медленными непериодическими ослаблениями блеска с амплитудами от 1 до 9m V, продолжающимися от нескольких десятков до сотен дней. На эти изменения накладываются циклические пульсации с амплитудой до нескольких десятых звездной величины и периодами от 30 до 100d.
  • RS — эруптивные переменные типа RS Гончих Псов. К этому типу мы относим тесные двойные системы с эмиссией Н и К Ca II в спектре, компоненты которых обладают повышенной хромосферной активностью, вызывающей квазипериодическую переменность их блеска с периодом, близким к орбитальному, и переменной амплитудой, обычно достигающей 0.2m V (UX Ari). Источники рентгеновского излучения. Одновременно являются вращающимися переменными, а сама RS CVn-также и затменной системой (см. ниже).
  • SDOR — переменные типа S Золотой Рыбы (S Dor). Эруптивные звезды высокой светимости спектральных классов Bpeq-Fpeq, показывающие неправильные (иногда циклические) изменения блеска с амплитудой от 1m до 7m V. Обычно самые яркие голубые звезды галактик, в которых они наблюдаются. Как правило, связаны с диффузными туманностями и окружены расширяющимися оболочками (Р Cyg, (эта) Car).
  • UV- эруптивные переменные типа UV Кита (UV Cet). Звезды спектральных классов KVe-MVe; иногда испытывают вспышки с амплитудой от нескольких десятых до 6m V, существенно большей в ультрафиолетовой области спектра. Максимум блеска достигается через секунды или десятки секунд после начала вспышки, к нормальному блеску звезда возвращается через несколько минут или десятков минут.
  • UVN — вспыхивающие орионовы переменные спектральных классов Ке-Ме. Феноменологически почти ничем не отличаются от переменных типа UV Кита, наблюдаемых в окрестностях Солнца. Помимо связи с туманностью характеризуются в среднем более ранними спектральными классами, большей светимостью и более медленным развитием вспышек (V389 Ori). Возможно, являются разновидностью орионовых переменных типа INB, на неправильные изменения блеска которых накладываются вспышки.
  • WR — эруптивные переменные типа Вольфа-Райе. Звезды с широкими эмиссионными линиями HeI , HeII, а также СII-CIV, ОII-OV или NIII-NV. Характеризуются неправильными изменениями блеска до 0.l m V, вызываемыми, по-видимому, физическими причинами, в частности, нестационарностью истечения вещества с поверхности этих звезд.

Пульсирующие переменные звезды

Пульсирующими переменными звездами принято называть звезды, показывающие периодическое расширение и сжатие поверхностных слоев. Пульсации могут быть радиальными и нерадиальными. При радиальных пульсациях форма звезды остается сферической. В случае нерадиальных пульсаций форма звезды периодически отклоняется от сферической, причем даже соседние участки ее поверхности могут находиться в противоположных фазах колебаний.
В зависимости от величины периода, массы звезды, эволюционной стадии и масштаба явления можно выделить следующие типы пульсирующих переменных.

  • ACYG — переменные типа (альфа) Лебедя ((альфа) Cyg). Hepадиально пульсирующие сверхгиганты спектральных классов Beq -Aeq Ia; изменения блеска с амплитудой порядка 0.1m нередко кажутся неправильными, ибо вызываются наложением многих колебаний с близкими периодами. Наблюдаются циклы от нескольких дней до нескольких десятков дней.
  • ВСЕР — переменные типа (бета) Цефея ((бета) Сер, (бета) СМа). Пульсирующие переменные спектральных классов O8-В6 I-V с периодами изменения блеска и лучевых скоростей, заключенными в пределах 0.1-0.6d, и амплитудами изменения блеска от 0.01 до 0.3m V. Кривые блеска подобны средним кривым лучевой скорости, но отстают от них по фазе на четверть периода, так что максимум блеска соответствует максимальному сжатию, т.е. минимальному радиусу звезды. По-видимому, в основном у этих звезд наблюдаются радиальные пульсации, но некоторые из них (V469 Per) характеризуются нерадиальными пульсациями; для многих характерна мультипериодичность.
  • BCEPS — короткопериодическая группа переменных типа (бета) Сер спектральных классов В2-ВЗ IV-V; периоды и амплитуды изменения блеска заключены в пределах 0.02-0.04d и 0.015-0.025m соответственно, т.е. на порядок меньше обычно наблюдаемых у звезд типа (бета) Сер.
  • СЕР — . Радиально пульсирующие переменные высокой светимости (классы светимости Ib-II) с периодами от l d до 135 d и амплитудами от нескольких сотых до 2m V (в системе В-большими, чем в V). Спектральные классы в максимуме блеска F, в минимуме G-K, причем тем более поздние, чем больше период изменения блеска. Кривая лучевых скоростей Vr практически является зеркальным отображением кривой блеска, причем максимум скорости расширения поверхностных слоев наблюдается почти одновременно с максимумом блеска звезды.
  • СЕР(В) — цефеиды (TU Cas , V367 Sct), характеризующиеся наличием двух или нескольких одновременно действующих мод пульсаций (обычно основного тона с периодом P0 и первого обертона с периодом Р1). Периоды P0 заключены в пределах от 2 d до 7d. Отношение P1/P0≈0.71.
  • CW — переменные типа W Девы (W Vir). Пульсирующие переменные сферической составляющей или старой составляющей диска Галактики с периодами примерно от 0.8 до 35d и амплитудами от 0.3 до 1.2m V. Характеризуются зависимостью период-светимость, отличающейся от аналогичной зависимости для переменных типа (дельта) Цефея — см. ниже (DCEP). При одинаковом периоде переменные типа W Девы на 0.7-2ь слабее переменных типа (дельта) Цефея. Кривые блеска переменных типа W Девы отличаются от кривых блеска переменных типа (дельта) Цефея соответствующих периодов либо амплитудой, либо наличием горбов на нисходящей ветви, перерастающих иногда в широкий плоский максимум. Встречаются в старых шаровых скоплениях и на высоких галактических широтах. Делятся на подтипы:
    • CWA — переменные типа W Девы с периодами больше 8d (W Vir).
    • CWB — переменные типа W Девы с периодами меньше 8d (BL Her).
  • DCEP — классические цефеиды, переменные типа (дельта) Цефея ((дельта) Сер). Сравнительно молодые объекты, располагающиеся после ухода с главной последовательности в полосе нестабильности на диаграмме Герцшпрунга-Рессела. Подчиняются известной зависимости период-светимость; относятся к плоской составляющей Галактики, встречаются в рассеянных скоплениях; характеризуются наличием определенного соответствия между формой кривой блеска и длиной периода.
  • DCEPS — переменные типа ((дельта) Цефея с амплитудами меньше 0.5m V(0.7m В) и почти симметричными кривыми блеска (M-m ≈ 0.4-0.5P); периоды, как правило, не превышают 7d; возможно, что эти звезды пульсируют в первом обертоне и/или впервые проходят полосу нестабильности после ухода с главной последовательности (SU Cas).
    По традиции переменные типов (дельта) Цефея и W Девы нередко называют цефеидами, так как часто (при периодах от 3d до 10d) по виду кривой блеска бывает невозможно отличить переменные этих типов друг от друга.
    Однако в действительности это совершенно разные объекты, находящиеся на разных этапах эволюции. Одно из существенных спектральных отличий звезд типа W Девы от цефеид состоит в том, что в спектрах первых в некотором диапазоне фаз наблюдаются эмиссии в водородных линиях, а в спектрах цефеид — в линиях Н и К Ca II.
  • DSCT — переменные типа (дельта) Щита ((дельта) Set). Пульсирующие переменные спектральных классов A0-F5III-Vc амплитудами изменения блеска от 0.003 до 0.9m V (в основном несколько сотых звездной величины) и периодами от 0.01 до 0.2d.Форма кривой блеска, период и амплитуда обычно сильно меняются. Наблюдаются как радиальные, так и нерадиальные пульсации. У некоторых звезд этого типа переменность блеска наступает спорадически и иногда полностью прекращается; не исключено, что это — следствие сильной амплитудной модуляции с нижним пределом амплитуды не более 0.001m. Кривая изменения блеска является почти зеркальным отображением кривой лучевых скоростей: максимум скорости расширения поверхностных слоев звезды запаздывает по отношению к максимуму блеска не более, чем на 0.1P.
    Звезды типа DSCT-представители плоской составляющей Галактики. Феноменологически к ним примыкают переменные типа SXPHE (см. ниже).
  • DSCTC — малоамплитудная группа переменных типа (дельта) Щита (амплитуда изменения блеска меньше 0.1 m V). Большинство представителей этого подтипа являются звездами V класса светимости; как правило, именно такие объекты встречаются в рассеянных звездных скоплениях.
  • L — медленные неправильные переменные. Переменные звезды, изменения блеска которых лишены каких-либо признаков периодичности или же периодичность выражена слабо, наступая лишь временами. Отнесение переменных к этому типу, как и к типу I , зачастую обусловлено лишь недостаточной изученностью этих объектов. Многие из них могут оказаться полуправильными переменными или переменными других типов.
  • LB — медленно меняющиеся неправильные переменные поздних спектральных классов К, М, С и S, как правило, гиганты (СО Cyg). К этому типу в каталоге отнесены медленные красные неправильные переменные и в тех случаях, когда их спектральные классы и светимости еще неизвестны.
  • LC — неправильные переменные сверхгиганты поздних спектральных классов с амплитудой порядка l.0m V (TZ Cas).
  • M — переменные типа Миры Кита ((омикрон) Cet). Долгопериодические переменные гиганты с характерными эмиссионными спектрами поздних классов Me, Ce, Se, c амплитудами изменения блеска от 2.5m до 11m V, с хорошо выраженной периодичностью и периодами, заключенными в пределах от 80d до 1000d. Инфракрасные амплитуды изменения блеска невелики и могут быть меньше 2.5m. Так, например, в системе К они обычно не превышают 0.9m. Если амплитуды превышают 1-1.5m, но нет уверенности в том, что истинная амплитуда изменений блеска превышает 2.5m, символ М сопровождается двоеточием или же звезда относится к типу полуправильных переменных, причем рядом с символом этого типа (SR) также ставится двоеточие.
  • PVTEL — переменные типа PV Телескопа (PV Tel). Гелиевые сверхгиганты спектрального класса Bp, характеризующиеся слабыми линиями водорода, усиленными линиями гелия и углерода, пульсирующие с периодами от 0.1 до l d или меняющие блеск с амплитудой около 0.1m V на протяжении интервалов времени порядка года.
  • RR — переменные типа RR Лиры. Радиально пульсирующие гиганты спектральных классов А — F с периодами, заключенными в пределах от 0.2 до l.2d, и амплитудами изменения блеска от 0.2 до 2m V. Известны случаи переменности как формы кривой блеска, так и периода. Если эти изменения периодичны, они называются эффектом Блажко.
    По традиции переменные типа RR Лиры иногда называют короткопериодическими цефеидами или переменными шаровых скоплений. Входят в большинстве случаев в сферическую составляющую Галактики, встречаются (иногда в большом количестве) в некоторых шаровых скоплениях (пульсирующие звезды горизонтальной ветви). Как у цефеид, максимум скорости расширения поверхностных слоев этих звезд практически совпадает с максимумом их блеска.
  • RR(B) — переменные типа RR Лиры, характеризующиеся наличием двух одновременно действующих мод пульсации — основного тона с периодом P0 первого обертона с периодом Р1 (AQ Leo). Отношение Р1/Р0 ≈ 0.745.
  • RRAB — переменные типа RR Лиры с асимметричной кривой блеска (крутой восходящей ветвью), периодами от 0.3 до l.2 d и амплитудами от 0.5 до 2m V (RR Lyr).
  • RRC — переменные типа RR Лиры с почти симметричными, иногда синусоидальными, кривыми блеска с периодами от 0.2 до 0.5 d и амплитудами, не превышающими 0.8 V (SX UMa).
  • RV — переменные типа RV Тельца (RV Таu). Радиально пульсирующие сверхгиганты спектральных классов F-G в максимуме и К-М в минимуме блеска. Кривые блеска характеризуются наличием двойных волн с чередующимися главными и вторичными минимумами, глубина которых может меняться так, что главные минимумы могут превращаться во вторичные и наоборот; полная амплитуда изменений блеска может достигать 3-4m V. Периоды между двумя соседними главными минимумами, называемые обычно формальными, заключены в пределах от 30 до 150d (именно они и приводятся в каталоге). Делятся на подтипы RVA и RVB.
  • RVA — переменные типа RV Тельца, средняя величина которых не меняется (AC Her).
  • RVB — переменные типа RV Тельца, средняя величина которых периодически меняется с периодом от 600 до 1500 d и амплитудой до 2m V (DF Cyg, RV Таu).
  • SR — полуправильные переменные. Гиганты или сверхгиганты промежуточных и поздних спектральных классов, обладающие заметной периодичностью изменений блеска, сопровождаемой или временами нарушаемой различными неправильностями. Периоды заключены в пределах от 20 до 2000 d и больше, формы кривых изменения блеска весьма разнообразны и переменны, амплитуды — от нескольких сотых до нескольких звездных величин (обычно 1 — 2m V).
  • SRA — полуправильные переменные гиганты поздних спектральных классов (M, C, S или Me, Ce, Se) с устойчивой периодичностью, обладающие, как правило, небольшими (меньше 2.5m V) амплитудами блеска (Z Aqr). Амплитуды и формы кривых изменения блеска обычно меняются. Периоды заключены в пределах от 35 до 1200 d. Многие из этих звезд отличаются от переменных типа Миры Кита только меньшей амплитудой изменения блеска.
  • SRB — полуправильные переменные гиганты поздних спектральных классов (M, C ,S или Me, Се, Se) с плохо выраженной периодичностью (средний цикл — от 20 до 2300 d) или со сменен периодических изменений — медленными неправильными колебаниями или интервалами постоянства блеска (RR СгВ, AF Cyg). Каждая из этих звезд обычно характеризуется некоторым средним значением периода (циклом), которое и приводится в каталоге. В ряде случаев у этих звезд наблюдается одновременное действие двух или большего числа периодов изменения блеска.
  • SRC — полуправильные переменные сверхгиганты поздних спектральных классов M, C, S или Me, Ce, Se ((ми) Сер). Амплитуды — порядка 1m, периоды изменения блеска — от 30 d до нескольких тысяч дней.
  • SRD — полуправильные переменные гиганты и сверхгиганты спектральных классов F, G, К, иногда с эмиссионными линиями в спектрах. Амплитуды изменения их блеска заключены в пределах от 0.l до 4m) периоды — от 30 до 1100 d (SX Her, SV UMa).
  • SXPHE — переменные типа SX Феникса (SX Phe). Сходные по внешним признакам с переменными типа DSCT, они являются пульсирующими субкарликами сферической составляющей или старой составляющей диска Галактики спектральных классов А2-F5; y этих объектов может одновременно наблюдаться несколько периодов колебаний, как правило, от 0.04 до 0.08 d с переменной амплитудой изменения блеска, которая может достигать 0.7m V. Встречаются в шаровых скоплениях.
  • ZZ — переменные типа ZZ Кита (ZZ Cet). Нерадиально пульсирующие белые карлики, меняющие блеск с периодами от 30 секунд до 25 минут и амплитудами от 0.001 до 0.l2 m V. Обычно у звезды наблюдается несколько близких периодов. Иногда наблюдаются вспышки на 1m, могущие, правда, объясняться наличием тесного спутника типа UV Cet. Делятся на подтипы:
    • ZZA — водородные переменные типа ZZ Cet спектрального класса DA (ZZ Cet), только с водородными линиями поглощения в спектре.
    • ZZB — гелиевые переменные типа ZZ Cet спектрального класса DB, в спектрах которых наблюдаются только линии поглощения Не.

Вращающиеся переменные звезды

Вращающимися переменными звездами мы называем звезды с неоднородной поверхностной яркостью или эллипсоидальные по форме, переменность блеска которых обусловлена их осевым вращением по отношению к наблюдателю. Неоднородность распределения поверхностной яркости может быть вызвана или наличием пятен или вообще температурной и химической неоднородностью звездной атмосферы под действием магнитного поля, ось которого не совпадает с осью вращения звезды. Делятся на типы:

  • ACV — переменные типа (альфа)2 Гончих Псов ((альфа)2 CVn). Звезды главной последовательности спектральных классов В8р — А7р с сильными магнитными полями. В их спектрах аномально усилены линии кремния, стронция, хрома и редкоземельных элементов, меняющие интенсивность с периодом вращения звезды, равным периоду изменения магнитного поля и блеска (0.5 — 160 d и больше). Амплитуды изменения блеска обычно заключены в пределах 0.01 – 0.1m V.
  • ACVO — быстро осциллирующие переменные типа (альфа)2 CVn. По-видимому, нерадиально пульсирующие вращающиеся магнитные переменные спектрального класса Ар (DO Eri). Периоды пульсаций 0.01d и менее, амплитуды изменений блеска, обусловленных пульсациями, — порядка 0.01m V. Эти изменения накладываются на изменения блеска, обусловленные вращением.
  • BY — переменные типа BY Дракона (BY Dra). Эмиссионные звезды — карлики спектральных классов dKe — dMe, показывающие квазипериодические изменения блеска с периодами от долей дня до 120d и амплитудами от нескольких сотых до 0.5m V. Переменность блеска вызывается осевым вращением звезд с изменяющейся с течением времени степенью неоднородности поверхностной яркости (пятнами) и хромосферной активностью. У некоторых из них наблюдаются вспышки, подобные вспышкам звезд типа UV Cet; в таких случаях они относятся также к типу UV, считаясь одновременно и эруптивными.
  • ЕLL — эллипсоидальные переменные (b Per, (альфа) Vir). Тесные двойные системы с эллипсоидальными компонентами, видимый суммарный блеск которых меняется с периодом, равным периоду орбитального движения, вследствие изменения площади излучающей поверхности, обращенной к наблюдателю, но без затмений. Амплитуды изменения блеска не превышают 0.1m V.
  • FKCOM — переменные типа FK Волос Вероники (FK Com). Быстро вращающиеся гиганты с неоднородной поверхностной яркостью спектральных классов G-К с широкими эмиссионными линиями Н и К Ca II, а также иногда с эмиссией H(альфа). Могут быть и спектрально-двойными системами. Периоды изменения блеска (достигающие нескольких дней) равны периодам вращения, а амплитуды составляют несколько десятых звездной величины. Не исключено, что эти объекты являются результатом дальнейшей эволюции тесных двойных систем типа EW (W UMa , см. ниже).
  • PSR — оптически переменные пульсары (СМ Таu). Быстро вращающиеся нейтронные звезды с сильным магнитным полем, излучающие в радио, оптическом и рентгеновском диапазонах длин волн. Излучение пульсара имеет узкую диаграмму направленности. Периоды изменения блеска совпадают с периодами вращения (от 0.001 до 4 секунд), амплитуда световых импульсов достигает 0.8m.
  • SXARI — переменные типа SX Овна (SX Ari). Звезды главной последовательности спектральных классов В0р-В9р с переменной интенсивностью линий HeI, Si III и магнитными полями, иногда называемые гелиевыми переменными. Периоды изменения блеска и магнитного поля (порядка 1d) совпадают с периодами вращения, амплитуды-порядка 0.lm V. Эти звезды являются высокотемпературными аналогами переменных типа (альфа)2 CVn.

Взрывные и новоподобные переменные

Взрывными звездами называются звезды, показывающие вспышки, обусловленные термоядерными взрывами, происходящими в их поверхностных слоях () или в глубоких недрах (). К новоподобным мы будем относить переменные, показывающие новоподобные вспышки, связанные с быстрым выделением энергии в окружающих их объемах пространства (звезды типа UG-см. ниже), а также объекты, не показывающие вспышек, но по спектральным и другим особенностям сходные с взрывными переменными в минимуме блеска.
Большинство взрывных и новоподобных переменных являются тесными двойными системами, компоненты которых оказывают сильнейшее взаимное влияние на эволюцию друг друга. Вокруг карликового горячего компонента системы часто наблюдается аккреционный диск, образованный веществом, теряемым другим более холодным и обширным компонентом. Делятся на типы:

  • N — Новые звезды. Тесные двойные системы с периодами орбитального движения от 0.05 до 230d; одним из компонентов этих систем является карликовая горячая звезда, которая неожиданно, за время от одного дня до нескольких десятков или сотен дней, увеличивает свой блеск на 7 — 19mV. За время от нескольких месяцев до нескольких десятков лет блеск системы возвращается к первоначальному состоянию.
    В минимуме могут показывать небольшие изменения блеска. Холодные компоненты являются гигантами, субгигантами или карликами спектральных классов К-М. Спектры Новых близ максимума блеска сначала похожи на спектры поглощения А-F звезд высокой светимости. Затем в спектрах появляются широкие эмиссионные линии (полосы) водорода, гелия и других элементов с абсорбционными компонентами, свидетельствующими о наличии быстро расширяющейся оболочки. По мере ослабления блеска в сложном спектре появляются запрещенные эмиссионные линии, характерные для спектров газовых туманностей, возбуждаемых горячей звездой. В минимуме блеска спектры Новых, как правило, непрерывны или сходны со спектрами звезд типа Вольфа-Райе.
    Признаки холодных компонентов обнаруживаются лишь в спектрах наиболее массивных систем. У некоторых Новых после вспышки обнаруживаются пульсации горячих компонентов с периодами порядка 100 секунд и амплитудами около 0.05m V. Некоторые Новые, естественно, оказываются также затменными системами. По характеру изменения блеска Новые делятся на быстрые (NA), медленные (NB), очень медленные (NC) и повторные (NR).
  • NA — быстрые Новые, характеризующиеся быстрым подъемом блеска и уменьшающие блеск после достижения максимума на 3m за 100 или меньше дней (GKPer).
  • NB — медленные Новые, уменьшающие блеск после достижения максимума на 3m за 150 и более дней (RR Pic). При этом не принимается во внимание наличие известного «провала» на кривой блеска таких Новых, как Т Aur и DQ Her: скорость уменьшения блеска оценивается по виду плавной кривой, части которой до «провала» и после него являются непосредственным продолжением одна другой.
  • NC — Новые с очень медленным развитием, свыше десяти лет остающиеся в максимуме блеска и ослабевающие очень медленно. До вспышки эти объекты могут показывать долгопериодические изменения блеска с амплитудой 1-2m V (RR Tel); холодные компоненты этих систем, по-видимому, являются гигантами или сверхгигантами, иногда полуправильными переменными и даже переменными типа Миры Кита. Амплитуда вспышки может достигать 10m. Эмиссионный спектр высокого возбуждения сходен со спектрами планетарных туманностей, звезд типа Вольфа-Райе и симбиотических переменных. Не исключено, что эти объекты являются возникающими планетарными туманностями.
  • NL — новоподобные переменные звезды.. Недостаточно изученные объекты, сходные с Новыми по характеру изменений блеска или по спектральным особенностям. К ним относятся не только переменные, показывающие новоподобные вспышки, но и объекты, у которых вспышки никогда не наблюдались; спектры новоподобных переменных похожи на спектры бывших Новых, а небольшие изменения блеска напоминают, те, которые свойственны бывшим Новым в минимуме блеска. Нередко, однако, после надлежащего исследования, отдельных представителей этой весьма разнородной группы объектов удается отнести к другому типу переменных звезд.
  • NR — повторные Новые. Отличаются от типичных Новых тем, что у них зарегистрирована не одна, а две или несколько вспышек, разделенных интервалами от 10 до 80 лет (Т СгВ).
  • SN — сверхновые звезды (В Cas, CM Таu). Звезды, в результате взрыва быстро увеличивающие свой блеск на 20 и более величин, а затем медленно ослабевающие. Спектр во время вспышки характеризуется наличием очень широких эмиссионных полос, ширина которых в несколько раз превышает ширину ярких полос, наблюдаемых в спектрах Новых звезд; скорость расширения оболочки — несколько тысяч км/с. После взрыва структура звезды полностью меняется. На месте сверхновой остается расширяющаяся эмиссионная туманность и (не всегда наблюдаемый) пульсар. По форме кривых блеска и спектральным особенностям делятся на типы I и II.
  • SNI — сверхновые I типа. В спектрах присутствуют линии поглощения Са II, Si и др., кроме водородных. Расширяющаяся оболочка почти лишена водорода. В течение 20 – 30d после максимума блеск уменьшается со скоростью около 0.lm в сутки, затем скорость ослабления блеска замедляется и в дальнейшем становится постоянной – 0.014m в сутки.
  • SNII — сверхновые II типа. В спектрах видны линии водорода и других элементов. Расширяющаяся оболочка состоит в основном из водорода и гелия. Кривые блеска более разнообразны, чем кривые блеска сверхновых I типа. По истечении 40 – 100d после максимума скорость падения блеска обычно составляет 0.1m в сутки.
  • UG — переменные типа U Близнецов (U Gem), нередко называемые карликовыми Новыми. Тесные двойные системы, состоящие из звезды-карлика или субгиганта спектрального класса К-М, заполняющего объем своей внутренней критической поверхности Роша, и белого карлика, окруженного аккреционным диском. Орбитальные периоды заключены в пределах от 0.05 до 0.5d. Обычно наблюдаются лишь небольшие, в том числе быстрые, флуктуации блеска системы, но время от времени блеск быстро возрастает на несколько звездных величин и по истечении нескольких дней или десятков дней возвращается к первоначальному состоянию. Промежутки между двумя последовательными вспышками у данной звезды могут меняться в широких пределах, но каждая звезда характеризуется некоторым средним значением этих промежутков — средним циклом, соответствующим средней амплитуде изменения ее блеска. Чем больше цикл, тем больше
    амплитуда. Источники рентгеновского излучения. Спектр системы в минимуме блеска непрерывный с широкими эмиссионными линиями водорода и гелия. В максимуме блеска эти линии почти исчезают или превращаются в неглубокие линии поглощения. Некоторые из этих систем являются затменными, причем можно полагать, что главный минимум обусловлен затмением горячего пятна, образованного в аккреционном диске падающим на него газовым потоком, исходящим от звезды класса К-М.
    По характеру изменения блеска переменные типа U Gem можно разделить на три подтипа: SS Cyg, SU UMa и Z Cam.
  • UGSS — переменные типа SS Лебедя (SS Cyg, U Gem). Увеличивают свой блеск за 1 — 2d нa 2-6m V и через несколько дней возвращаются к первоначальному блеску. Значения циклов заключены в пределах от 10d дo нескольких тысяч дней.
  • UGSU — переменные типа SU Большой Медведицы (SU UMa). Характеризуются наличием двух видов вспышек — нормальных и сверхмаксимумов. Нормальные, короткие, вспышки похожи на вспышки звезд типа UGSS . Сверхмаксимумы ярче нормальных на 2m, более чем в пять раз продолжительнее (шире) и наступают более чем в три раза реже нормальных. Во время сверхмаксимумов на кривой блеска наблюдаются накладывающиеся на нее периодические колебания (superhumps) с периодом, близким к орбитальному, и амплитудами около 0.2 – 0.3m V. Орбитальные периоды меньше 0.1d, спектральный класс спутников — dM.
  • UGZ — переменные типа Z Жирафа (Z Cam). Также показывают циклические вспышки, но в отличие от переменных типа UGSS иногда после вспышки не возвращаются к первоначальному блеску, а в течение нескольких циклов сохраняют звездную величину, промежуточную между максимальной и минимальной. Значения циклов заключены в пределах от 10 до 40d, амплитуды изменения блеска — от 2 до 5m V.
  • ZAND — симбиотические переменные типа Z Андромеды (Z And). Тесные двойные, состоящие из горячей звезды, звезды позднего спектрального класса и протяженной оболочки, возбуждаемой излучением горячей звезды. Суммарный блеск системы испытывает неправильные изменения с амплитудой до 4m V. Очень разнородная группа объектов.

Тесные двойные затменные системы

Мы принимаем трехмерную систему классификации затменно-двойных звездных систем по форме кривой изменения их суммарного блеска, а также по физическим и эволюционным характеристикам их компонентов. Классификация по кривым блеска проста, привычна и удобна для наблюдателей; второй и третий способы классификации основаны на положении компонентов двойных систем на диаграмме Mv, В — V и степени заполнения ими своих внутренних критических эквипотенциальных поверхностей Роша. Для суждения об этом, как правило, использовались простые критерии, предложенные М.А.Свечниковым и Л.Ф.Истоминым (АЦ№ 1083, 1979). Ниже приводятся используемые в каталоге символы типов затменно-двойных систем.

а) Классификация по форме кривой блеска.

  • Е — затменно-двойные системы. Двойные системы, плоскость орбиты которых настолько близка к лучу зрения наблюдателя (наклонение i плоскости орбиты к плоскости, перпендикулярной к лучу зрения, близко к 90°), что оба компонента (или один из них) периодически затмевают друг друга. Наблюдатель отмечает, вследствие этого, изменение видимого суммарного блеска системы, период которого совпадает с периодом обращения компонентов по орбите.
  • ЕА — затменные переменные типа Алголя ((бета) Per). Затменно-двойные со сферическими или слегка эллипсоидальными компонентами; кривые блеска позволяют фиксировать моменты начала и конца затмений. В промежутках между затмениями блеск остается почти постоянным или меняется незначительно, вследствие эффектов отражения, небольшой эллипсоидальности компонентов или физических изменений. Вторичный минимум может не наблюдаться. Периоды заключены в очень широких пределах — от 0.2 до 10000d и более; амплитуды изменения блеска весьма разнообразны и могут достигать нескольких величин.
  • ЕВ — затменные переменные типа (бета) Лиры ((бета) Lyr). Затменно-двойные с эллипсоидальными компонентами, обладающие кривыми блеска, которые не позволяют фиксировать моменты начала или конца затмений (вследствие непрерывного изменения видимого суммарного блеска системы в промежутках между затмениями); обязательно наблюдается вторичный минимум, глубина которого, как правило, существенно меньше глубины главного минимума; периоды преимущественно больше 1d (при периодах меньше 1d минимумы разной глубины, при периодах больше 1d глубина минимумов может быть почти одинаковой); компоненты обычно ранних спектральных классов В-А. Амплитуды изменения блеска обычно меньше 2m V.
  • EW — затменные переменные типа W Большой Медведицы (W UMa). Затменно-двойные с периодами меньше 1d, состоящие из почти соприкасающихся эллипсоидальных компонентов и обладающие кривыми блеска, не позволяющими фиксировать моменты начала и конца затмений; глубины главного и вторичного минимумов почти одинаковы или различаются очень незначительно. Амплитуды изменения блеска обычно меньше 0.8m V. Спектральные классы компонентов обычно F-G и более поздние.

б) Классификация по физическим характеристикам компонентов.

  • GS — системы, у которых один или оба компонента являются гигантами или сверхгигантами; один из компонентов может быть членом главной последовательности.
  • PN — системы, компонентами которых являются ядра планетарных туманностей (UU Sge).
  • RS — системы типа RS Гончих Псов (RS CVn). Существенной особенностью этих систем является наличие в спектре сильных эмиссионных линий Н и К Са II переменной интенсивности, свидетельствующее о повышенной хромосферной активности солнечного типа. Для этих систем характерно наличие радиоизлучения и рентгеновского излучения. У некоторых из них на кривой блеска вне затмений наблюдается квазисинусоидальная волна, амплитуда и положение которой медленно меняются с течением времени. Появление этой волны (часто называемой дисторсионной)
    объясняется дифференциальным вращением покрытой группами пятен поверхности звезды; период вращения групп пятен обычно близок к периоду орбитального движения (периоду затмений), но все же отличается от него, что и вызывает медленное изменение (миграцию) фаз минимума и максимума дисторсионной волны на средней кривой блеска. Переменность амплитуды волны (доходящей до 0.2m V) объясняется существованием долгопериодического цикла звездной активности (подобного солнечному одиннадцатилетнему циклу), в течение которого меняется количество и общая площадь пятен на поверхности звезды.
  • WD — системы, компонентами которых являются белые карлики.
  • WR — системы, среди компонентов которых содержатся звезды типа Вольфа-Райе (V 444Cyg).

в) Классификация по степени заполнения внутренних критических поверхностей Роша.

  • AR — разделенные системы типа AR Ящерицы (AR Lac), оба компонента которых — субгиганты, не достигающие своих внутренних критических эквипотенциальных поверхностей.
  • D — разделенные системы, компоненты которых не достигают своих внутренних критических эквипотенциальных поверхностей Роша.
  • DM — разделенные системы главной последовательности, оба компонента которых являются членами главной последовательности и не достигают своих внутренних критических поверхностей Роша.
  • DS — разделенные системы с субгигантом, в которых субгигант также еще не достигает своей внутренней критической поверхности.
  • DW — системы, сходные по своим физическим характеристикам с контактными системами типа W UMa (см. ниже), но не являющиеся контактными.
  • К — контактные системы, оба компонента которых заполняют свои внутренние критические поверхности.
  • КЕ — контактные системы ранних спектральных классов (О-А), оба компонента которых близки по размерам к своим внутренним критическим поверхностям.
  • КW — контактные системы типа WUMa с эллипсоидальными компонентами спектральных классов F0-К, главные из которых являются членами главной последовательности, а спутники располагаются левее и ниже ее на диаграмме Mv, В — V.
  • SD — полуразделенные системы, в которых поверхность менее массивного компонента-субгиганта близка к его внутренней критической поверхности.Сочетание всех трех способов классификации затменно-двойных систем предусматривает использование для одного объекта нескольких групп символов типа, разделенных наклонными черточками, например: E/DM, EA/DS/RS , EB/WR, EW/KW и т. п.

Тесные двойные оптически переменные источники сильного переменного рентгеновского излучения (Х-источники)

  • X — тесные двойные системы, являющиеся источниками сильного переменного рентгеновского излучения, не относящиеся или не отнесенные пока к рассмотренным выше типам переменных звезд. Одним из компонентов системы является горячий компактный объект (белый карлик, нейтронная звезда, а, быть может, и черная дыра). Рентгеновское излучение возникает при падении вещества, текущего от другого компонента, на компактный объект или окружающий этот объект аккреционный диск. В свою очередь, это рентгеновское излучение, попадая в атмосферу более холодного спутника компактного объекта, переизлучается в виде оптического высокотемпературного излучения (эффект отражения), делая более ранним и спектральный класс соответствующего участка поверхности спутника. Это приводит к весьма в своеобразной картине оптической переменности тесных двойных, являющихся источниками сильного рентгеновского излучения. Делятся на перечисленные ниже типы.
  • ХВ — рентгеновские вспыхивающие (bursters). Тесные двойные системы, показывающие рентгеновские и оптические вспышки продолжительностью от нескольких секунд до десяти минут с амплитудой порядка 0.1m V (V801 Аra, V926 Sco).
  • XF — рентгеновские флуктуирующие системы, показывающие быстрые флуктуации рентгеновского (Cyg X-1 = V1357 Cyg) и оптического (V821 Аra) излучения с циклом порядка десятков миллисекунд.
  • XI — рентгеновские неправильные. Тесные двойные системы, состоящие из горячего компактного объекта, окруженного аккреционным диском, и карлика спектрального класса dA-dM; характеризуются неправильными изменениями блеска с характерным временем порядка минут часов и амплитудой порядка 1m V; возможно наложение периодической составляющей, обусловленной орбитального движением (V818 Sco).
  • XJ — рентгеновские двойные, характеризующиеся наличием релятивистских струй, проявляющихся в рентгеновском и радиодиапазоне, а также в видимой области спектра в виде эмиссионных компонент, имеющих периодические смещения с релятивистскими скоростями (V1343 Aql).
  • XND — рентгеновские новоподобные, содержащие наряду с горячим компактным объектом карлик или субгигант спектрального класса G-M. Системы, иногда быстро увеличивающие свой блеск на 4-9m V одновременно в оптическом и рентгеновском диапазонах длин волн без выброса оболочки. Продолжительность вспышки — до нескольких месяцев (V616 Моn).
  • XNG — рентгеновские новоподобные, главный компонент которых является сверхгигантом или гигантом раннего спектрального класса, а спутник — горячим компактным объектом. При вспышке главного компонента выброшенная им масса падает на компактный объект, вызывая со значительным запозданием появление рентгеновского излучения. Амплитуды-порядка l-2m V (V725 Тau).
  • ХР — рентгеновские системы с пульсаром; главный компонент — обычно эллипсоидальный сверхгигант раннего спектрального класса. Эффект отражения очень мал, и переменность блеска в основном обусловлена вращением эллипсоидального главного компонента. Периоды изменения блеска заключены в пределах от 1 до 10 d, период пульсара в системе — от 1 секунды до 100 минут. Амплитуда изменений блеска обычно не превышает нескольких десятых звездной величины (Vel Х-1 = GP Vel).
  • XPR — рентгеновские системы с пульсаром, характеризующиеся наличием эффекта отражения. Состоят из главного компонента спектрального класса dB-dF и рентгеновского пульсара, который может быть и оптическим. Когда главный компонент подвергается рентгеновскому облучению, средний блеск системы максимален, в периоды малой активности рентгеновского источника —
    минимален. Полная амплитуда изменений блеска может достигать 2-3m V (HZ Her).
  • XPRM — рентгеновские системы, состоящие из карлика позднего спектрального класса dK-dM и пульсара с сильным магнитным полем. Аккреция вещества на магнитные полюса компактного объекта сопровождается появлением переменной линейной и круговой поляризации излучения; поэтому эти системы иногда называются полярами. Обычно амплитуда изменений блеска порядка 1m V, но при облучении главного компонента рентгеновским излучением средний блеск системы может возрасти на 3m V. Полная амплитуда изменений блеска может достигать 4-5m V(AM Her, AN UMa).
    Если направленное рентгеновское излучение, возникающее в магнитных полюсах вращающегося горячего компактного объекта, не пересекает положения наблюдателя и система не воспринимается как пульсар, буква Р в приведенных выше символических обозначениях типов рентгеновских систем отсутствует. В случае, если рентгеновские системы являются затменными или эллипсоидальными, обозначению их типа предшествуют символы Е или ELL, объединенные с этим обозначением знаком + (например, Е+Х или ELL + X).

Другие типы звезд и космических объектов принятых за переменные звезды

  • BLLАС — внегалактические объекты типа BL Ящерицы (BL Lac). Компактные квазизвездные объекты, характеризующиеся почти непрерывным спектром с очень слабыми линиями эмиссии и поглощения и сравнительно быстрыми неправильными изменениями блеска с амплитудой до 3m V и больше. Источники сильного рентгеновского и радиоизлучения, показывающие сильную и переменную линейную поляризацию излучения в оптической и инфракрасной областях спектра. Небольшое число таких объектов, ошибочно принимаемых за переменные звезды и получающих соответствующие обозначения, по-видимому, и в дальнейшем будет иногда попадать в основную таблицу каталога.
  • CST — постоянные звезды. В свое время они были заподозрены в переменности блеска, и была проявлена торопливость в присвоении им окончательного обозначения. Дальнейшие наблюдения не подтвердили их переменности.
  • GAL — оптически переменные квазизвездные внегалактические объекты (активные ядра галактик), ошибочно принятые за переменные звезды.
    L: — неисследованные переменные звезды с медленными изменениями блеска.
  • QSO — оптически переменные квазизвездные внегалактические объекты (квазары), ошибочно принятые за переменные звезды.
    S: — неисследованные переменные звезды с быстрыми изменениями блеска.
    * — уникальные переменные звезды, не укладывающиеся в рамки описанной выше классификации. Это, видимо, кратковременные переходные стадии от одних типов переменности к другим, или начальные и конечные стадии эволюции этих типов, или недостаточно изученные представители будущих новых типов переменности блеска.
    Если переменная звезда относится одновременно к нескольким типам переменности блеска, эти типы объединяются в столбце «Тип» знаком + (например, E+UG, UV+BY).
    Несмотря на значительные успехи в понимании процессов звездной переменности, принятая в каталоге классификация далеко не совершенна. Особенно это относится к взрывным, симбиотическим и новоподобным переменным, рентгеновским источникам и пекулярным объектам. Мы будем продолжать работу по уточнению классификации переменных звезд, надеясь на критические замечания и полезные советы специалистов.