Ткани изучает наука. Гистология. Типы хрящевой ткани

План лекции:

    Гистология как наука, предмет изучения гистологии

    Клетка - структурная единица тканей

    Ткани: понятие, характеристики. Классификация тканей

Гистология как наука, предмет изучения гистологии

Гистологию и цитологию традиционно относят к морфологическим наукам (от греч. мorphe – форма), в прежние годы они в значительной мере имели описательный характер. В последние десятилетия возможности гистологии и цитологии не ограничиваются изучением особенностей микроскопического или ультрамикроскопического строения тканей, эти науки анализируют их функциональные характеристики. Гистология и цитология являются важной частью медицинского образования. Они создают основу для изучения других фундаментальных медико-биологических и клинических дисциплин.

Цитология – (от греч. kytos – клетка и logos - учение) или биология клетки. Общая цитология изучает наиболее общие структурно-функциональные свойства, присущие всем клеткам организма: их жизнедеятельность и морфологию, функцию и смерть.

Гистология – наука о тканях (от греч. gistos - ткань и греч. logos - учение) наука о строении, развитии и жизнедеятельности тканей животных организмов. Гистология как наука традиционно объединяет два раздела: общую и частную гистологию.

Общая гистология изучает основные фундаментальные свойства важнейших групп тканей, являясь, по сути, биологией тканей.

Частная гистология изучает особенности структурно-функциональной организации и взаимодействия тканей в составе конкретных органов, тесно смыкаясь с микроскопической анатомией, т.о. главным объектом изучения общей и частной гистологии человека служат его ткани.

Самостоятельным является раздел гистологии, изучающий ткань в динамике ее развития - эмбриология.

Эмбриология (греч. embryon - утробный плод, зародыш и греч. logos - учение) – наука о внутриутробном развитии нового организма от одноклеточного до высокоорганизованного многоклеточного организма. Она необходима для врача, так как раскрывает закономерности развития, узловые этапы и критические периоды в жизни организма.

Клетка - структурная единица тканей

Клетка – живая система структурированных биополимеров, отграниченная биологически активной мембраной, способная к саморегуляции обменных процессов, самовосполнению энергии, самовоспроизведению и адаптации.

В эукариотических клетках выделяют 3 основных части : оболочку клетки - плазмолемму или цитолемму, ядро и цитоплазму.

Помимо клетки в организме человека и животных создаются другие структурные единицы:

Симпласт – надклеточная многоядерная структура, содержащая большое количество неразделенной цитоплазмы. Примером симпласта является мышечное волокно, размеры которого могут достигать нескольких сантиметров.

Постклеточные структуры – производные клетки, как правило, утратившие ядро в процессе развития и не способные к делению. Примером постклеточной структуры является эритроцит.

Межклеточное вещество – продукт жизнедеятельности клетки. В некоторых тканях его структура определяет свойства, например костная и хрящевая ткани имеют высокую механическую плотность из-за особого строения межклеточного вещества.

Ткани: понятие, характеристики. Классификация тканей

Организм человека и животных представляет собой целостную систему, в которой можно выделить ряд иерархических уровней организации живой материи:

клетки – ткани – структурно-функциональные единицы органов – органы – системы органов – организм в целом .

Выдающиеся ученые от Аристотеля и Галена обращали внимание на однородность живой материи в различных органах у человека и животных. Но впервые термин ткань был применен французским анатомом и хирургом М. Ксавье. Этим ученым была описана 21 ткань, но в его классификации отразилась эпоха идеализма и метафизики. Так он выделял нервную ткань животной жизни и нервную ткань органической (растительной) жизни. И только в 1854 году И. Келикер и Ф. Лейдиг одновременно создали новую классификацию, выделив всего 4 типа тканей. Эта классификация не утратила значения и на сегодняшний день.

Ткань – это исторически сложившаяся система, состоящая из клеток и неклеточных структур, сходных по происхождению (генезу), строению (морфологии), метаболизму и функционированию.

Итак, гистологически организм состоит из 4 типов тканей:

1. Эпителиальные ткани

2. Ткани внутренней среды – соединительные ткани

3. Мышечные ткани

4. Нервная ткань

Эпителиальные ткани развиваются из всех трех зародышевых листков , поэтому различают эпителии эктодермального, мезодермального и энтодермального происхождения. Объединены они в одну группу на основании схожести строения и функционирования:

    Все эпителиальные ткани представляют собой пласты (реже тяжи) клеток - эпителиоцитов , между которыми почти нет межклеточного вещества , и клетки тесно связаны друг с другом с помощью различных контактов.

    Эпителиальная ткань (если она многослойна, то самый первый – внутренний ее слой) располагается на базальной мембране , отделяющей эпителиоциты от подлежащей соединительной ткани.

    Эпителий не содержит кровеносных сосудов . Питание эпителиоцитов осуществляется диффузно через базальную мембрану со стороны подлежащей соединительной ткани. Исключением является сосудистая полоска улиткового канала внутреннего уха.

    Эпителиоциты обладают полярностью: выделяют базальный (лежащий в основании) и апикальный (верхушечный) полюса клеток, которые имеют разное строение.

    Всем эпителиям присуща высокая способность к регенерации .

Различают две группы эпителиальных тканей :

    поверхностные эпителии (покровные и выстилающие), которые, в свою очередь, бывают однослойными (плоский, кубический, цилиндрический эпителий) и многослойными (ороговевающий, неороговевающий, переходный эпителий).

    железистые эпителии , образующие железы, которые синтезируют и выделяют специфические продукты - секреты.

Наиболее сложно устроены и разнообразны по морфологии ткани внутренней среды или соединительные ткани . Все они объединены в одну группу т.к. имеют ряд общих признаков:

    Общий генез - развиваются из мезенхимы .

    Общий принцип строения - все они состоят из двух структурных единиц - клеток и межклеточного вещества .

    Все эти ткани не граничат с внешней средой и полостями тела, образуют внутреннюю среду организма и поддерживают ее гомеостаз

    Клетки тканей внутренней среды, как правило, аполярны и не связаны друг с другом.

Классификация тканей внутренней среды (соединительные ткани)

    Ткани внутренней среды с защитной и трофической функцией : кровь, лимфа, кроветворные ткани - миелоидная, лимфоидная.

    Собственно соединительные ткани: РВСТ (неоформленная), ПВСТ (оформленная и неоформленная).

    Ткани внутренней среды со специальными свойствами: жировая, ретикулярная, пигментная, слизистая ткань.

    Ткани внутренней среды с опорной функцией - скелетные соединительные ткани: костная, хрящевая.

Мышечные ткани имеют различное происхождение, но объединены в одну группу, так как способны к сокращению и обеспечивают различного рода двигательные реакции организма.

Все мышечные ткани делятся на:

    Гладкие

а. Висцерального типа (собственно гладкомышечная ткань)

б. Мионейральная мышечная ткань

в. Миоэпителиальная ткань или миоидные клеточные комплексы

2. Поперечно-полосатые

а. Соматического типа (скелетная мышечная ткань).

б. Целомического типа (сердечная мышечная ткань).

Нервная ткань является основой строения органов нервной системыи органов чувств, состоит из взаимосвязанных нервных клеток и нейроглии, обеспечивающих специфические функции восприятия раздражений, возбуждения, передачи нервного импульса.

Контрольные вопросы

Современная медицина состоит из множества направлений, ведь тело человека – это комплекс чрезвычайно сложных биологических систем.


Одно из медицинских направлений носит название гистологии. Что это за наука, какие органы находятся в сфере её внимания?

Что такое гистология?

Открыв любой медицинский справочник, мы без труда узнаем, что гистологией называют медицинскую дисциплину, которая занимается исследованиями тканей человеческого тела и организмов животных, их изменениями, наступающими в ходе болезней, а также воздействия различных препаратов и химических соединений. Тело человека состоит из пяти основных типов тканей:

— мышечной;

— соединительной;

— эпителиальной (покровной);

— нервной;

У каждой из этих тканей имеются характерные лишь для неё особенности строения, жизнедеятельности, обмена веществ на клеточном и межклеточном уровне. Зная нормальное состояние тканей и признаки патологических изменений, легко диагностировать болезни, которые никак не проявляют себя на ранних стадиях – например, начальные фазы онкологического заболевания.

Чтобы провести гистологическое исследование, необходимо взять образец интересующей врача ткани хирургическим способом, методом биопсии либо аутопсии. Эту науку нередко называют клеточной анатомией, так как она изучает строение клеток разных видов тканей.

Подготовка к гистологическому исследованию

Изучение взятого образца ткани происходит , но перед этим материал необходимо обработать, чтобы предотвратить его естественный распад и привести в удобный для исследования вид. Обработка включает ряд обязательных этапов:

— фиксацию при помощи формалина, спирта или пикриновой кислоты путём погружения образца в жидкость либо введения жидкости в сосуды;

— проводку, в ходе которой образец избавляется от воды и пропитывается парафином;

— заливку расплавленным парафином со специальными добавками, улучшающими эластичность материала, для получения твёрдого бруска, пригодного для дальнейшей работы;

— микротомирование, т.е. изготовление ряда тончайших срезов при помощи специального инструмента – микротома;

— окрашивание срезов специальными красителями, чтобы облегчить выявление структуры ткани;

— заключение каждого среза между двумя лабораторными стёклами, предметным и покровным, после чего их можно хранить в течение нескольких лет, не опасаясь порчи препарата.


После обработки проводится исследование взятого образца ткани различными способами при помощи микроскопа и прочих специальных приборов.

Методы гистологических исследований

На сегодняшний день существует ряд методов, позволяющих изучить различные аспекты жизнедеятельности клеток исследуемой ткани:

— оптическая микроскопия, т.е. осмотр тканевых срезов при помощи обычного микроскопа в естественном либо искусственном видимом свете;

— темнопольная микроскопия, т.е. изучение образца в наклонном световом луче;

— фазово-контрастное исследование;

— люминесцентное и флуоресцентное микроскопическое исследование с окрашиванием образца специальными веществами;

— интерференционное исследование при помощи специального интерференционного микроскопа, облегчающего количественную оценку ткани;

— изучение при помощи электронного микроскопа;

— исследование образцов в ультрафиолетовом свете;

— исследование в поляризованном свете;

— радиоавтографическое исследование;

— цитоспектрофотометрическое исследование;

— применение иммуноцитохимических методик;

— метод культуры клеток;

— микрохирургическое исследование.

Совокупность нескольких методов даёт достаточно полную картину состояния обследуемого органа, что позволяет точно диагностировать заболевание и назначить соразмерное лечение. Это особенно важно при подозрении на онкологическое заболевание, когда от своевременности начала лечения нередко зависит жизнь больного.

Что можно обнаружить при гистологическом исследовании?

Современная медицина широко использует гистологические исследования для диагностики заболеваний, так как они дают чрезвычайно много информации о состоянии исследуемого органа. Изучение образца ткани позволяет выявить:

— воспалительный процесс в острой либо хронической фазе;

— расстройства кровообращения – наличие тромбов, кровоизлияний и т.д.;

— новообразования, с определением их характера – доброкачественности либо злокачественности, а также выявить степень развития опухоли;

Информация, полученная путём гистологического исследования, позволяет достоверно диагностировать заболевания на любых стадиях, устанавливать с самой высокой точностью, насколько далеко зашел патологический процесс либо насколько эффективным было назначенное лечение.


Помимо изучения образцов, взятых у больных, проходящих лечение, гистологи исследуют ткани умерших людей, особенно в случаях, когда есть причины сомневаться в поставленном при жизни диагнозе, либо когда нужно точно установить причину смерти.

ГИСТОЛОГИЯ
(наука о тканях)
ТКАНЬ - общность гистологических
элементов (клеток, волокон,
межклеточного вещества), объединенных
общностью происхождения, строения и
выполняемой функции

Классификация тканей

Эпителиальные ткани
характеризуются пограничным положением в организме
(обычно на границе с внешней средой), сомкнутым
расположением клеток, образующих пласты, практическим
отсутствием межклеточного вещества, полярностью клеток.
Производные мезенхимы
обширная группа тканей, развивающихся из эмбриональной
соединительной ткани, в которых преобладает
межклеточное вещество (ткани внутренней среды (кровь и
лимфа), соединительные и скелетные ткани).
Мышечные ткани
обладают сократительной способностью, благодаря
которой выполняют свою основную функцию перемещение организма или его частей в пространстве.
Нервная ткань
характеризуется способностью к возбудимости и
проведению нервного импульса, благодаря чему
осуществляет взаимосвязь организма с внешней средой,
интеграцию отдельных частей организма между собой.

Эпителиальные ткани

Типы эпителия
Покровный
занимает в организме
пограничное
положение, отделяя
внутреннюю среду от
внешней и вместе с
тем участвует в
обмене веществ
между организмом и
средой
Железистый
осуществляет
секреторную функцию,
т.е. образующие его
эпителиальные клетки
синтезируют и
выделяют веществасекреты, участвующие
в различных
процессах

ФУНКЦИИ ЭПИТЕЛИЕВ:
Разграничительная
Защитная
(барьерная)
Экскреторная
Транспортная
Секреторная
Всасывающая
Сенсорная
(рецепторная)

Локализация различных типов
эпителия
Однослойный плоский
(мезотелий)
Однослойный
кубический
Однослойный
цилиндрический
– Железистый
– Каемчатый
– Мерцательный
Многослойный плоский
– Неороговевающий
– Ороговевающий
Многослойный
переходный
Плевра, брюшина,
сердечная сумка
Яичник, извитые
канальцы нефрона
– Желудок
– Кишечник, желчный пузырь
– Воздухоносные пути, маточные
трубы
– Роговица глаза, ротовая
полость, пищевод
– Кожа
Мочевой пузырь,
мочеточник

Железы

многоклеточные
одноклеточные
внешней
секреции
внутренней
секреции
Внешняя секреция
Простая
Простая
неразветвленная
разветвленная
Простая
трубчатая
трубчатая
неразветвленная
железа
железа
альвеолярная
железа
Сложная
разветвленная
Простая
разветвленная альвеолярнотрубчатая
альвеолярная
железа
железа

Производные мезенхимы

Мезенхима - (от греч. mesenchio - изливаю на средину) –
эмбриональный зачаток соединительной ткани, заполняющий
промежутки между зародышевыми листками.

Клетки мезенхимы имеют веретенообразную или звездчатую форму, отростки которых образуют сетчатый остов. Между клетками расположено межкл

Клетки мезенхимы имеют веретенообразную или
звездчатую форму, отростки которых образуют сетчатый
остов. Между клетками расположено межклеточное
вещество, имеющее студенистую консистенцию.

Из мезенхимы развиваются ткани внутренней среды (кровь, лимфа), соединительные ткани, скелетные (костная, хрящевая) ткани. Это ткани опорно-

Из мезенхимы развиваются ткани внутренней
среды (кровь, лимфа), соединительные ткани,
скелетные (костная, хрящевая) ткани. Это ткани
опорно-трофической функции.

Соединительные ткани

Соединительная ткань по своей значимости занимает в организме
особое место. Она участвует в формировании стромы органов,
прослоек между другими тканями, дермы кожи, скелета, как бы
соединяет разнородные ткани или части этих органов.
Полифункциональный характер соединительных тканей
определяется сложностью их состава и организации
Состав соединительной ткани
Клеточные элементы
Неклеточные элементы
Фибробласты
Макрофаги
Основное аморфное
вещество
Плазмоциты
Тучные клетки
Адвентициальные клетки
Адипоциты
Эндотелиальные клетки
Перициты
Пигментоциты
Волокнистые
структуры

Функции соединительной ткани
Трофическая
Защитная
Пластическая
Опорная
Морфогенетическая

Ткани внутренней среды

Кровь и лимфа являются
основными
разновидностями тканей
мезенхемального
происхождения,
образующими вместе с
рыхлой волокнистой
соединительной тканью
внутреннюю среду
организма.

Функции крови:

Транспортная – перенос различных веществ.
Дыхательная – перенос кислорода и углекислого газа.
Трофическая – перенос питательных веществ.
Экскреторная – выведение из организма различных шлаков,
образующихся в процессе его жизнедеятельности.
Гуморальная – транспорт гормонов и других биологически
активных веществ.
Гомеостатическая – поддержание постоянства внутренней
среды организма.
Теплорегулирующая – перенос тепла из глубоколежащих
органов к поверхности для его рассеяния (что существенно для
крупных животных с высокой интенсивностью обмена веществ).
Защитная – обеспечение гуморального и клеточного иммунитета,
способность к свертыванию.
Передача механической силы (например, для локомоции у
дождевых червей; для разрыва кутикулы при линьке у ракообразных;
для движения таких органов, как сифон двустворчатых моллюсков и
т.п.; для разгибания ног у пауков; для ультрафильтрации в
капиллярах почек).

Состав крови

Кровь
Плазма
Клеточные элементы
Эритроциты
Лейкоциты
Тромбоциты

Эритроциты

Количество эритроцитов у взрослого мужчины составляет
3,95,5 1012/л, а у женщин - 3,7-4,9 1012/л крови. Однако число
эритроцитов у здоровых людей может варьировать в зависимости от
возраста, эмоциональной и мышечной нагрузки, действия
экологических факторов и др.
микрофотография.
Эритроциты в
мазке крови
человек (х 1200)
сканирующая
электронная
микроскопия
(х 3300)
сканирующая
электронная
микроскопия
(х 4000)
монетные столбики
(х 900)

эритроциты в поврежденном сосуде (х 2400)

Лейкоциты

Лейкоциты, или белые кровяные клетки, в свежей крови бесцветны, что
отличает их от окрашенных эритроцитов. Число их составляет в среднем
4-9 109/л.
Увеличение числа лейкоцитов – лейкоцитоз, уменьшение – лейкопения.
Лейкоциты
Зернистые
(гранулоциты)
Нейтрофилы
49-79 %
Эозинофилы
0,5-5 %
Незернистые
(агранулоциты)
Базофилы
0-1 %
Лимфоциты
19-37 %
Моноциты
3-11 %

Скелетные соединительные ткани

Хрящевая
ткань
Костная
ткань

Типы хрящевой ткани

Гиалиновый
хрящ
Волокнистый
хрящ
Эластический
хрящ

Костная ткань

Клеточные
элементы
Обызвествленное
межклеточное
вещество
минерализованный матрикс:
остеобласты
остеоциты
остеокласты
неорганическая часть (50%)
органическая часть (25%)
вода (25%)
органический матрикс:
коллаген
неколлагеновые белки
гликозаминогликаны

Классификация костной ткани

Пластинчатая
ткань
Грубоволокнистая
ткань

Компактное вещество

Б
А
В
Световая микроскопия (А – х 600, Б – х 80, В – х 150)

Мышечные ткани

Классификация:
Поперечнополосатые мышечные
ткани
(образованы волокнами, которые обладают
поперечной исчерченностью – скелетная
мышечная ткань)
Гладкие мышечные ткани
(состоят из клеток, не обладающих поперечной
исчерченностью – стенки бронхов, желудка, кишки,
мочевого пузыря и сосудов)
Сердечная мышечная ткань
(мышечная оболочка сердца - миокард)

Скелетная (соматическая) мышечная ткань

(мышцы, обеспечивающие перемещение тела и его частей в пространстве,
поддержание позы, глазодвигательные мышцы, мышцы стенки полости
рта, языка, глотки, гортани, верхней трети пищевода, мимические мышцы)
Микрофотография (х 300)

Гладкая мышечная ткань

продольный срез гладкой
мышечной ткани.
Микрофотография (х 480)
Структурно-функциональной
единицей гладкой мышечной
ткани мезенхимного типа
служит гладкий миоцит
(гладкая мышечная клетка).
Гладкие миоциты –
одноядерные клетки
преимущественно
веретеновидной формы, не
обладающие поперечной
исчерченностью и
образующие
многочисленные
соединения друг с другом.

Сердечная мышечная ткань

А
Б
Продольный срез миокарда.
Микрофотография (А – х 198, Б – х 640).

Нервная ткань

Состоит из нейронов
(нейроцитов), обладающих
способностью к выработке
и проведению нервных
импульсов, и клеток
нейроглии, выполняющей
ряд вспомогательных
функций (опорную,
трофическую, барьерную,
защитную и др.) и
обеспечивающей
деятельность нейронов.

Структура дендритов (D) и аксона (А) в мультиполярном нейроне, имперегнация азотнокислым серебром (х 320)

Микрофотография нейрона (х 1200)

Биполярные нейроны периферического ганглия, окрашенные солями золота (х 320)

Классификация нейронов

Нейроглия

гетерогенная группа элементов нервной ткани,
обеспечивающая деятельность нейронов и выполняющая
неспецифические функции: опорную, трофическую,
разграничительную, барьерную, секреторную и
защитную функции.
Классификация
Макроглия
астроцитарная глия
(астроглия),
олигодендроглия
эпендимная глия
Микроглия
микроглиоциты

Классификация нервных волокон

Волокна типа А - толстые, миелиновые, с далеко
отстоящими узловыми перехватами. Проводят
импульсы с высокой скоростью (15-120 м/с);
подразделяются на 4 подтипа (α, β, γ, δ) с
уменьшающимися диаметром и скоростью проведения
импульса.
Волокна типа В - средней толщины, миелиновые,
меньшего диаметра, чем волокна тина А, с более тонкой
миелиновой оболочкой и более низкой скоростью
проведения нервных импульсов (5-15 м/с).
Волокна типа С - тонкие, безмиелиновые, проводят
импульсы со сравнительно малой скоростью (0,5-2 м/с).

Межнейронные контакты (синапсы)

Синапс состоит из З-х
компонентов:
пресинаптической части,
постсинаптической части
и синаптической щели.

Содержание статьи

ГИСТОЛОГИЯ, наука, занимающаяся изучением тканей животных. Тканью называют группу клеток, сходных по форме, размерам и функциям и по продуктам своей жизнедеятельности. У всех растений и животных, за исключением самых примитивных, тело состоит из тканей, причем у высших растений и у высокоорганизованных животных ткани отличаются большим разнообразием структуры и сложностью своих продуктов; сочетаясь друг с другом, разные ткани образуют отдельные органы тела.

Гистология изучает ткани животных; исследование растительных тканей обычно относят к анатомии растений. Гистологию иногда называют микроскопической анатомией, поскольку она изучает строение (морфологию) организма на микроскопическом уровне (объектом гистологического исследования служат очень тонкие тканевые срезы и отдельные клетки). Хотя эта наука прежде всего описательная, в ее задачу также входит интерпретация тех изменений, которые происходят в тканях в норме и патологии. Поэтому гистологу необходимо хорошо разбираться в том, как формируются ткани в процессе эмбрионального развития, какова их способность к росту в постэмбриональный период и каким они подвергаются изменениям в различных естественных и экспериментальных условиях, в том числе в ходе своего старения и гибели составляющих их клеток.

История гистологии как отдельной ветви биологии тесно связана с созданием микроскопа и его совершенствованием. М.Мальпиги (1628–1694) называют «отцом микроскопической анатомии», а следовательно гистологии. Гистология обогащалась наблюдениями и методами исследования, проводившимися или создававшимися многими учеными, основные интересы которых лежали в области зоологии или медицины. Об этом свидетельствует гистологическая терминология, увековечившая их имена в названиях впервые описанных ими структур или созданных методов: островки Лангерганса, либеркюновы железы, купферовы клетки, мальпигиев слой, окраска по Максимову, окраска по Гимза и т.п.

В настоящее время получили распространение методы изготовления препаратов и их микроскопического исследования, дающие возможность изучать отдельные клетки. К таким методам относятся техника замороженных срезов, фазово-контрастная микроскопия, гистохимический анализ, культивирование тканей, электронная микроскопия; последняя позволяет детально изучать клеточные структуры (клеточные мембраны, митохондрии и др.). С помощью сканирующего электронного микроскопа удалось выявить интереснейшую трехмерную конфигурацию свободных поверхностей клеток и тканей, которую невозможно увидеть под обычным микроскопом.

Происхождение тканей.

Развитие зародыша из оплодотворенного яйца происходит у высших животных в результате многократных клеточных делений (дробления); образующиеся при этом клетки постепенно распределяются по своим местам в разных частях будущего зародыша. Первоначально эмбриональные клетки похожи друг на друга, но по мере нарастания их количества они начинают изменяться, приобретая характерные особенности и способность к выполнению тех или иных специфических функций. Этот процесс, называемый дифференцировкой, в конечном итоге приводит к формированию различных тканей. Все ткани любого животного происходят из трех исходных зародышевых листков: 1) наружного слоя, или эктодермы; 2) самого внутреннего слоя, или энтодермы; и 3) среднего слоя, или мезодермы. Так, например, мышцы и кровь – это производные мезодермы, выстилка кишечного тракта развивается из энтодермы, а эктодерма образует покровные ткани и нервную
систему.

Основные типы тканей.

Гистологи обычно различают у человека и высших животных четыре основных ткани: эпителиальную, мышечную, соединительную (включая кровь) и нервную. В одних тканях клетки имеют примерно одинаковую форму и размеры и так плотно прилегают одна к другой, что между ними не остается или почти на остается межклеточного пространства; такие ткани покрывают наружную поверхность тела и выстилают его внутренние полости. В других тканях (костной, хрящевой) клетки расположены не так плотно и окружены межклеточным веществом (матриксом), которое они продуцируют. От клеток нервной ткани (нейронов), образующих головной и спинной мозг, отходят длинные отростки, заканчивающиеся очень далеко от тела клетки, например в местах контакта с мышечными клетками. Таким образом, каждую ткань можно отличить от других по характеру расположения клеток. Некоторым тканям присуще синцитиальное строение, при котором цитоплазматические отростки одной клетки переходят в аналогичные отростки соседних клеток; такое строение наблюдается в зародышевой мезенхиме, рыхлой соединительной ткани, ретикулярной ткани, а также может возникнуть при некоторых заболеваниях.

Многие органы состоят из тканей нескольких типов, которые можно распознать по характерному микроскопическому строению. Ниже дается описание основных типов тканей, встречающихся у всех позвоночных животных. У беспозвоночных, за исключением губок и кишечнополостных, тоже имеются специализированные ткани, аналогичные эпителиальной, мышечной, соединительной и нервной тканям позвоночных.

Эпителиальная ткань.

Эпителий может состоять из очень плоских (чешуйчатых), кубических или же цилиндрических клеток. Иногда он бывает многослойным, т.е. состоящим из нескольких слоев клеток; такой эпителий образует, например, наружный слой кожи у человека. В других частях тела, например в желудочно-кишечном тракте, эпителий однослойный, т.е. все его клетки связаны с подлежащей базальной мембраной. В некоторых случаях однослойный эпителий может казаться многослойным: если длинные оси его клеток расположены непараллельно друг другу, то создается впечатление, что клетки находятся на разных уровнях, хотя на самом деле они лежат на одной и той же базальной мембране. Такой эпителий называют многорядным. Свободный край эпителиальных клеток бывает покрыт ресничками, т.е. тонкими волосовидными выростами протоплазмы (такой ресничный эпителий выстилает, например, трахею), или же заканчивается «щеточной каемкой» (эпителий, выстилающий тонкий кишечник); эта каемка состоит из ультрамикроскопических пальцевидных выростов (т.н. микроворсинок) на поверхности клетки. Помимо защитных функций эпителий служит живой мембраной, через которую происходит всасывание клетками газов и растворенных веществ и их выделение наружу. Кроме того, эпителий образует специализированные структуры, например железы, вырабатывающие необходимые организму вещества. Иногда секреторные клетки рассеяны среди других эпителиальных клеток; примером могут служить бокаловидные клетки, вырабатывающие слизь, в поверхностном слое кожи у рыб или в выстилке кишечника у млекопитающих.

Мышечная ткань.

Мышечная ткань отличается от остальных своей способностью к сокращению. Это свойство обусловлено внутренней организацией мышечных клеток, содержащих большое количество субмикроскопических сократительных структур. Существует три типа мышц: скелетные, называемые также поперечнополосатыми или произвольными; гладкие, или непроизвольные; сердечная мышца, являющаяся поперечнополосатой, но непроизвольной. Гладкая мышечная ткань состоит из веретеновидных одноядерных клеток. Поперечнополосатые мышцы образованы из многоядерных вытянутых сократительных единиц с характерной поперечной исчерченностью, т.е. чередованием светлых и темных полос, перпендикулярных длинной оси. Сердечная мышца состоит из одноядерных клеток, соединенных конец в конец, и имеет поперечную исчерченность; при этом сократительные структуры соседних клеток соединены многочисленными анастомозами, образуя непрерывную сеть.

Соединительная ткань.

Существуют различные типы соединительной ткани. Самые важные опорные структуры позвоночных состоят из соединительной ткани двух типов – костной и хрящевой. Хрящевые клетки (хондроциты) выделяют вокруг себя плотное упругое основное вещество (матрикс). Костные клетки (остеокласты) окружены основным веществом, содержащим отложения солей, главным образом фосфата кальция. Консистенция каждой из этих тканей определяется обычно характером основного вещества. По мере старения организма содержание минеральных отложений в основном веществе кости возрастает, и она становится более ломкой. У маленьких детей основное вещество кости, а также хряща богато органическими веществами; благодаря этому у них обычно бывают не настоящие переломы костей, а т.н. надломы (переломы по типу «зеленой ветки»). Сухожилия состоят из волокнистой соединительной ткани; ее волокна образованы из коллагена – белка, секретируемого фиброцитами (сухожильными клетками). Жировая ткань бывает расположена в разных частях тела; это своеобразный тип соединительной ткани, состоящий из клеток, в центре которых находится большая глобула жира.

Кровь.

Кровь представляет собой совершенно особый тип соединительной ткани; некоторые гистологи даже выделяют ее в самостоятельный тип. Кровь позвоночных состоит из жидкой плазмы и форменных элементов: красных кровяных клеток, или эритроцитов, содержащих гемоглобин; разнообразных белых клеток, или лейкоцитов (нейтрофилов, эозинофилов, базофилов, лимфоцитов и моноцитов), и кровяных пластинок, или тромбоцитов. У млекопитающих зрелые эритроциты, поступающие в кровяное русло, не содержат ядер; у всех других позвоночных (рыб, земноводных, пресмыкающихся и птиц) зрелые функционирующие эритроциты содержат ядро. Лейкоциты делят на две группы – зернистых (гранулоциты) и незернистых (агранулоциты) – в зависимости от наличия или отсутствия в их цитоплазме гранул; кроме того, их нетрудно дифференцировать, используя окрашивание специальной смесью красителей: гранулы эозинофилов приобретают при таком окрашивании ярко-розовый цвет, цитоплазма моноцитов и лимфоцитов – голубоватый оттенок, гранулы базофилов – пурпурный оттенок, гранулы нейтрофилов – слабый лиловый оттенок. В кровяном русле клетки окружены прозрачной жидкостью (плазмой), в которой растворены различные вещества. Кровь доставляет кислород в ткани, удаляет из них диоксид углерода и продукты метаболизма, переносит питательные вещества и продукты секреции, например гормоны, из одних частей организма в другие.

Нервная ткань.

Нервная ткань состоит из высоко специализированных клеток – нейронов, сконцентрированных главным образом в сером веществе головного и спинного мозга. Длинный отросток нейрона (аксон) тянется на большие расстояния от того места, где находится тело нервной клетки, содержащее ядро. Аксоны многих нейронов образуют пучки, которые мы называем нервами. От нейронов отходят также дендриты – более короткие отростки, обычно многочисленные и ветвистые. Многие аксоны покрыты специальной миелиновой оболочкой, которая состоит из шванновских клеток, содержащих жироподобный материал. Соседние шванновские клетки разделены небольшими промежутками, называемыми перехватами Ранвье; они образуют характерные углубления на аксоне. Нервная ткань окружена опорной тканью особого типа, известной под названием нейроглии.

Замещение ткани и регенерация.

На протяжении всей жизни организма постоянно происходит изнашивание или разрушение отдельных клеток, что составляет один из аспектов нормальных физиологических процессов. Кроме того, иногда, например в результате какой-то травмы, происходит утрата той или иной части тела, состоящей из разных тканей. В таких случаях для организма крайне важно воспроизвести утраченную часть. Однако регенерация возможна только в определенных границах. Некоторые относительно просто организованные животные, например планарии (плоские черви), дождевые черви, ракообразные (крабы, омары), морские звезды и голотурии, могут восстанавливать части тела, утраченные целиком по каким-либо причинам, в том числе в результате самопроизвольного отбрасывания (аутотомии). Чтобы произошла регенерация, недостаточно одного лишь образования новых клеток (пролиферации) в сохранившихся тканях; новообразованные клетки должны быть способны к дифференцировке, чтобы обеспечить замену клеток всех типов, входивших в утраченные структуры. У других животных, особенно у позвоночных, регенерация возможна лишь в некоторых случаях. Тритоны (хвостатые амфибии) способны регенерировать хвост и конечности. Млекопитающие лишены этой способности; однако и у них после частичного экспериментального удаления печени можно наблюдать в определенных условиях восстановление довольно значительного участка печеночной ткани.

Более глубокое понимание механизмов регенерации и дифференцировки несомненно откроет много новых возможностей для использования этих процессов в лечебных целях. Фундаментальные исследования уже внесли большой вклад в развитие методов пересадки кожи и роговицы. В большинстве дифференцированных тканей сохраняются клетки, способные к пролиферации и дифференцировке, но существуют ткани (в частности, центральная нервная система у человека), которые, будучи полностью сформированными, не способны к регенерации. Примерно в годовалом возрасте центральная нервная система человека содержит положенное ей число нервных клеток, и хотя нервные волокна, т.е. цитоплазматические отростки нервных клеток, способны регенерировать, случаи восстановления клеток головного или спинного мозга, разрушенных в результате травмы или дегенеративного заболевания, неизвестны.

Классическими примерами замещения нормальных клеток и тканей в организме человека служит обновление крови и верхнего слоя кожи. Наружный слой кожи – эпидермис – лежит на плотном соединительнотканном слое, т.н. дерме, снабженной мельчайшими кровеносными сосудами, доставляющими ей питательные вещества. Эпидермис состоит из многослойного плоского эпителия. Клетки его верхних слоев постепенно трансформируются, превращаясь в тонкие прозрачные чешуйки – процесс, называемый ороговением; в конце концов эти чешуйки слущиваются. Такое слущивание особенно заметно после сильных солнечных ожогов кожи. У земноводных и пресмыкающихся сбрасывание ороговевшего слоя кожи (линька) происходит регулярно. Ежедневная утрата поверхностных клеток кожи компенсируется за счет новых клеток, поступающих из активно растущего нижнего слоя эпидермиса. Различают четыре слоя эпидермиса: наружный роговой слой, под ним – блестящий слой (в котором начинается ороговение, и его клетки при этом становятся прозрачными), ниже – зернистый слой (в его клетках накапливаются пигментные гранулы, что вызывает потемнение кожи, особенно под действием солнечных лучей) и, наконец, самый глубокий – зачатковый, или базальный, слой (в нем на протяжении всей жизни организма происходят митотические деления, дающие новые клетки для замены слущивающихся).

Клетки крови человека и других позвоночных тоже постоянно обновляются. Каждому типу клеток свойственна более или менее определенная продолжительность жизни, по истечении которой они разрушаются и удаляются из крови другими клетками – фагоцитами («пожирателями клеток»), специально приспособленными для этой цели. Новые кровяные клетки (взамен разрушившихся) образуются в кроветворных органах (у человека и млекопитающих – в костном мозге). Если потеря крови (кровотечение) или разрушение клеток крови под действием химических веществ (гемолитических агентов) наносят клеточным популяциям крови большой ущерб, кроветворные органы начинают продуцировать больше клеток. При потере большого количества эритроцитов, снабжающих ткани кислородом, клеткам тела угрожает кислородное голодание, особенно опасное для нервной ткани. При недостатке лейкоцитов организм теряет способность сопротивляться инфекциям, а также удалять из крови разрушившиеся клетки, что само по себе ведет к дальнейшим осложнениям. В нормальных условиях потеря крови служит достаточным стимулом для мобилизации регенеративных функций кроветворных органов.

Реакции тканей на аномальные условия.

При повреждении тканей возможна некоторая утрата типичной для них структуры в качестве реакции на возникшее нарушение.

Механическое повреждение.

При механическом повреждении (разрезе или переломе) тканевая реакция направлена на то, чтобы заполнить образовавшийся разрыв и воссоединить края раны. К месту разрыва устремляются слабо дифференцированные элементы тканей, в частности фибробласты. Иногда рана бывает так велика, что хирургу приходится вносить в нее кусочки ткани, чтобы стимулировать начальные стадии процесса заживления; для этого используют обломки или даже целые куски кости, полученные при ампутации и хранящиеся в «банке костей». В тех случаях, когда кожа, окружающая большую рану (например, при ожогах), не может обеспечить заживление, прибегают к пересадкам лоскутов здоровой кожи, взятых с других частей тела. Такие трансплантаты в некоторых случаях не приживляются, поскольку пересаженной ткани не всегда удается образовать контакт с теми частями тела, на которые ее переносят, и она отмирает или отторгается реципиентом.

Инородные объекты.

Давление.

Омозолелости возникают при постоянном механическом повреждении кожи в результате оказываемого на нее давления. Они проявляются в виде хорошо знакомых всем мозолей и утолщений кожи на подошвах ног, ладонях рук и на других участках тела, испытывающих постоянное давление. Удаление этих утолщений путем иссечения не помогает. До тех пор, пока давление будет продолжаться, образование омозолелостей не прекратится, а срезая их мы лишь обнажаем чувствительные нижележащие слои, что может привести к образованию ранок и развитию инфекции.

Методы изучения тканей.

Разработано множество специальных методов изготовления тканевых препаратов для микроскопического исследования. Существует также особый метод, называемый культурой тканей, позволяющий наблюдать и исследовать живые ткани.

Культура ткани.

Изолированные кусочки тканей или органов помещают в питательные растворы в условиях, исключающих возможность заражения микробами. В этой необычной среде ткани продолжают расти, проявляя многие особенности (такие, как потребность в питательных веществах, кислороде, определенном пространстве и т.п.), характерные для них в нормальных условиях, т.е. когда они находятся в живом организме. Культивируемые ткани могут сохранять и многие из своих структурных и функциональных признаков: фрагменты сердечной мышцы продолжают ритмически сокращаться, кожа зародыша продолжает расти и дифференцируется в обычном направлении. Однако иногда культивирование выявляет такие свойства ткани, которые у нее в обычных условиях не выражены и могли бы остаться неизвестными. Так, изучая строение клеток аномальных новообразований (опухолей), не всегда удается установить их принадлежность к той или иной ткани или их эмбриональное происхождение. Однако при выращивании в искусственной питательной среде они приобретают черты, характерные для клеток определенной ткани или органа. Это может оказаться чрезвычайно полезным не только для правильной идентификации опухоли, но и для установления органа, в котором она первоначально возникла. Некоторые клетки, например фибробласты (клетки соединительной ткани), очень легко поддаются культивированию, что делает их ценными экспериментальными объектами, в частности в тех случаях, когда необходим однородный материал для испытания новых лекарственных препаратов.

Выращивание тканевой культуры требует определенных навыков и оборудования, однако это важнейший метод изучения живых тканей. Кроме того, он позволяет получить дополнительные данные о состоянии тканей, изучавшихся обычными гистологическими методами.

Микроскопические исследования и гистологические методы.

Даже самый поверхностный осмотр позволяет отличить одни ткани от других. Мышечную, костную, хрящевую и нервную ткани, а также кровь можно распознать невооруженным глазом. Однако для детального исследования необходимо изучать ткани под микроскопом при большом увеличении, позволяющем увидеть отдельные клетки и характер их распределения. Под микроскопом можно исследовать влажные препараты. Пример такого препарата – мазок крови; для его изготовления наносят каплю крови на предметное стекло и размазывают по нему в виде тонкой пленки. Однако эти методы обычно не позволяют получить полную картину распределения клеток, а также участков, в которых ткани соединяются.

Живые ткани, извлеченные из тела, подвергаются быстрым изменениям; между тем любое самое незначительное изменение ткани ведет к искажению картины на гистологическом препарате. Поэтому очень важно сразу же после извлечения ткани из организма обеспечить ее сохранность. Это достигается с помощью фиксаторов – жидкостей различного химического состава, которые очень быстро убивают клетки, не искажая детали их строения и обеспечивая сохранение ткани в этом – фиксированном – состоянии. Состав каждого из многочисленных фиксаторов был разработан в результате многократного экспериментирования, и тем же способом многократных проб и ошибок было установлено нужное соотношение в них разных компонентов.

После фиксации ткань обычно подвергают обезвоживанию. Поскольку быстрый перенос в спирт высокой концентрации привел бы к сморщиванию и деформации клеток, обезвоживание производят постепенно: ткань проводят через ряд сосудов, содержащих спирт в последовательно возрастающей концентрации, вплоть до 100%. После этого ткань обычно переносят в жидкость, хорошо смешивающуюся с жидким парафином; чаще всего для этого используют ксилол или толуол. После кратковременного выдерживания в ксилоле ткань способна поглощать парафин. Пропитывание ведется в термостате, чтобы парафин оставался жидким. Всю эту т.н. проводку производят вручную или же помещают образец в специальный прибор, который проделывает все операции автоматически. Используется и более быстрая проводка с использованием растворителей (например, тетрагидрофурана), способных смешиваться как с водой, так и с парафином.

После того как кусочек ткани полностью пропитался парафином, его помещают в небольшую бумажную или металлическую форму и добавляют в нее жидкий парафин, заливая им весь образец. Когда парафин затвердеет, получается твердый блок с заключенной в нем тканью. Теперь ткань можно нарезать. Обычно для этого используют специальный прибор – микротом. Образцы тканей, взятые во время операции, можно нарезать, предварительно заморозив, т.е. не проводя обезвоживания и заливки в парафин.

Описанную выше процедуру приходится несколько модифицировать, если ткань, например кость, содержит твердые включения. Минеральные компоненты кости необходимо предварительно удалить; для этого ткань после фиксации обрабатывают слабыми кислотами – этот процесс называют декальцинированием. Наличие в блоке кости, не подвергшейся декальцинированию, деформирует всю ткань и повреждает режущий край ножа микротома. Можно, однако, распилив кость на мелкие кусочки и обтачивая их каким-либо абразивом, получить шлифы – чрезвычайно тонкие срезы кости, пригодные для изучения под микроскопом.

Микротом состоит из нескольких частей; главные из них – нож и держатель. Парафиновый блок прикрепляют к держателю, который перемещается относительно края ножа в горизонтальной плоскости, а сам нож при этом остается неподвижным. После того как получен один срез, держатель при помощи микрометрических винтов продвигают вперед на определенное расстояние, соответствующее желаемой толщине среза. Толщина срезов может достигать 20 мкм (0,02 мм) или составлять всего 1–2 мкм (0,001–0,002 мм); она зависит от размеров клеток в данной ткани и обычно колеблется от 7 до 10 мкм. Срезы парафиновых блоков с заключенной в них тканью помещают на предметное стекло. Далее удаляют парафин, помещая стекла со срезами в ксилол. Если нужно сохранить в срезах жировые компоненты, то для заливки ткани вместо парафина используют карбовакс – синтетический полимер, растворимый в воде.

После всех этих процедур препарат готов для окрашивания – очень важного этапа изготовления гистологических препаратов. В зависимости от типа ткани и характера исследования применяют разные методы окрашивания. Эти методы, как и методы заливки ткани, вырабатывались в ходе многолетнних экспериментов; однако постоянно создаются и новые методы, что связано как с развитием новых направлений исследований, так и с появлением новых химических веществ и красителей. Красители служат важным инструментом гистологического исследования в силу того, что они по-разному поглощаются разными тканями или их отдельными компонентами (клеточными ядрами, цитоплазмой, мембранными структурами). В основе окрашивания лежит химическое сродство между сложными веществами, входящими в состав красителей, и определенными компонентами клеток и тканей. Красители применяют в виде водных или спиртовых растворов, в зависимости от их растворимости и выбранного метода. После окрашивания препараты промывают в воде или спирте, чтобы удалить избыток красителя; после этого окрашенными остаются только те структуры, которые поглощают данный краситель.

Чтобы препарат сохранялся в течение достаточно долгого времени, окрашенный срез накрывают покровным стеклом, смазанным каким-нибудь клейким веществом, которое постепенно затвердевает. Для этого используют канадский бальзам (природная смола) и различные синтетические среды. Приготовленные таким образом препараты можно хранить годами. Для изучения тканей в электронном микроскопе, позволяющем выявить ультраструктуру клеток и их компонентов, применяют другие методы фиксации (обычно с использованием осмиевой кислоты и глутаральдегида) и другие среды для заливки (обычно эпоксидные смолы). Специальный ультрамикротом со стеклянным или алмазным ножом позволяет получать срезы толщиной менее 1 мкм, а постоянные препараты монтируют не на предметных стеклах, а на медных сеточках. Недавно были созданы методы, позволяющие применять ряд обычных гистологических процедур окрашивания после того, как ткань была подвергнута фиксации и заливке для электронной микроскопии.

Для описанного здесь трудоемкого процесса необходим квалифицированный персонал, однако при массовом производстве микроскопических препаратов используют конвейерную технологию, при которой многие этапы обезвоживания, заливки и даже окрашивания производятся автоматическими приборами для проводки тканей. В тех случаях, когда необходимо срочно поставить диагноз, в частности во время хирургической операции, ткани, полученные при биопсии, быстро фиксируют и замораживают. Срезы таких тканей изготавливают за несколько минут, не заливают и сразу окрашивают. Опытный патоморфолог может по общему характеру распределения клеток сразу поставить диагноз. Однако для детального исследования такие срезы непригодны.

Гистохимия.

Некоторые методы окрашивания позволяют выявлять в клетках те или иные химические вещества. Возможно дифференциальное окрашивание жиров, гликогена, нуклеиновых кислот, нуклеопротеинов, определенных ферментов и других химических компонентов клетки. Известны красители, интенсивно окрашивающие ткани с высокой метаболической активностью. Вклад гистохимии в изучение химического состава тканей постоянно возрастает. Подобраны красители, флуорохромы и ферменты, которые можно присоединить к специфическим иммуноглобулинам (антителам) и, наблюдая связывание этого комплекса в клетке, идентифицировать клеточные структуры. Эта область исследований составляет предмет иммуногистохимии. Использование иммунологических маркеров в световой и электронной микроскопии способствует быстрому расширению наших знаний о биологии клетки, а также повышению точности медицинских диагнозов.

«Оптическое окрашивание».

Традиционные гистологические методы окрашивания сопряжены с фиксацией, которая убивает ткани. Методы оптического окрашивания основаны на том, что клетки и ткани, различающиеся по толщине и химическому составу, обладают и разными оптическими свойствами. В результате, используя поляризованный свет, дисперсию, интерференцию или фазовый контраст, удается получать изображения, на которых отдельные детали строения хорошо видны благодаря различиям в яркости и (или) окраске, тогда как в обычном световом микроскопе такие детали малоразличимы. Эти методы позволяют изучать как живые, так и фиксированные ткани и исключают появление артефактов, возможных при использовании обычных гистологических методов.

10 ..

Наука о тканях (гистология)

Организм животных и человека состоит из тканей. Ткань - это исторически сложившаяся система клеток и неклеточных структур (межклеточное вещество), обладающих общностью строения и специализированных на выполнение определенных функций.

По строению, функции и развитию выделяются следующие виды тканей: 1) эпителиальная ткань (эпителий); 2) кровь и лимфа; 3) соединительная ткань; 4) мышечная ткань; 5) нервная ткань.

В состав каждого органа входят различные ткани, тесно связанные между собой. В течение всей жизни организма происходят изнашивание и отмирание клеточных и не клеточных элементов (физиологическая дегенерация) и их восстановление (физиологическая регенерация). Эти процессы в различных тканях протекают по-разному. В процессе жизни во всех тканях происходят медленно текущие возрастные изменения. В настоящее время установлено, что ткани восстанавливаются при повреждении. Эпителиальная, соединительная, неисчерченная (гладкая) мышечная ткани регенерируют хорошо и быстро, исчерченная (поперечнополосатая) мышечная ткань восстанавливается лишь при определенных условиях, а в нервной ткани восстанавливаются лишь нервные волокна. Восстановление тканей при их повреждении называется репаративной регенерацией.

Эпителиальная ткань

Эпителиальная ткань (эпителий) покрывает поверхность тела, выстилает слизистую оболочку внутренней поверхности полых органов (желудок, кишечник, мочевыводящие пути и др.), серозные оболочки (плевра, перикард, брюшина) и образует железы. В связи с этим различают покровный эпителий и железистый эпителий. Находясь на границе внешней и внутренней среды организма, покровный эпителий является пограничной тканью и выполняет защитную функцию и функцию обмена веществ между организмом и окружающей его средой. Так, неповрежденный эпителий непроницаем для микроорганизмов и многих ядовитых веществ; через кишечный эпителий из полости кишечника осуществляется всасывание продуктов переваривания белков, жиров и углеводов в кровь и лимфу. Железистый эпителий, образующий железы, обладает способностью выделять вещества - секреты, которые либо выводятся во внешнюю среду, либо поступают в кровь и лимфу (гормоны). Способность клеток вырабатывать и выделять вещества, необходимые для жизнедетельности организма, называется секрецией. В связи с этим такой эпителий получил также название секреторного эпителия.

Эпителий представляет собой пласт клеток. В зависимости от развития и функции он имеет разное строение. Клетки эпителия располагаются на базальной мембране, которой он отделен от подлежащей рыхлой соединительной ткани. Эти клетки обладают полярностью, т. е. по-разному устроены их базальные и верхушечные отделы, и высокой способностью к регенерации.

С учетом морфологических и функциональных особенностей выделяют эпидермальный, или кожный, энтодермальный, или кишечный, и другие типы эпителия.

В основу классификации эпителия положены как отношение клеток к базальной мембране (все клетки однослойного эпителия прилежат к базальной мембране, а клетки многослойного располагаются в несколько слоев), так и форма эпителиальных клеток (рис. 3). Если в эпителии протекают процессы ороговения, т. е. верхние слои клеток превращаются в роговые чешуйки, то такой многослойный эпителий называется ороговевающим. Многослойный эпителий, характер строения которого меняется в зависимости от растяжения стенки органа при его наполнении, носит название переходного.


Рис. 3. Виды эпителия (схема), а - однослойный столбчатый; б - однослойный кубический; в - однослойный плоский; г - многорядный; д, е - многослойный плоский; ж, з - переходный

Клетки эпителия - эпителиоциты - имеют разную форму. Они состоят из ядра, цитоплазмы, оболочки и специальных структур, обусловленных функциональными особенностями различных видов эпителия. В цитоплазме обнаружены все виды органелл: эндоплазматическая сеть, митохондрии, центрисома, комплекс Гольджи. Ядро клетки круглое, овальное или дискообразное, в большинстве клеток оно одно. В эпителиальных клетках выделяют две части: базальную, направленную в сторону подлежащей ткани, и апикальную, обращенную к свободной поверхности. В базальной части лежит ядро, в апикальной - органеллы, различные включения и специальные структуры, к которым относятся микроворсинки - мельчайшие многочисленные выросты цитоплазмы на свободной поверхности клетки. Всасывающая и щеточная каемки характерны для эпителия, через который происходят процессы всасывания (кишечный, почечный эпителий). Реснички - подвижные структуры на свободной поверхности клеток мерцательного эпителия. Благодаря их движению создается ток жидкости в полостях, выстланных эпителием. Реснички представляют собой выросты цитоплазмы с проходящими в них нитями, покрытыми клеточной мембраной. В цитоплазме клеток эпителия находятся тонофибриллы - нитчатые структуры, обусловливающие, по-видимому, прочность клеток эпителия.

Однослойный плоский эпителий выстилает поверхность серозных оболочек брюшины, плевры, перикарда и называется мезотелием. Он является производным среднего зародышевого листка - мезодермы - и выстилает вторичную полость телацелом. Через него происходят обменные процессы между жидкостью, находящейся в полости брюшины, плевры и перикарда, и кровью, наполняющей сосуды, лежащие под мезотелием в соединительной ткани.

Эндотелий представляет собой непрерывный слой клеток, покрывающий внутреннюю поверхность кровеносных и лимфатических сосудов. Форма и величина клеток эндотелия - эндотелиоцитов - различны. Обычно это плоские, вытянутые по длине сосуда клетки, способные делиться. По развитию они являются производными мезенхимы, а по строению имеют много общего с эпителием.

Однослойный кубический эпителий выстилает канальцы почек, выводные протоки желез и мелкие бронхи, призматический эпителий - главным образом внутреннюю поверхность желудка, кишечника, желчного пузыря, желчных протоков и протока поджелудочной железы. В органах, в которых происходят процессы всасывания, клетки имеют всасывающую каемку, состоящую из большого числа микроворсинок. Развивается однослойный столбчатый эпителий из эндодермы и мезодермы. Однослойный многорядный мерцательный эпителий представлен клетками различной формы с ядрами, расположенными на разном уровне, т. е. в несколько рядов, и ресничками. Он выстилает дыхательные пути и некоторые отделы половой системы.

Многослойный плоский неороговевающий эпителий выстилает роговицу глаза, полость рта и пищевода. Он состоит из базального слоя, слоя шиповатых и слоя плоских клеток. Плоские клетки отмирают и постепенно отпадают с поверхности эпителия.

Многослойный плоский ороговевающий эпителий называется эпидермисом, он покрывает поверхность кожи. Эпидермис состоит из многих десятков слоев клеток. Процесс превращения клеток в роговые чешуйки на поверхности кожи сопровождается гибелью клеток, разрушением их ядра и цитоплазмы и накоплением в них кератина. Эпителий кожи подвержен влияниям внешней среды.

Поэтому в нем имеется ряд приспособлений в виде межклеточных мостиков, тонофибрилл и ороговевающих слоев клеток.

Переходный эпителий характерен для органов мочевыделительной системы, стенки которых растягиваются при заполнении мочой. Он состоит из двух слоев - базального и покровного.

В связи со своим пограничным положением покровный эпителий часто подвергается повреждениям, но он способен быстро восстанавливаться. Восстановление эпителия происходит путем митотического деления клеток. В однослойном эпителии все клетки могут делиться, а в многослойном этим свойством обладают лишь клетки базального и шиповатого слоев. При повреждении эпителия восстановление его происходит за счет интенсивного размножения клеток по краям раны. Размножающиеся клетки надвигаются на поврежденное место. Эпителизация раны происходит после того, как она заполнится богатой сосудами соединительной тканью, называемой грануляционной.

Железы

Железы выполняют в организме секреторную функцию. Выделяемые ими вещества имеют значение для процессов, протекающих в организме. Часть желез является самостоятельными органами (например, околоушная слюнная железа, поджелудочная железа), другие входят в состав органов (например, железы стенки желудка). Большинство желез - производные эпителия. Разлйчают железы внешней секреции - экзокринные и железы внутренней секреции - эндокринные, не имеющие протоков и выделяющие гормоны непосредственно в кровь. Эндокринные железы участвуют в регуляции процессов, протекающих в органах и тканях. Железы внешней секреции выделяют секрет в различные полости (например, в полость желудка, кишки и др.) или на поверхность кожи. Экзокринные железы выполняют различные функции в зависимости от того, в состав каких органов и систем они входят. Например, железы пищеварительного тракта выделяют секрет, необходимый для процессов пищеварения. Эти железы отличаются друг от друга местом расположения, строением, типом секреции (способ образования секрета) и составом секрета. Экзокринные железы очень разнообразны, большинство из них многоклеточные. Одноклеточные железы (бокаловидные клетки) расположены в эпителии дыхательных путей и кишечника и вырабатывают слизь. В многоклеточных железах различают секреторный отдел и выводной проток. Секреторный отдел состоит из клеток, вырабатывающих секрет (гландулоциты). В зависимости от того, ветвятся или нет их выводные протоки, выделяют сложные и простые железы. По форме секреторного отдела различают трубчатые, альвеолярные и трубчато-альвеолярные железы.