Удивительные космические явления. Cамые «страшные» космические явления. Ось вращения Урана

В селенная - совокупность всего физически существующего (человек тоже часть Вселенной). Вселенная не имеет ни начала, ни конца: если бы мы долетели до самой далёкой из видимых с Земли звёзд, то увидели бы дальше другие звёзды. Вселенная считается вечной. Но отдельные её части - Земля и другие планеты, Солнце и звёзды - непрерывно изменяются и развиваются по сложным законам, которые изучает наука астрономия .

Астрономия - комплекс наук, изучающих движение, строение, происхождеие и развитие космических тел и их систем.

Космос - весь мир за пределами Земли. Часто космос называют космическим пространством. Пространство имеет три измерения - длину, ширину и высоту. Пространство - это некое трёхмерное вместилище, в котором помещается материя. Материя - это всё, что существует во Вселенной независимо от нашего сознания. Время характеризует последовательную смену явлений и состояний материи, длительность их бытия. Время имеет одно направление - от прошлого к будущему. Физические объекты, расположенные в космическом пространстве, называются космическими телами .

Космические тела подразделяют на классы: галактики, звёзды, звёздные скопления, туманности, планеты, спутники, метеорные тела, кометы. Названия классов космических тел пишут с маленькой буквы. Названия планет, их спутников, светил, собственные названия звёзд, астероидов и комет пишут с большой буквы : Земля, Марс, Луна, Каллисто, Солнце, Полярная, Сириус, комета Галлея...

Одиночными космическими телами являются Солнце и другие отдельные звёзды, Земля и другие отдельные планеты, Луна и отдельные спутники других планет, отдельные астероиды, планетоиды, кометы, отдельные метеорные тела.

Космические тела часто образуют системы космических тел .

Солнечная система (Солнце, планеты со спутниками, кометы, астероиды, планетоиды, метеорные тела, межпланетная пыль и газ - все вместе); система Земля-Луна; Юпитер со спутниками; Сатурн со спутниками; неизвестные нам планетные системы у других звёзд; двойные, тройные, кратные звёзды; звёздные скопления; наша Галактика (около 200 миллиардов звёзд) и другие галактики; местная группа галактик; наконец, вся Вселенная - всё это системы космических тел. В любой системе космические тела связаны между собой силами тяготения. Именно взаимное притяжение не позволяет распасться, например, системе Земля-Луна. Части, образующие систему, называются элементами системы . В системе должно быть как минимум два взаимосвязанных между собой элемента.

Созвездие не является системой космических тел, поскольку деление звёздного неба на созвездия условно. В созвездиях звёзды не взаимосвязаны между собой и медленно движутся в различных направлениях (с большого расстояния это незаметно).

Астрономия изучает также и небесные явления. Явления - это любые изменения в природе. Небесные явления - это изменения на небе, которые порождаются космическими явлениями , т.е. движением или взаимодействием космических тел. Таким образом, космические явления (причины) и небесные явления (следствия этих причин) - это не одно и то же.

Космические явления (причина) Небесные явления (следствия этих причин)
Вращение Земли вокруг своей оси

1. Смена дня и ночи.

2. Видимое вращение звёздного неба вместе с Солнцем и Луной в течение суток.

3. Восход и заход Солнца, Луны, планет, звёзд...

Обращение Луны вокруг Земли

1. Смена фаз Луны (новолуние, первая четверть, полнолуние, последняя четверть).

2. Видимое перемещение Луны из одного созвездия в другое.

3. Солнечные и лунные затмения.

Обращение Земли вокруг Солнца

1. Смена времён года (весна, лето, осень, зима).

2. Изменение вида звёздного неба в течение года.

3. Видимое перемещение Солнца по зодиакальным созвездиям (Овен, Телец, Близнецы, Рак, Лев, Дева, Весы, Скорпион, Змееносец, Стрелец, Козерог, Водолей, Рыбы).

4. Изменение полуденной высоты Солнца в течение года.

5. Изменение продолжительности дня и ночи в течение года.

Нельзя путать небесное явление с космическим телом. Одна из распространённых ошибок - метеор. Что это - тело или явление? В астрономии метеор - это вспышка метеорного тела в верхних слоях атмосферы Земли. Метеор - это явление. А вот тело, которое вспыхивает и сгорает в атмосфере, называется метеорным телом . Болид - тоже явление, это вспышка, но более крупного метеорного тела. Если метеорное тело полностью не успело сгореть и упало на поверхность Земли, то его называют метеоритом . Метеорит - это уже не явление, это физическое тело. Итак, метеор, метеорное тело и метеорит - это не одно и то же.

Запомни также: когда говорят об осевом движении (движении вокруг своей оси), то употребляют слово "вращается", а когда говорят о движении вокруг другого тела, то употребляют слово "обращается". Например, Земля вращается вокруг своей оси и Земля обращается вокруг Солнца.

Астрономия тесно связана с другими естественными науками. Например, с физикой - наукой о самых простых и самых общих свойствах и законах природы. Астрономия использует физические знания для объяснения явлений и процессов, происходящих во Вселенной, и создания астрономических приборов. Физика использует астрономические знания для проверки своих теорий и открытий новых законов природы. Так, ещё в древности на основе наблюдений за движением Солнца и Луны люди создали календарь. В настоящее время наблюдение Солнца и звёзд помогают учёным-физикам овладеть тайнами атомной энергии. Наука астрофизика изучает физическую природу небесных тел и небесных явлений. Химия - наука о веществе и его превращениях - позволяет установить состав космических тел и понять причину некоторых физических явлений в звёздах, планетах, туманностях. Биология - наука о живом. Вся жизнь на Земле зависит от протекания космических процессов, например, тепла и света, излучаемых Солнцем. Астрономия тесно связана с географией : когда мы смотрим на карту, на календарь, на часы, мы даже не представляем, сколько труда вложили астрономы в создание этих вещей, ведь ориентация на местности и измерение времени основаны на астрономических наблюдениях. Учёные-историки иногда обращаются к астрономам для уточнения дат исторических событий. Красота звёздного неба вдохновляла также и поэтов, писателей, художников, музыкантов. Астрономические знания нужны учёным, педагогам, инженерам, геологам, морякам, космонавтам, лётчикам, военным...

Чтобы знать астрономию, нужно знать математику . Любая область человеческих знаний может называться наукой только тогда, когда начнёт выражать свои основы на языке математики, использовать математику для своих нужд. Связи астрономии и математики сложны и многообразны. Астрономия - исторически первая наука, во многом стимулировавшая появление и развитие математических знаний. А без них невозможно ориентироваться в путешествиях и составлять календари. Для описания движения небесных тел и происходящих во Вселенной процессов астрономы решают сложные математические задачи, иногда специально изобретая новые разделы математики. Все великие астрономы прошлого были выдающимися математиками, но на решение многих астрономических задач уходили месяцы, годы, десятилетия. В настоящее время астрономы используют для своих расчётов компьютеры.

Астрономия использовалась раньше и используется сейчас для:

  • определения точных географических координат населённых пунктов и составления точных географических атласов;
  • ориентирования на суше, в море и в космосе (по Полярной звезде, по Солнцу и Луне, по ярким, навигационным звёздам и созвездиям);
  • вычисления наступления морских приливов и отливов (зависят от движения Луны);
  • составления календаря и хранения точного времени;
  • определения даты создания древних сооружений;
  • в космонавтике для расчёта траекторий движения космических станций и кораблей (а от работы спутников зависят телевидение, мобильная связь, составление прогноза погоды, слежение за пожарами, изучение перемещения айсбергов и рыб, тёплых и холодных течений и т.д.);
  • определения координат звёзд и других космических тел, составление каталогов звёзд;
  • вычисления траекторий движения новых открытых небесных объектов - комет, астероидов, планетоидов...
  • для расчёта наступления различных небесных явлений и т.д.

Астрономические наблюдения - основной метод астрономических исследований. Десятки тысяч лет назад люди проводили астрономические наблюдения лишь невооружённым глазом, т.е. безо всяких оптических приборов.

На юге Англии сохранилась до наших дней знаменитая каменная постройка - Стоунхендж . Для примитивных племён каменного и бронзового векок Стоунхендж служил лишь местом ритуальных церемоний. Астрономическое значение Стоунхенджа передавалось из уст в уста лишь немногим древним жрецам-друидам.

Шумеры, ассирийцы, вавилоняне тысячи лет назад возводили ступенчатые храмы-зиккураты (некоторые сохранились до наших дней). Зиккураты были не только храмами или административными зданиями, но и местом для наблюдений светил. С верхней площадки жрецы вели наблюдения за звёздами.

Тысячи лет назад были изобретены угломерные приборы (квадрант, секстант, астролябия и др.) - первые астрономические инструменты, с помощью которых определяли положение небесных светил на небе и время наступления небесных явлений. Но о физической природе небесных тел люди могли тогда только догадываться.

Медленно, но верно развивалась идея о шарообразности Земли. Одно из первых доказательств выдвинул в IV веке до н.э. великий древнегреческий учёный Аристотель . Справедливо полагая, что лунное затмение – это прохождение тени Земли по диску Луны, он обращает внимание, что форма этой тени всегда такая, которую может дать только шар. Аристотель указал и на то, что при перемещении наблюдателя к югу или северу звезды изменяют свое видимое положение относительно горизонта, а именно в направлении перемещения наблюдателя новые звёзды поднимаются из-за горизонта, а позади опускаются за горизонт. Поскольку звёзды далеки и при перемещении наблюдателя направление на них изменяется мало, то, значит, изменяется положение горизонта, т.е. имеет место кривизна поверхности. Греческий учёный Эратосфен впоследствии сумел определить размеры земного шара.

С древнейших времён Земля считалась неподвижным центром мироздания. В трудах Аристотеля и Птолемея оформилась геоцентрическая (т.е. с Землёй в центре) система мира. Птолемей считал, что планеты и светила движутся по круговым орбитам вокруг неподвижной Земли, являясь при этом вечными и неизменными.

Однако, ещё до Аристотеля и Птолемея Аристарх Самосский считал Землю подвижной, рядовой планетой, обращающейся вокруг Солнца. Эти взгляды спустя почти две тысячи лет развил и дополнил Николай Коперник . Его можно назвать реформатором астрономии древнего мира, потому что его теория о вращении Земли вокруг своей оси и об обращении Земли вокруг Солнца опровергала принятое религиозное описание строения Вселенной. Эту систему мира принято называть гелиоцентрической (т.е. с Солнцем в центре).

Тихо Браге в конце XVI века выдвинул свою, компромиссную систему мира. Она называется гео-гелиоцентрической , потому что она сочетает элементы геоцентрической и гелиоцентрической систем. Согласно воззрениям Браге, планеты обращаются вокруг Солнца, а уж само Солнце вместе с Луной обращается вокруг Земли.

Время показало, что прав был Николай Коперник. Его гелиоцентрическая система мира сегодня является общепринятой.

В начале XVII века был изобретён телескоп - прибор, позволяющий наблюдать слабые, невидимые невооружённым глазом объекты и увеличивать их видимые размеры. В 1609 г. в руки к итальянскому учёному Г. Галилею попала изобретённая голландскими мастерами-оптиками подзорная труба. Разгадав её конструкцию, Галилей создаёт свою трубу (перспективу, как он её называет). Но самая большая заслуга Галилея заключается не в том, что он усовершенствовал подзорную трубу, а то, что он использовал её для наблюдения звёздного неба, что повлекло серию замечательных открытий. Так Галилей получил новые подтверждения в пользу теории Коперника.

1 января 1801 года была открыта Церера - первый астероид (ныне Церера считается малой планеой). В 1781 г. с помощью гигантского телескопа В. Гершель открыл планету Уран.

Благодаря телескопам были открыты неизвестные ранее небесные тела, а об известных узнали много нового, необычайного. Телескоп стал ключом к познанию тайн Вселенной. С его помощью были впервые измерены космические расстояния и размеры небесных тел, а в середине позапрошлого века благодаря изобретённым физическим приборам астрономы научились определять состав небесных тел.

Одной из самых известных обсерваторий нашей страны является Пулковская (недалеко от Санкт-Петербурга). Она была открыта в 1839 г. Руководил созданием обсерватории известный учёный-астроном В.Я. Струве , ставший впоследствии её первым директором. Научная деятельность обсерватории охватывает практически все приоритетные направления фундаментальных исследований современной астрономии.

В середине прошлого века были изобретены радиотелескопы , способные принимать и посылать космические радиосигналы. С помощью приборов, созданных учёными-физиками, астрономы могут наблюдать невидимое для глаз излучение небесных тел и космические лучи.

Возникшая благодаря развитию астрономических и физических знаний наука космонавтика позволила непосредственно исследовать околоземное пространство и постичь природу ближайших к Земле планет и их спутников, а в будущем позволит исследовать и освоить всю Солнечную систему.


Хотя в последние десятилетия наука движется вперёд просто семимильными шагами, знания людей о космосе всё ещё стремятся к нулю. И не удивительно, что учёные постоянно обнаруживают во Вселенной всё новые, кажущиеся порой фантастическими, явления. О самой «горячей» десятке таких открытий, сделанных в последнее время и пойдёт речь в этом обзоре.

1. «Космический щит» человечества


Исследователи НАСА обнаружили удивительный и полезный побочный продукт радиопередач: антропогенно созданный «пузырь VLF (низкочастотный)» вокруг Земли, который защищает людей от некоторых видов излучения. На Земле также есть радиационные пояса Ван-Аллена естественного происхождения, в которых солнечные энергичные частицы попадают в «ловушку» магнитного поля Земли.

Но теперь ученые считают, что накопленное электромагнитное излучение Земли непреднамеренно создало своего рода радиоактивный барьер, который отклоняет некоторые космические частицы с высокой энергией, постоянно наносящие урон Земле.

2. Galaxy PGC 1000714


Galaxy PGC 1000714, возможно, является «самой уникальной», когда-либо наблюдаемой учеными. Это объект типа Хога с 2 кольцами вокруг него (чем-то это похоже на Сатурн, то только размером с галактику). Всего 0,1% галактик имеют одно кольцо, но PGC 1000714 уникальна тем, что может похвастаться двумя. Ядро галактики возрастом 5,5 млрд. Лет состоит в основном из старых красных звезд. Вокруг него расположено большое, намного более молодое (0,13 млрд. лет) внешнее кольцо, в котором сияют более горячие и молодые синие звезды.

Когда ученые посмотрели на галактику на нескольких длинах волн, они обнаружили совершенно неожиданный отпечаток второго, внутреннего кольца, которое гораздо ближе к ядру в плане возраста, а также вообще не связано с внешним кольцом.

3. Экзопланета Kelt-9b


Самая горячая экзопланета, обнаруженная на данный момент, более горячая, чем множество звезд. На поверхности недавно описанной Kelt-9b температура поднимается до 3 777 градусов Цельсия, и это на ее темной стороне. А на стороне, обращенной к звезде, температура составляет примерно 4 327 градусов по Цельсию - почти столько же, как и на поверхности Солнца. Звезда, в системе которой находится данная планета, Kelt-9, является звездой A-типа, и находится в 650 световых годах от Земли в созвездии Лебедя.

Звезды типа A относятся к числу самых жарких, и этот конкретный индивидуум - «ребенок» по галактическим меркам, поскольку ему всего лишь 300 миллионов лет. Но поскольку звезда растет и расширяется, ее поверхность в конечном итоге поглотит Kelt-9b.

4. Обрушение внутрь себя


Оказывается, черные дыры могут образоваться без титанических взрывов сверхновых или столкновения двух невероятно плотных объектов, таких как нейтронные звезды. По-видимому, звезды могут «обрушиваться внутрь себя», превращаясь в черные дыры, относительно тихо. В исследовании «Большой бинокулярный телескоп» были обнаружены тысячи потенциальных «неудавшихся сверхновых».

К примеру, звезда N6946-BH1 имела достаточное количество массы для того, чтобы превратиться в сверхновую (примерно в 25 раз больше, чем Солнце). Но изображения показывают, что она всего лишь на короткий срок засветилась немного ярче, а затем просто исчезла в темноте.

5. Магнитные поля Вселенной


Многие небесные тела производят магнитные поля, но самые большие когда-либо обнаруженные поля образуются благодаря гравитационно связанным кластерам галактик. Типичный кластер охватывает около 10 миллионов световых лет (для сравнения, размер Млечного пути - 100 000 световых лет). И эти гравитационные титаны создают невероятно мощные магнитные поля. Кластеры - это по сути скопления заряженных частиц, газовых облаков, звезд и темной материи, а их хаотические взаимодействия создают настоящее «электромагнитное колдовство».

Когда сами галактики проходят слишком близко друг к другу и соприкасаются, то воспламеняющиеся газы на их границах сжимаются, в итоге выстреливая дугообразными «реликтами», которые простираются на расстояние до шести миллионов световых лет, что потенциально даже больше, чем кластер, который их порождает.

6. Ускоренное развитие галактик


Ранняя Вселенная полна тайн, одной из которых является существование кучи загадочно «раскормленных» галактик, которые не должны существовать достаточно долго, чтобы набрать такой размер. В этих галактиках были сотни миллиардов звезд (приличное количество даже по нынешним стандартам), когда Вселенной было всего 1,5 миллиарда лет. А если заглянуть еще дальше в пространство-время, то астрономы обнаружили новый тип гиперактивных галактик, которая и «раскормила» эти ранние аномально развитые галактики.

Когда Вселенной был миллиард лет, эти галактики-предшественники уже производили безумное количество звезд со скоростью, в 100 раз превышающей скорость звездообразования в Млечном Пути. Исследователи обнаружили доказательства того, что даже в малонаселенной юной Вселенной галактики сливались.

7. Новый тип катастрофического события


Рентгеновская обсерватория «Чандра» обнаружила что-то странное, заглядывая в раннюю вселенную. Астрономы «Чандры» наблюдали загадочный источник рентгеновских лучей на расстоянии 10,7 млрд световых лет. Он внезапно стал в 1000 раз ярче, а затем исчез в темноте в течение примерно одного дня. Астрономы обнаруживали аналогичные причудливые рентгеновские всплески и раньше, но этот был в 100 000 раз ярче в рентгеновском диапазоне.

Предварительно в разряд возможных виновников записали гигантские сверхновые, нейтронные звезды или белые карлики, но доказательства не подтверждают ни одного из этого событий. Галактика, в которой случился взрыв, намного меньше и находится далеко от ранее обнаруженных источников, поэтому астрономы надеются, что они нашли «совершенно новый тип катастрофического события».

8. Орбита X9


Обычно считается, что черные дыры разрушают все, что имеет неосторожность приблизиться к ним, но недавно обнаруженный белый карлик X9 является самым близким орбитальным телом, когда-либо приблизившимся к черной дыре. X9 в три раза ближе к черной дыре, чем Луна к Земле, поэтому он совершает полный оборот всего за 28 минут. Это означает, что черная дыра вращает белого карлика вокруг себя быстрее, чем в среднем доставляют пиццу.

X9 находится в 15 000-х световых годах от Земли в шаровидном звездном скоплении 47 Tucanae, являющемся частью созвездия Тукана. Астрономы считают, что X9, вероятно, был большой красной звездой, прежде чем черная дыра притянула его к себе и высосала все внешние слои.

9. Цефеиды


Цефеиды - это космические «дети» возрастом от 10 до 300 миллионов лет. Они пульсируют, а регулярные изменения яркости делают их идеальными ориентирами в космосе. Исследователи обнаружили их в Млечном пути, но они не были уверены в том, что это такое (ведь цефеиды находятся рядом с ядром галактики, и почти невидимы за огромными облаками межзвездной пыли).

Астрономы, наблюдая за ядром в инфракрасном свете, обнаружили удивительно бесплодную «пустыню», в которой не было молодых звезд. Несколько цефеид находятся рядом с центром галактики, а как раз за пределами этого региона простирается огромная мертвая зона на 8 000 световых лет во всех направлениях.

10. «Планетарная троица»


Так называемые «горячие Юпитеры» - газовые шарики наподобие Юпитера, но они ближе по структуре к звездам, чем они должны быть и обращаются вокруг своих звезд по более близким орбитам, чем даже Меркурий. Ученые изучали этих странных небесных тел в течение последних 20 лет, зарегистрировав около 300 подобных «горячих Юпитеров», причем все они вращались вокруг своих звезд в одиночку.

Но в 2015 году исследователи из Мичиганского университета наконец подтвердили то, что казалось невозможным - горячий Юпитер с компаньоном. В системе WASP-47 вокруг звезды вращается горячий Юпитер и еще две совершенно разные планеты - более крупная нептунообразная, а также меньшая, гораздо более плотная, скалистая «сверхземля».

Даже несмотря на то, что космос мы изучаем уже довольно долго, периодически случаются явления, которые не укладываются в . Либо же укладываются, но необычны сами по себе..

Звуки внутри колец Сатурна


Учёные создали довольно интересный алгоритм, переводящий радио- и пламенные волны в звуковой формат, удобный для восприятия. И устройством с подобным алгоритмом снабдили космический аппарат «Кассини». Пока он мирно летел в открытом космосе - всё было нормально. Стандартный шум, редкие предсказуемые всплески. Но когда «Кассини» долетел до пространства между кольцами, все звуки пропали. Вообще. То есть за счёт каких-то физических явлений, пространство полностью экранировалось от некоторых видов волн.

Ледяная планета


Нет, не в нашей солнечной системе. Но учёные уже давно нашли методы, позволяющие не только выявлять экзопланеты, но и судить о их химическом составе. И где-то в космосе абсолютно точно летает шарик льда, размером практически с Землю. А это значит, что вода - не такая уж и редкость. А где вода - там и жизнь. Более того - не известно, есть ли там геотермальная активность, как на одном из спутников Юпитера - первом кандидате на наличие внеземной жизни.

Кольца Сатурна


Всё же, пожалуй, один из наиболее интересных феноменов в нашей солнечной системе. Самое интересное, что уже упомянутый «Кассини» ухитрился проскочить между этими кольцами, ничего себе даже не повредив. Правда, на связь выходить в это время было нельзя, так что приходилось надеяться только на программы. Но потом связь восстановилась и мы получили уникальные снимки.

«Стив»


Это необычное явление природы обнаружили энтузиасты исследования космоса. По сути это что-то типа сверхгорячего (3000 градусов Цельсия) воздушного потока в верхних слоях атмосферы. Двигается он со скоростью 10 км в секунду и совершенно непонятно, за счёт чего это вообще происходит. Но учёные уже принялись потихоньку это явление изучать.

Пригодная для жизни планета


Система LHS 1140 на расстоянии всего 40 световых лет - первый кандидат на наличие внеземной жизни. Совпадает всё - и расположение планеты, и размеры солнца (процентов на 15 всего больше),и общие условия. Так что чисто теоретически, там могли проходить те же самые процессы, что и у нас.

Опасные астероиды


Здоровенный булыжник диаметром в 650 метров пролетел крайне близко от Земли. По астрономическим меркам, конечно же. Фактически же он находился от нас на расстоянии в 4 раза превышающем расстояние от Земли до Луны. Но это уже считается опасным. Ещё бы чуть-чуть... И даже не хочется думать, к чему бы это всё могло привести.

Космический «пельмень»


Все знают, что у планетоидов форма примерно шарообразная. Сильно примерно, но всё же. Но у естественного спутника Сатурна под названием Пан форма, мягко говоря, странноватая. Такой себе «космический пельмень». Снимки были сделаны с помощью «Вояджер -2» в 1981 году, но особенность этого планетоида заметили лишь недавно.

Фотографии пригодной для жизни звёздной системы


Trappist-1 - ещё один кандидат для поиска жизни. Всего 39 световых лет. Несколько планет вращаются в «зоне жизни», хотя и звезда куда менее мощная, нежели Солнце. Так что на эту систему необходимо обратить внимание.

Дата столкновения Земли и Марса


Скажем так, за громким заголовком не стоит практически ничего. Речь идёт о ничтожном шансе через миллиарды лет. Просто потому, что чисто теоретически из-за изменения орбиты Земли и ослабления притяжения Солнца (миллиард лет - это вам не шутки). Да и Марс с Землёй уже взаимодействовали в прошлом - более 85 миллионов лет назад, орбита Земли менялась с круговой на эллиптическую с периодичностью раз в 1,2 млн лет. Теперь уже реже - только раз в 2,4 млн. Дальше, наверняка, ещё реже будет.

Газовый вихрь в кластере Персея


Скажем так, примерно в таких условиях и формируются галактики. Огромное скопление звёздного газа, разогретого до 10 млн. Градусов, которое занимает пространство более миллиона световых лет. Честно, завораживающее зрелище.

Команда сайт и журналист Артём Костин с интересом следят за новыми новостями из мира науки. Ведь каждое новое открытие на шаг приближает нас к пониманию . И, хочется надеяться, к использованию этих законов.

Космос всегда интересовал человечество, но приоткрыл завесу своей таинственности каких-то 60 лет назад – именно тогда людьми были запущены первые спутники и ракеты, но это не уменьшило его загадочности, а наоборот породило массу новых вопросов и помогло обнаружить очень необычные явления, о которых, и пойдет речь.

Галактический каннибализм – оказывается, явление поедания себе подобных не ограничилось нашей планетой, а распространилось и на просторы галактики. К примеру, находящаяся по соседству с Млечным Путем Андромеда съедает менее крупных своих соседей, а внутри нее можно наблюдать останки былых «трапез». Кстати, Млечный Путь, в данный момент, ведет активные действия в направлении Карликовой сферической галактики в Стрельце.

Квазары – необычные маячки, свет которых прибивается к нам из самых краев космоса и позволяет судить о периоде зарождения Вселенной, о временах хаоса и нестабильности. Энергию, выделяемую квазарами можно сравнить с той, которую выделяет одновременно несколько сотен галактик. По мнению ученых, квазары – это огромные черные дыры, которые находятся в центральной части далеких галактик, и обладают изменчивым излучением.

Темная материя – до сих пор нет ни одного свидетельства видимости, или какой либо фиксации этого явления. Есть только предположения, что Вселенная содержит места концентрации темной материи (скрытой массы или темного вещества). На мысль о существовании такого явления натолкнуло прослеживаемое несоответствие массы объектов наблюдения и эффектами гравитации, которые они создают.

Волны гравитации – ученые так называют искривление континуума в пространстве и времени. Такое явление было предсказано самим Энштейном в его различных теориях гравитации. Скорость передвижения гравитационных волн приравнивается к скорости света, но зафиксировать их очень сложно. Заметны только волны, образующиеся в результате масштабных и необратимых изменений космоса, например, слияния черных дыр или столкновения галактик.

Энергия вакуума – по мнению ученых, космический вакуум не такой уж и пустой, а межзвездное пространство содержит виртуальные субатомные частицы, способные разрушаться и возрождаться. Благодаря им, пространство наполнено антигравитационной энергией, которая заставляет двигаться космические объекты и весь космос. Куда именно двигаться пока остается загадкой.

Микроскопические черные дыры – размером с атом, наполняют Вселенную. Так считает та часть ученых, которые сомневаются в теории Большого взрыва. Поведение микро дыр отличается от их больших аналогов. Они невидимо связаны с пятым измерением, что позволяет им влиять на время и пространство. Проверить существование микро черных дыр крайне сложно, в дальнейшем предполагается проводить исследование этого необъяснимого явления при помощи Большого Андронного Коллайдера.

Нейтрино – нейтрально заряженные элементарные частицы, почти не имеющие собственного удельного веса. Благодаря своей нейтральности частицы могут проходить сквозь свинцовый слой, поскольку взаимодействие нейтрино с веществом минимально. Таким образом, каждую секунду нас самих и все окружающее пронзает 10^14 нейтральных частиц, излучаемых солнцем.

Экзопланета – это те планеты, которые существуют вне зависимости от Солнца. На 2010 год ученые заявили о существовании 452экзопланет, расположенных в 385 планетных системах. По размерам, обнаруженные экзопланеты самые разные – от громадных звезд до небольших скалистых объектов. С открытием такого явления как экзопланета, ученые смогли с уверенностью заявить, что планетарные системы космоса очень распространены.

Микроволновый космический фон – явление было обнаружено в 60х годах ХХвека. Пространство между звездами имеет слабый радиационный фон – или реликтовое излучение. Некоторые полагают, что это последствия Большого взрыва, ставшего началом начал. Именно микроволновый космический фон главный факт, на котором и основывается теория Большого взрыва.

Антиматерия – ее частицы противостоят обычному миру. Каждый отрицательно заряженный электрон имеет аналог в антивеществе – позитрон, у которого заряд положительный. Когда случается столкновение 2х противоположностей, происходит их уничтожение, сопровождающееся выбросом энергии, равной их суммарной массе. Уже получен атом антиводорода (позитрон+антипротон) и ученые могут изучать его свойства. По мнению некоторых футуристов, придет время, когда космические корабли будут приводиться в действие именно энергией столкновения антиподов.

Ежедневно в обсерваториях мира обрабатывается огромное количество данных. Регулярно совершаются новые открытия, которые могут стать очень полезными для науки, но покажутся ничем не примечательными обычным людям. Тем не менее, некоторые космические явления, за которыми астрономы смогли наблюдать в последние годы, – настольно редкие и неожиданные, что они удивят даже самых ярых противников астрономии.

Ультрадиффузные галактики

Так выглядит редкий космический объект - ультра-диффузная галактика

Не секрет, что формы галактик могут сильно отличаться. Но ещё несколько лет назад учёные даже не подозревали, что существуют так называемые «пушистые» галактики. Они очень тонкие и включают себя очень мало звёзд. Диаметр некоторых из них достигает 60 тысяч световых лет, что сравнимо с размерами Млечного пути, однако звёзд в них примерно в 100 раз меньше.

Это интересно: С помощью гигантского телескопа Мауна-Кеа, размещённого на Гавайах, астрономы обнаружили 47 неизвестных ранее ультрадиффузных галактик. Звёзд в них настолько мало, что любой сторонний наблюдатель, посмотрев в нужный участок неба, увидел бы там лишь пустоту.

Ультрадиффузные галактики настолько необычны, что астрономы до сих пор не могут подтвердить ни одной догадки по поводу их образования. Возможно, это просто бывшие галактики, в которых исчерпались запасы газа. Существует и предположение, что УДГ являются просто кусками, «оторвавшимися» от более крупных галактик. Не меньше вопросов вызывает и их «живучесть». Ультрадиффузные галактики были обнаружены в кластере Coma – участке космоса, в котором бурлит тёмная материя, а любые нормальные галактики сжимаются на огромных скоростях. Этот факт позволяет предположить, что ультрадиффузные галактики приобрели свой вид из-за сумасшедшей гравитации в космическом пространстве.

Комета, совершившая самоубийство

Как правило, кометы имеют крошечные размеры, и, если они сильно отдалены от Земли, наблюдать за ними трудно даже с помощью современной техники. К счастью, существует ещё и космический телескоп Хаббл. Благодаря ему учёные недавно стали свидетелями редчайшего явления – спонтанного распада ядра кометы.

Стоит отметить, что в действительности кометы – намного более хрупкие объекты, чем может казаться. Они легко разрушаются при любых космических столкновениях или при прохождении через гравитационное поле массивных планет. Однако комета P/2013 R3 распалась в тысячи раз быстрее, чем другие подобные космические объекты. Произошло это очень неожиданно. Учёные выяснили, что эта комета уже давно понемногу разрушалась из-за кумулятивного воздействия солнечного света. Солнце освещало комету неравномерно, тем самым заставляя её вращаться. Интенсивность вращения со временем увеличивалась, и в один момент небесное тело не выдержало нагрузки и развалилось на 10 крупных осколков весом в 100–400 тысяч тонн. Эти куски медленно отдаляются друг от друга и оставляют за собой поток мельчайших частиц. Кстати, наши потомки при желании смогут стать свидетелями последствий данного распада, ведь части R3, которые не упали на Солнце, ещё встретятся им в виде метеоров.

Рождение звезды


За 19 лет размер и внешний вид молодой звезды значительно изменились

На протяжении 19 последних лет астрономы имеют возможность наблюдать за тем, как небольшая молодая звезда, названная W75N(B)-VLA2, созревает в достаточно массивное и зрелое небесное тело. Отдалённую от Земли всего на 4200 световых лет звезду впервые заметили в 1996 году астрономы радио-обсерватории в городе Сан-Августин, штат Нью-Мексико. Наблюдая за ней впервые, учёные заметили плотное газовое облако, которое исходило от нестабильной, едва рождённой звезды. В 2014 году радиоэлектический телескоп снова был направлен в сторону W75N(B)-VLA2. Учёные решили ещё раз изучить формирующуюся звезду, пребывающую уже в «подростковом возрасте».

Они были очень удивлены, когда увидели, что за столь малый по астрономическим мерам промежуток времени внешний вид W75N(B)-VLA2 заметно изменился. Правда, он эволюционировал так, как и прогнозировали специалисты. За 19 лет газовая часть звезды сильно растянулась в ходе взаимодействия с колоссальным скоплением космической пыли, окружавшей космическое тело в момент его возникновения.

Необычная скалистая планета с большими колебаниями температуры


55 Cancri Е - одна из самых необычных планет, известных астрономам

Небольшое космическое тело под названием 55 Cancri Е учёные успели окрестить «алмазной планетой» из-за высокого содержания в её недрах углерода. Но недавно астрономы выявили ещё одну отличительную деталь этого космического объекта. Температура на его поверхности может изменяться на целых 300%. Это делает данную планету уникальной в сравнении с тысячами других скалистых экзопланет.

Из-за своего необычного положения 55 Cancri Е проходит полный круг вокруг своей звезды всего за 18 часов. Одной стороной эта планета всё время повёрнута к ней, как Луна к Земле. Учитывая, что температура может колебаться в пределах от 1100 до 2700 градусов по Цельсию, специалисты предполагают, что поверхность 55 Cancri Е покрыта постоянно извергающимися вулканами. Только так можно было бы объяснить необычное тепловое поведение этой планеты. К сожалению, если это предположение верно, 55 Cancri Е не может представлять собой гигантский алмаз. В таком случае придётся признать, что содержание углерода в её недрах было переоценено.

Подтверждение вулканической гипотезе можно найти даже в нашей Солнечной системе. Например, спутник Юпитера Ио расположен очень близко к газовому гиганту. Силы притяжения, воздействующие на него, сделали из Ио огромный раскалённый вулкан.

Самая удивительная планета – Кеплер 7В


Кеплер 7В - планета, плотность которая примерно такая же, как у пенополистирола

Газовый гигант под названием Кеплер 7В – космический феномен, удивляющий всех астрономов. Во-первых, эксперты были поражены, рассчитав размеры этой планеты. Она имеет в 1,5 раза больший диаметр, чем Юпитер, но весит в несколько раз меньше. Исходя из этого, можно сделать вывод, что средняя плотность Кеплера 7В примерно такая же, как у пенополистирола.

Это интересно: Если бы где-нибудь во Вселенной был океан, в который можно было бы поместить такую гигантскую планету, она бы в нём не утонула.

А в 2013 году астрономы впервые сумели составить карту облачного покрова Кеплера 7В. Это была первая планета не из Солнечной системы, исследованная настолько детально. С помощью инфракрасных изображений учёные также смогли измерили температуру на поверхности этого небесного тела. Выяснилось, что она колеблется в пределах от 800 до 1000 градусов по Цельсию. Это весьма жарко по нашим меркам, но намного холодней, чем ожидалось. Дело в том, что Кеплер 7В расположен к своей звезде даже ближе, нежели Меркурий к Солнцу. После трёхлетних наблюдений астрономы смогли выяснить причину температурного парадокса: оказалось, что облачный покров достаточно плотный, поэтому он отражает большую часть тепловой энергии.

Это интересно: Одна сторона Кеплера 7В всегда укутана плотными облаками, а на другой постоянно царит ясная погода. Астрономам не известно ни одной другой аналогичной планеты.


В следующий раз тройное затмение Юпитера произойдёт в 2032 году

Мы можем наблюдать затмения достаточно часто, но не понимаем, насколько вообще редки подобные явления во Вселенной.

Солнечное затмение – удивительное космическое совпадение. Диаметр нашего светила в 400 раз больше, чем у Луны, и оно находится примерно в 400 раз дальше от нашей планеты. Так уж получилось, что Земля расположена в идеальном месте для того, чтобы люди могли наблюдать за тем, как Луна заслоняет собой Солнце, а их контуры совпадают.

Лунное затмение имеет несколько другую природу. Мы перестаём видеть наш спутник, когда Земля занимает положение между Солнцем и Луной, закрывая последнюю от лучей. Это явление наблюдается гораздо чаще.

Это интересно: Как солнечные, так и лунные затмения великолепны, но тройное затмение Юпитера производит куда более сильное впечатление. В начале января 2015 года космический телескоп Хаббл смог зафиксировать момент, когда три «галилеевых» спутника газового гиганта – Ио, Европа и Каллисто, будто по команде выстроились в одну линию перед своим «папой». Если бы мы могли в этот момент оказаться на поверхности Юпитера, то стали бы свидетелями психоделического тройного затмения.

К счастью, идеальная гармония движения спутников заставляет данное явление повторяться, а учёные получают возможность спрогнозировать его точную дату и время. В следующий раз тройное затмение Юпитера произойдёт в 2032 году.

Колоссальный «питомник» будущих звёзд


Астрономы обнаружили формирующееся шаровое скопление звёзд, в котором пока есть только газ

Звёзды часто объединяются в группы или так называемые шаровые скопления. Некоторые из них включают в себя до миллиона звёзд. Подобные скопления встречаются во всей Вселенной, только в нашей галактике их около 150. Причём все они достаточно старые, так что астрономы не могут понять механизмов формирования звёздных скоплений.

Но 3 года назад астрономы обнаружили редчайший объект – формирующееся шаровое скопление, которое пока что состоит только из газа. Находится это скопление в так называемых «Антеннах» – двух взаимодействующих галактиках NGC-4038 и NGC-4039, относящихся к созвездию Ворона.

Формирующееся скопление отдалено от Земли на 50 миллионов световых лет. Оно представляет собой гигантское облако, масса которой в 52 миллиона раз превышает солнечную. Возможно, в нём родятся сотни тысяч новых звёзд.

Это интересно: Когда астрономы впервые увидели это скопление, они сравнивали его с яйцом, из которого скоро вылупится цыплёнок. В действительности цыплёнок наверняка «вылупился» уже давно, ведь в теории звёзды начинают формироваться в таких областях примерно через 1 миллион лет. Но скорость света ограничена, поэтому мы можем наблюдать за их рождением только тогда, когда их реальный возраст уже достиг 50 миллионов лет.

Значимость этого открытия переоценить трудно. Именно благодаря ему мы начинаем познавать тайны одного из самых таинственных процессов в космосе. Скорее всего, именно из таких массивных газовых областей рождаются все ошеломляюще красивые шаровые скопления.

Стратосферная обсерватория помогла учёным разгадать тайну космической пыли


Все звёзды когда-то образовались из космической пыли

Навороченная стратосферная обсерватория НАСА, используемая для инфракрасной съёмки, расположена на борту суперсовременного самолёта Boeing 747SP. С её помощью учёные проводят сотни исследований на высоте от 12 до 15 километров. В этом слое атмосферы содержится очень немного водяного пара, поэтому данные измерений практически не искажаются. Это позволяет специалистам из НАСА получать более точные представления о космосе.

В 2014 году СОФИЯ разом оправдала все средства, потраченные на её создание, когда помогла астрономам решить тревожившую их умы на протяжении десятилетий загадку. Как вы, возможно, слышали в каком-то их познавательных шоу, из мельчайших частиц межзвёздной пыли состоят все объекты во Вселенной – планеты, звёзды и даже мы с вами. Но было непонятно, как крошечные крупинки звёздного вещества смогли пережить, например, взрывы сверхновых.

Рассматривая через инфракрасные объективы обсерватории СОФИЯ бывшую сверхновую Стрелец А, взорвавшуюся 100 тысяч лет назад, учёные выяснили, что плотные газовые области вокруг звёзд служат такими себе амортизаторами для частичек космической пыли . Так они спасаются от уничтожения и рассеивания в глубинах Вселенной при воздействии мощнейшей ударной волны. Даже если вокруг Стрельца А останется 7-10% пыли, этого хватит для образования 7 тысяч тел, сравнимых по размеру с Землёй.

Бомбардировка Луны метеорами Персеиды


Метеоры постоянно бомбят поверхность Луны

Персеиды – метеорный поток, ежегодно освещающий наш небосвод с 17 июля по 24 августа. Наибольшая интенсивность «звёздного дождя» обычно наблюдается с 11 по 13 августа. За Персеидами наблюдают тысячи астрономов-любителей. Но они бы могли увидеть намного больше интересного, если бы направили объектив своего телескопа на Луну.

В 2008 году один из американских любителей так и сделал. Он стал свидетелем необычного зрелища – постоянных ударов космических булыжников по Луне. Следует отметить, что большие глыбы и мелкие песчинки бомбят наш спутник постоянно, ведь на нём отсутствует атмосфера, в которой бы они раскалялись и сгорали от трения. Масштабы бомбардировки многократно возрастают к середине августа.

Это интересно: Начиная с 2005 года астрономы из НАСА наблюдали более 100 подобных «массированных космических атак». Они собрали огромное количество данных и теперь надеются, что сумеют защитить будущих космонавтов или, чем чёрт не шутит, колонистов Луны от пулеобразных метеоритных тел, появление которых нельзя спрогнозировать. Они способны проломить куда более толстую преграду, чем скафандр – энергия удара небольшого камушка сравнима с мощностью взрыва 100 килограммов тротила.

В НАСА даже составили подробные схемы бомбардировок. Так что, если вы когда-то захотите отправиться в отпуск на Луну, рекомендуем изучить карту метеоритной опасности, обновляющуюся каждые несколько минут.

Огромные галактики производят намного меньше звёзд, чем карликовые


Быстрее всего процесс формирования звёзд происходит в карликовых галактиках

Как ясно из названия, размеры карликовых галактик в масштабах Вселенной весьма скромны. Тем не менее, они очень мощные. Карликовые галактики – космическое доказательство того, что важней всего не размеры, а умение ими распоряжаться.

Астрономы неоднократно проводили исследования, целью которых было определение скорости звёздообразования в средних и больших галактиках, но к самым маленьким они добрались лишь недавно.

Проанализировав данные, полученные с космического телескопа Хаббл, наблюдавшего за карликовыми галактиками в инфракрасном диапазоне, специалисты сильно удивились. Они выяснили, что в них звёзды образуются намного быстрее, чем в более массивных галактиках. До этого учёные предполагали, что количество звёзд напрямую зависит от количества межзвёздного газа, но, как видите, ошибались.

Это интересно: Крошечные галактики – самые продуктивные из всех известных астрономам. Количество звёзд в них может удвоиться за каких-то 150 миллионов лет – мгновение для Вселенной. В галактиках же нормального размера подобный прирост численности может произойти не менее, чем за 2-3 миллиарда лет.

К сожалению, на данном этапе астрономам неизвестны причины подобной плодовитости карликов. Отметим, что для того, чтобы достоверно определить взаимосвязь между массой и особенностями звёздообразования, им нужно было бы заглянуть в прошлое примерно на 8 миллиардов лет. Возможно, учёные смогут раскрыть тайны карликовых галактик, когда обнаружат множество подобных объектов, находящиеся на разных этапах развития.

400 лет назад великий учёный Галилео Галилей создал первый в истории телескоп. С тех пор изучение глубин Вселенной стало неотъемлемой частью науки. Мы живём в век невероятно быстрого научно-технического прогресса, когда важные астрономические открытия совершаются одно за другим. Тем не менее, чем больше мы изучаем космос, тем больше появляется вопросов, на которые учёные не могут ответить. Интересно, смогут ли люди когда-то сказать, что знают о Вселенной всё?