Сообщение о силе тяжести. Сила: явление тяготения и сила тяжести. Векторные и скалярные величины

Если тело ускоряется то на него что-то действует. А как найти это «что-то»? Например, что за силы действуют на тело вблизи поверхности земли? Это — сила тяжести, направленная вертикально вниз, пропорциональная массе тела и для высот, много меньших, чем радиус земли ${\large R}$, почти независящая от высоты; она равна

${\large F = \dfrac {G \cdot m \cdot M}{R^2} = m \cdot g }$

${\large g = \dfrac {G \cdot M}{R^2} }$

так называемое ускорение силы тяжести . В горизонтальном направлении тело будет двигаться с постоянной скоростью, однако движение в вертикальном направлении по второму закону Ньютона:

${\large m \cdot g = m \cdot \left (\dfrac {d^2 \cdot x}{d \cdot t^2} \right) }$

после сокращения ${\large m}$ получаем, что ускорение в направлении ${\large x}$ постоянно и равно ${\large g}$. Это хорошо известное движение свободно падающего тела, которое описывается уравнениями

${\large v_x = v_0 + g \cdot t}$

${\large x = x_0 + x_0 \cdot t + \dfrac {1}{2} \cdot g \cdot t^2}$

В чем сила измеряется?

Во всех учебниках и умных книжках, силу принято выражать в Ньютонах, но кроме как в моделях которыми оперируют физики ньютоны ни где не применяются. Это крайне неудобно.

Ньютон newton (Н) — производная единица измерения силы в Международной системе единиц (СИ).
Исходя из второго закона Ньютона, единица ньютон определяется как сила, изменяющая за одну секунду скорость тела массой один килограмм на 1 метр в секунду в направлении действия силы.

Таким образом, 1 Н = 1 кг·м/с².

Килограмм-сила (кгс или кГ) — гравитационная метрическая единица силы, равная силе, которая действует на тело массой один килограмм в гравитационном поле земли. Поэтому по определению килограмм-сила равна 9,80665 Н. Килограмм-сила удобна тем, что её величина равна весу тела массой в 1 кг.
1 кгс = 9,80665 ньютонов (примерно ≈ 10 Н)
1 Н ≈ 0,10197162 кгс ≈ 0,1 кгс

1 Н = 1 кг x 1м/с2.

Закон тяготения

Каждый объект Вселенной притягивается к любому другому объекту с силой, пропорциональной их массам и обратно пропорционально квадрату расстояния между ними.

${\large F = G \cdot \dfrac {m \cdot M}{R^2}}$

Добавить можно, что любое тело реагирует на приложенную к нему силу ускорением в направлении этой силы, по величине обратно пропорциональным массе тела.

${\large G}$ — гравитационная постоянная

${\large M}$ — масса земли

${\large R}$ — радиус земли

${\large G = 6,67 \cdot {10^{-11}} \left (\dfrac {m^3}{kg \cdot {sec}^2} \right) }$

${\large M = 5,97 \cdot {10^{24}} \left (kg \right) }$

${\large R = 6,37 \cdot {10^{6}} \left (m \right) }$

В рамках классической механики, гравитационное взаимодействие описывается законом всемирного тяготения Ньютона, согласно которому сила гравитационного притяжения между двумя телами массы ${\large m_1}$ и ${\large m_2}$, разделённых расстоянием ${\large R}$ есть

${\large F = -G \cdot \dfrac {m_1 \cdot m_2}{R^2}}$

Здесь ${\large G}$ — гравитационная постоянная, равная ${\large 6,673 \cdot {10^{-11}} m^3 / \left (kg \cdot {sec}^2 \right) }$. Знак минус означает, что сила, действующая на пробное тело, всегда направлена по радиус-вектору от пробного тела к источнику гравитационного поля, т.е. гравитационное взаимодействие приводит всегда к притяжению тел.
Поле тяжести потенциально. Это значит, что можно ввести потенциальную энергию гравитационного притяжения пары тел, и эта энергия не изменится после перемещения тел по замкнутому контуру. Потенциальность поля тяжести влечёт за собой закон сохранения суммы кинетической и потенциальной энергии, что при изучении движения тел в поле тяжести часто существенно упрощает решение.
В рамках ньютоновской механики гравитационное взаимодействие является дальнодействующим. Это означает, что как бы массивное тело ни двигалось, в любой точке пространства гравитационный потенциал и сила зависят только от положения тела в данный момент времени.

Тяжелее — Легче

Вес тела ${\large P}$ выражается произведением его массы ${\large m}$ на ускорение силы тяжести ${\large g}$.

${\large P = m \cdot g}$

Когда на земле тело становится легче (слабее давит на весы), это происходит от уменьшения массы. На луне все не так, уменьшение веса вызвано изменением другого множителя — ${\large g}$, так как ускорение силы тяжести на поверхности луны в шесть раз меньше чем на земле.

масса земли = ${\large 5,9736 \cdot {10^{24}}\ kg }$

масса луны = ${\large 7,3477 \cdot {10^{22}}\ kg }$

ускорение свободного падения на Земле = ${\large 9,81\ m / c^2 }$

ускорение свободного падения на Луне = ${\large 1,62 \ m / c^2 }$

В результате произведение ${\large m \cdot g }$, а следовательно и вес уменьшаются в 6 раз.

Но нельзя обозначить оба эти явления одним и тем же выражением «сделать легче». На луне тела становятся не легче, а лишь менее стремительно падают они «менее падучи»))).

Векторные и скалярные величины

Векторная величина (например сила, приложенная к телу), помимо значения (модуля), характеризуется также направлением. Скалярная же величина (например, длина) характеризуется только значением. Все классические законы механики сформулированы для векторных величин.

Рисунок 1.

На рис. 1 изображены различные варианты расположения вектора ${ \large \overrightarrow{F}}$ и его проекции ${ \large F_x}$ и ${ \large F_y}$ на оси ${ \large X}$ и ${ \large Y}$ соответственно:

  • A. величины ${ \large F_x}$ и ${ \large F_y}$ являются ненулевыми и положительными
  • B. величины ${ \large F_x}$ и ${ \large F_y}$ являются ненулевыми, при этом ${\large F_y}$ — положительная величина, а ${\large F_x}$ — отрицательная, т.к. вектор ${\large \overrightarrow{F}}$ направлен в сторону, противоположную направлению оси ${\large X}$
  • C. ${\large F_y}$ — положительная ненулевая величина, ${\large F_x}$ равна нулю, т.к. вектор ${\large \overrightarrow{F}}$ направлен перпендикулярно оси ${\large X}$

Момент силы

Моментом силы называют векторное произведение радиус-вектора, проведённого от оси вращения к точке приложения силы, на вектор этой силы. Т.е. согласно классическому определению момент силы — величина векторная. В рамках нашей задачи, это определение можно упростить до следующего: моментом силы ${\large \overrightarrow{F}}$, приложенной к точке с координатой ${\large x_F}$, относительно оси, расположенной в точке ${\large x_0}$ называется скалярная величина, равная произведению модуля силы ${\large \overrightarrow{F}}$, на плечо силы — ${\large \left | x_F - x_0 \right |}$. А знак этой скалярной величины зависит от направления силы: если она вращает объект по часовой стрелке, то знак плюс, если против — то минус.

Важно понимать, что ось мы можем выбирать произвольным образом — если тело не вращается, то сумма моментов сил относительно любой оси равна нулю. Второе важное замечание — если сила приложена к точке, через которую проходит ось, то момент этой силы относительно этой оси равен нулю (поскольку плечо силы будет равно нулю).

Проиллюстрируем вышесказанное примером, на рис.2. Предположим, что система, изображенная на рис. 2, находится в равновесии. Рассмотрим опору, на которой стоят грузы. На неё действуют 3 силы: ${\large \overrightarrow{N_1},\ \overrightarrow{N_2},\ \overrightarrow{N},}$ точки приложения этих сил А , В и С соответственно. На рисунке также присутствуют силы ${\large \overrightarrow{N_{1}^{gr}},\ \overrightarrow{N_2^{gr}}}$. Эти силы приложены к грузам, и согласно 3-му закону Ньютона

${\large \overrightarrow{N_{1}} = - \overrightarrow{N_{1}^{gr}}}$

${\large \overrightarrow{N_{2}} = - \overrightarrow{N_{2}^{gr}}}$

Теперь рассмотрим условие равенства моментов сил, действующих на опору, относительно оси, проходящей через точку А (и, как мы договаривались ранее, перпендикулярную плоскости рисунка):

${\large N \cdot l_1 - N_2 \cdot \left (l_1 +l_2 \right) = 0}$

Обратите внимание, что в уравнение не вошёл момент силы ${\large \overrightarrow{N_1}}$, поскольку плечо этой силы относительно рассматриваемой оси равно ${\large 0}$. Если же мы по каким-либо причинам хотим выбрать ось, проходящую через точку С , то условие равенства моментов сил будет выглядеть так:

${\large N_1 \cdot l_1 - N_2 \cdot l_2 = 0}$

Можно показать, что с математической точки зрения два последних уравнения эквивалентны.

Центр тяжести

Центром тяжести механической системы называется точка, относительно которой суммарный момент сил тяжести, действующих на систему, равен нулю.

Центр масс

Точка центра масс замечательна тем, что если на частицы образующие тело (неважно будет ли оно твердым или жидким, скоплением звезд или чем то другим) действует великое множество сил (имеются ввиду только внешние силы, поскольку все внутренние силы компенсируют друг друга), то результирующая сила приводит к такому ускорению этой точки, как будто в ней вся масса тела ${\large m}$.

Положение центра масс определяется уравнением:

${\large R_{c.m.} = \frac{\sum m_i\, r_i}{\sum m_i}}$

Это векторное уравнение, т.е. фактически три уравнения — по одному для каждого из трех направлений. Но рассмотрим только ${\large x}$ направление. Что означает следующее равенство?

${\large X_{c.m.} = \frac{\sum m_i\, x_i}{\sum m_i}}$

Предположим тело разделено на маленькие кусочки с одинаковой массой ${\large m}$, причем полная масса тела равна будет равна числу таких кусочков ${\large N}$, умноженному на массу одного кусочка, например 1 грамм. Тогда это уравнение означает, что нужно взять координаты ${\large x}$ всех кусочков, сложить их и результат разделить на число кусочков. Иными словами, если массы кусочков равны то ${\large X_{c.m.}}$ будет просто средним арифметическим ${\large x}$ координат всех кусочков.

Масса и плотность

Масса — фундаментальная физическая величина. Масса характеризует сразу несколько свойств тела и сама по себе обладает рядом важных свойств.

  • Масса служит мерой содержащегося в теле вещества.
  • Масса является мерой инертности тела. Инертностью называется свойство тела сохранять свою скорость неизменной (в инерциальной системе отсчёта), когда внешние воздействия отсутствуют или компенсируют друг друга. При наличии внешних воздействий инертность тела проявляется в том, что его скорость меняется не мгновенно, а постепенно, и тем медленнее, чем больше инертность (т.е. масса) тела. Например, если бильярдный шар и автобус движутся с одинаковой скоростью и тормозятся одинаковым усилием, то для остановки шара требуется гораздо меньше времени, чем для остановки автобуса.
  • Массы тел являются причиной их гравитационного притяжения друг к другу (см. раздел «Сила тяготения»).
  • Масса тела равна сумме масс его частей. Это так называемая аддитивность массы. Аддитивность позволяет использовать для измерения массы эталон - 1 кг.
  • Масса изолированной системы тел не меняется со временем (закон сохранения массы).
  • Масса тела не зависит от скорости его движения. Масса не меняется при переходе от одной системы отсчёта к другой.
  • Плотностью однородного тела называется отношение массы тела к его объёму:

${\large p = \dfrac {m}{V} }$

Плотность не зависит от геометрических свойств тела (формы, объёма) и является характеристикой вещества тела. Плотности различных веществ представлены в справочных таблицах. Желательно помнить плотность воды: 1000 кг/м3.

Второй и третий законы Ньютона

Взаимодействие тел можно описывать с помощью понятия силы. Сила - это векторная величина, являющаяся мерой воздействия одного тела на другое.
Будучи вектором, сила характеризуется модулем (абсолютной величиной) и направлением в пространстве. Кроме того, важна точка приложения силы: одна и та же по модулю и направлению сила, приложенная в разных точках тела, может оказывать различное воздействие. Так, если взяться за обод велосипедного колеса и потянуть по касательной к ободу, то колесо начнёт вращаться. Если же тянуть вдоль радиуса, никакого вращения не будет.

Второй закон Ньютона

Произведение массы тела на вектор ускорения есть равнодействующая всех сил, приложенных к телу:

${\large m \cdot \overrightarrow{a} = \overrightarrow{F} }$

Второй закон Ньютона связывает векторы ускорения и силы. Это означает, что справедливы следующие утверждения.

  1. ${\large m \cdot a = F}$, где ${\large a}$ — модуль ускорения, ${\large F}$ — модуль равнодействующей силы.
  2. Вектор ускорения имеет одинаковое направление с вектором равнодействующей силы, так как масса тела положительна.

Третий закон Ньютона

Два тела действуют друг на друга с силами, равными по модулю и противоположными по направлению. Эти силы имеют одну и ту же физическую природу и направлены вдоль прямой, соединяющей их точки приложения.

Принцип суперпозиции

Опыт показывает, что если на данное тело действуют несколько других тел, то соответствующие силы складываются как векторы. Более точно, справедлив принцип суперпозиции.
Принцип суперпозиции сил. Пусть на тело действуют силы ${\large \overrightarrow{F_1}, \overrightarrow{F_2},\ \ldots \overrightarrow{F_n}}$ Если заменить их одной силой ${\large \overrightarrow{F} = \overrightarrow{F_1} + \overrightarrow{F_2} \ldots + \overrightarrow{F_n}}$, то результат воздействия не изменится.
Сила ${\large \overrightarrow{F}}$ называется равнодействующей сил ${\large \overrightarrow{F_1}, \overrightarrow{F_2},\ \ldots \overrightarrow{F_n}}$ или результирующей силой.

Экспедитор или перевозчик? Три секрета и международные грузоперевозки

Экспедитор или перевозчик: кого предпочесть? Если перевозчик хороший, а экспедитор - плохой, то первого. Если перевозчик плохой, а экспедитор - хороший, то второго. Такой выбор прост. Но как определиться, когда хороши оба претендента? Как выбрать из двух, казалось бы, равноценных вариантов? Дело в том, что варианты эти не равноценны.

Страшные истории международных перевозок

МЕЖДУ МОЛОТОМ И НАКОВАЛЬНЕЙ.

Непросто жить между заказчиком перевозки и очень хитро-экономным владельцем груза. Однажды мы получили заказ. Фрахт на три копейки, дополнительные условия на два листа, сборник называется.... В среду погрузка. Машина на месте уже во вторник, и к обеду следующего дня склад начинает неспешно закидывать в прицеп все, что собрал ваш экспедитор в адрес своих заказчиков-получателей.

ЗАКОЛДОВАННОЕ МЕСТО - ПТО КОЗЛОВИЧИ.

По легендам и на опыте, все, кто возил грузы из Европы автотранспортом, знают, каким страшным местом является ПТО Козловичи, Брестской таможни. Какой беспредел творят белорусские таможенники, придираются всячески и дерут втридорога. И это правда. Но не вся....

КАК ПОД НОВЫЙ ГОД МЫ ВЕЗЛИ СУХОЕ МОЛОКО.

Загрузка сборным грузом на консолидационном складе в Германии. Один из грузов - сухое молоко из Италии, доставку которого заказал Экспедитор.... Классический пример работы экспедитора-«передатчика» (он ни во что не вникает, только передает по цепочке).

Документы для международных перевозок

Международные автомобильные перевозки грузов очень заоргонизованы и обюрокрачены, следствие - для осуществления международных автомобильных перевозок грузов используется куча унифицированных документов. Неважно таможенный перевозчик или обыкновенный — без документов он не поедет. Хоть это и не очень увлекательно, но мы постарались попроще изложить назначение этих документов и смысл, который они имеют. Привели пример заполнения TIR, CMR, T1, EX1, Invoice, Packing List...

Расчет нагрузки на ось для грузовых автоперевозок

Цель — исследование возможности перераспределения нагрузок на оси тягача и полуприцепа при изменении расположения груза в полуприцепе. И применение этого знания на практике.

В рассматриваемой нами системе есть 3 объекта: тягач $(T)$, полуприцеп ${\large ({p.p.})}$ и груз ${\large (gr)}$. Все переменные, относящиеся к каждому из этих объектов, будут маркироваться верхним индексом $T$, ${\large {p.p.}}$ и ${\large {gr}}$ соответственно. Например, собственная масса тягача будет обозначаться как $m^{T}$.

Ты почему не ешь мухоморы? Таможня выдохнула грусть.

Что происходит на рынке международных автомобильных перевозок? ФТС РФ запретила оформлять книжки МДП без дополнительных гарантий уже нескольких федеральных округах. И уведомила о том, что с 1 декабря текущего года и вовсе разорвет договор с IRU как несоответствующим требованиям Таможенного союза и выдвигает недетские финансовые претензии.
IRU в ответ: «Объяснения ФТС России касательно якобы имеющейся у АСМАП задолженности в размере 20 млрд. рублей являются полнейшим вымыслом, так как все старые претензии МДП были полностью урегулированы..... Что думаем мы, простые перевозчики?

Stowage Factor Вес и объем груза при расчете стоимости перевозки

Расчет стоимости перевозки зависит от веса и объема груза. Для морских перевозок чаще всего решающее значение имеет объем, для воздушных - вес. Для автомобильных перевозок грузов значение играет комплексный показатель. Какой параметр для расчетов будет выбран в том или ином случае - зависит от удельного веса груза (Stowage Factor ) .

Необходимо знать точку приложения и направление каждой силы. Важно уметь определить какие именно силы действуют на тело и в каком направлении. Сила обозначается как , измеряется в Ньютонах. Для того, чтобы различать силы, их обозначают следующим образом

Ниже представлены основные силы, действующие в природе. Придумывать не существующие силы при решении задач нельзя!

Сил в природе много. Здесь рассмотрены силы, которые рассматриваются в школьном курсе физики при изучении динамики. А также упомянуты другие силы, которые будут рассмотрены в других разделах.

Сила тяжести

На каждое тело, находящееся на планете, действует гравитация Земли . Сила, с которой Земля притягивает каждое тело, определяется по формуле

Точка приложения находится в центре тяжести тела. Сила тяжести всегда направлена вертикально вниз .


Сила трения

Познакомимся с силой трения. Эта сила возникает при движении тел и соприкосновении двух поверхностей. Возникает сила в результате того, что поверхности, если рассмотреть под микроскопом, не являются гладкими, как кажутся. Определяется сила трения по формуле:

Сила приложена в точке соприкосновения двух поверхностей. Направлена в сторону противоположную движению.

Сила реакции опоры

Представим очень тяжелый предмет, лежащий на столе. Стол прогибается под тяжестью предмета. Но согласно третьему закону Ньютона стол воздействует на предмет с точно такой же силой, что и предмет на стол. Сила направлена противоположно силе, с которой предмет давит на стол. То есть вверх. Эта сила называется реакцией опоры. Название силы "говорит" реагирует опора . Эта сила возникает всегда, когда есть воздействие на опору. Природа ее возникновения на молекулярном уровне. Предмет как бы деформировал привычное положение и связи молекул (внутри стола), они, в свою очередь, стремятся вернуться в свое первоначальное состояние, "сопротивляются".

Абсолютно любое тело, даже очень легкое (например,карандаш, лежащий на столе), на микроуровне деформирует опору. Поэтому возникает реакция опоры.

Специальной формулы для нахождения этой силы нет. Обозначают ее буквой , но эта сила просто отдельный вид силы упругости, поэтому она может быть обозначена и как

Сила приложена в точке соприкосновения предмета с опорой. Направлена перпендикулярно опоре.


Так как тело представляем в виде материальной точки, силу можно изображать с центра

Сила упругости

Это сила возникает в результате деформации (изменения первоначального состояния вещества). Например, когда растягиваем пружину, мы увеличиваем расстояние между молекулами материала пружины. Когда сжимаем пружину - уменьшаем. Когда перекручиваем или сдвигаем. Во всех этих примерах возникает сила, которая препятствует деформации - сила упругости.

Закон Гука


Сила упругости направлена противоположно деформации.

Так как тело представляем в виде материальной точки, силу можно изображать с центра

При последовательном соединении, например, пружин жесткость рассчитывается по формуле

При параллельном соединении жесткость

Жесткость образца. Модуль Юнга.

Модуль Юнга характеризует упругие свойства вещества. Это постоянная величина, зависящая только от материала, его физического состояния. Характеризует способность материала сопротивляться деформации растяжения или сжатия. Значение модуля Юнга табличное.

Подробнее о свойствах твердых тел .

Вес тела

Вес тела - это сила, с которой предмет воздействует на опору. Вы скажете, так это же сила тяжести! Путаница происходит в следующем: действительно часто вес тела равен силе тяжести, но это силы совершенно разные. Сила тяжести - сила, которая возникает в результате взаимодействия с Землей. Вес - результат взаимодействия с опорой. Сила тяжести приложена в центре тяжести предмета, вес же - сила, которая приложена на опору (не на предмет)!

Формулы определения веса нет. Обозначается эта силы буквой .

Сила реакции опоры или сила упругости возникает в ответ на воздействие предмета на подвес или опору, поэтому вес тела всегда численно одинаков силе упругости, но имеет противоположное направление.



Сила реакции опоры и вес - силы одной природы, согласно 3 закону Ньютона они равны и противоположно направлены. Вес - это сила, которая действует на опору, а не на тело. Сила тяжести действует на тело.

Вес тела может быть не равен силе тяжести. Может быть как больше, так и меньше, а может быть и такое, что вес равен нулю. Это состояние называется невесомостью . Невесомость - состояние, когда предмет не взаимодействует с опорой, например, состояние полета: сила тяжести есть, а вес равен нулю!



Определить направление ускорения возможно, если определить, куда направлена равнодействующая сила

Обратите внимание, вес - сила, измеряется в Ньютонах. Как верно ответить на вопрос: "Сколько ты весишь"? Мы отвечаем 50 кг, называя не вес, а свою массу! В этом примере, наш вес равен силе тяжести, то есть примерно 500Н!

Перегрузка - отношение веса к силе тяжести

Сила Архимеда

Сила возникает в результате взаимодействия тела с жидкость (газом), при его погружении в жидкость (или газ). Эта сила выталкивает тело из воды (газа). Поэтому направлена вертикально вверх (выталкивает). Определяется по формуле:

В воздухе силой Архимеда пренебрегаем.

Если сила Архимеда равна силе тяжести, тело плавает. Если сила Архимеда больше, то оно поднимается на поверхность жидкости, если меньше - тонет.



Электрические силы

Существуют силы электрического происхождения. Возникают при наличии электрического заряда. Эти силы, такие как сила Кулона , сила Ампера , сила Лоренца , подробно рассмотрены в разделе Электричество .

Схематичное обозначение действующих на тело сил

Часто тело моделируют материальной точкой . Поэтому на схемах различные точки приложения переносят в одну точку - в центр, а тело изображают схематично кругом или прямоугольником.

Для того, чтобы верно обозначить силы, необходимо перечислить все тела, с которыми исследуемое тело взаимодействует. Определить, что происходит в результате взаимодействия с каждым: трение, деформация, притяжение или может быть отталкивание. Определить вид силы, верно обозначить направление. Внимание! Количество сил будет совпадать с числом тел, с которыми происходит взаимодействие.

Главное запомнить

1) Силы и их природа;
2) Направление сил;
3) Уметь обозначить действующие силы

Различают внешнее (сухое) и внутреннее (вязкое) трение. Внешнее трение возникает между соприкасающимися твердыми поверхностями, внутреннее - между слоями жидкости или газа при их относительном движении. Существует три вида внешнего трения: трение покоя, трение скольжения и трение качения.

Трение качения определяется по формуле

Сила сопротивления возникает при движении тела в жидкости или в газе. Величина силы сопротивления зависит от размеров и формы тела, скорости его движения и свойств жидкости или газа. При небольших скоростях движения сила сопротивления пропорциональна скорости тела

При больших скоростях пропорциональна квадрату скорости

Рассмотрим взаимное притяжение предмета и Земли. Между ними, согласно закону гравитации возникает сила

А сейчас сравним закон гравитации и силу тяжести

Величина ускорения свободного падения зависит от массы Земли и ее радиуса! Таким образом, можно высчитать, с каким ускорением будут падать предметы на Луне или на любой другой планете, используя массу и радиус той планеты.

Расстояние от центра Земли до полюсов меньше, чем до экватора. Поэтому и ускорение свободного падения на экваторе немного меньше, чем на полюсах. Вместе с тем, следует отметить, что основной причиной зависимости ускорения свободного падения от широты местности, является факт вращения Земли вокруг своей оси.

При удалении от поверхности Земли сила земного тяготения и ускорения свободного падения изменяются обратно пропорционально квадрату расстояния до центра Земли.


Сила тяжести - это сила, с которой тело притягивается к Земле вследствие Всемирного тяготения. Сила тяжести заставляет все тела, на которые не действуют другие силы, двигаться вниз с ускорением свободного падения, g. Все тела во Вселенной притягиваются друг к другу, причем, чем больше их массы и чем ближе они расположены, тем притяжение сильнее. Чтобы вычислить силу тяжести, следует массу тела умножить на коэффициент, обозначаемый буквой g, приближенно равный 9,8Н/кг. Таким образом, сила тяжести рассчитывается по формуле

Сила тяжести приблизительно равна силе гравитационного притяжения к Земле (различие между силой тяжести и гравитационной силой обусловлено тем, что система отсчета, связанная с Землей, не вполне инерциальная).

Сила трения.

Сила трения - Сила, возникающая в месте соприкосновения тел и препятствующая их относительному переме-щению. Направление силы трения противоположно направлению движения.

Различают силу трения покоя и силу трения скольжения. Если тело скользит по какой-либо поверхности, его движению препятствует сила трения скольжения.

, где N — сила реакции опоры, a μ — коэффициент трения скольжения. Коэф-фициент μ зависит от материала и качества обработки соприкасающихся поверхностей и не зависит от веса тела. Коэффициент трения определяется опытным путем.

Сила трения скольжения всегда направлена противоположно движению тела. При изменении на-правления скорости изменяется и направление си-лы трения.

Сила трения начинает действовать на тело, когда его пытаются сдвинуть с места. Если внешняя сила F меньше произведения μN, то тело не будет сдвигаться — началу движения, как принято гово-рить, мешает сила трения покоя. Тело начнет дви-жение только тогда, когда внешняя сила F превы-сит максимальное значение, которое может иметь сила трения покоя

Трение покоя - сила трения, препятствующая возникновению движению одного тела по поверхности другого. В некоторых случаях трение полезно (без трения невозможно было бы ходить по земле человеку, жи-вотным, двигаться автомобилям, поездам и т.д.), в таких случаях трение усиливают. Но в других слу-чаях трение вредно. Например, из-за него изнаши-ваются трущиеся детали механизмов, расходуется лишнее горючее на транспорте и т.д. Тогда с трением борются, применяя смазку или заменяя скольжение на качку.

Силы трения не зависят от координат относительного расположения тел, они могут зависеть от скорости относительного движения соприкасающихся тел. Силы трения являются непотенциальными силами.

Вес и невесомость.

Вес - сила воздействия тела на опору (или подвес или другой вид крепления), препятствующую падению, возникающая в поле сил тяжести. При этом возникшие упругие силы начинают действовать на тело с результирующей P, направленной вверх, а сумма сил, приложенных к телу, становится равной нулю.


Сила тяжести прямо пропорциональна массе тела и зависит от ускорения свободного падения, которое максимально у полюсов Земли и постепенно уменьшается при движении к экватору. Сплюснутая у полюсов форма Земли и её вращение вокруг оси приводят к тому, что у экватора ускорение свободного падения приблизительно на 0,5% меньше, чем у полюсов. Поэтому вес тела, измеренный с помощью пружинных весов, будет меньше на экваторе, чем у полюсов. Вес тела на Земле может изменяться в очень широких пределах, а иногда даже исчезать.

Например, в падающем лифте наш вес будет равен 0,а мы будем находится в состоянии невесомости. Однако состояние невесомости может быть не только в кабине падающего лифта, но и на космической станции, вращающейся вокруг Земли. Вращаясь по окружности, спутник движется с центростремительным ускорением, и единственной силой, которая может дать ему это ускорение, является сила тяжести. Поэтому вместе со спутником вращаясь вокруг Земли, мы движемся с ускорением a = g, направленным к её центру. И если мы, находясь на спутнике, встали на пружинные весы, то P = 0. Таким образом, на спутнике вес всех тел равен нулю.

Семнадцатый век недаром называют веком великих астрономических открытий. Многолетние наблюдения Галилея, Коперника, Тихо Браге дали возможность сформировать Иоганну Кеплеру законы движения небесных тел. Для того чтобы объяснить, почему планеты находятся в бесконечном движении, что заставляет их оставаться на своей орбите и что такое сила тяжести, понадобился гений - Исаак Ньютон.

Гипотезы гения

Свои законы о движении Исаак Ньютон сформулировал не для теории, а для практического применения. Обобщая данные многолетних астрономических наблюдений и благодаря своим законам о движении, этот великий ученый смог ответить на вопрос, который ставил в тупик не одно поколение ученых: «Что удерживает планеты на своих орбитах?» Ведь до Ньютона учеными выдвигались разные предположения - от хрустальных сфер до магнитных флюидов. Благодаря первому закону Ньютона стало ясно, что для равномерного прямолинейного движения сила не нужна. Сила необходима для того, чтобы заставить планеты двигаться по криволинейной орбите. Если применить формулу силы из второго закона Ньютона, то она будет равна произведению ускорения на массу. Ньютон пришел к выводу, что ускорение должно быть равным v 2 /R. Так более легкое небесное тело, Луна например, будет вращаться вокруг более тяжелого, но никогда не станет к нему приближаться. Это можно представить себе как падение с касательной к окружности на саму окружность. В точке соприкосновения скорость может быть постоянной или равной нулю, но ускорение присутствует всегда. Постоянное движение по заданной орбите без отсутствия видимого ускорения - вот ответ Ньютона на вопрос о движении планет.

Притяжение

Так, Луна движется вокруг Земли, а Земля - вокруг Солнца, повинуясь некой силе. Гениальность Ньютона проявилась в том, что он объединил силу притяжения небесных тел с силой тяжести, которая известна каждому жителю Земли. Существует легенда, что к правильным выводам Ньютона подтолкнуло обычное яблоко, упавшее ему на голову. Притяжение яблока и Луны к Земле описывается по абсолютно одинаковым законам - сделал вывод исследователь. Свое второе название сила тяжести получила от слова «гравис», что означает «вес».

Гравитация

Обобщив законы движения планет, Ньютон выяснил, что сила их взаимодействия может быть вычислена по формуле:

Где m 1 m 2 - массы взаимодействующих тел, R - расстояние между ними, а G - некий коэффициент пропорциональности, получивший название гравитационной постоянной. Слово «гравитация» подобрано абсолютно правильно, ведь происходит оно от слова «вес». Точное число постоянной Ньютону известно не было, гораздо позже значение G установил Кавендиш. Можно видеть, что на действие силы притяжения влияют массы тел и учитывается расстояние между ними. Никакие другие факторы на силу притяжения влиять не могут.

Значение закона притяжения

Данный закон универсален и может применяться к любым двум телам, имеющим массу. В случае, когда масса одного взаимодействующего тела много больше массы другого, можно говорить о частном случае гравитационной силы, для которого имеется специальный термин "сила тяжести". Это понятие применяется для задач, вычисляющих силу притяжения на Земле или других небесных телах. Если подставить значение силы тяжести в формулу второго закона Ньютона, то получим значение F=ma. Здесь а - ускорение силы тяжести, которое заставляет тела стремиться друг к другу. В задачах, связанных с использованием ускорения свободного падения, его обычно обозначают буквой g. С помощью разработанного им интегрального исчисления Ньютон математически доказал, что сила тяжести в шаре всегда сосредоточена в центре большего тела. В паре яблоко-Земля вектор ускорения направлен к центру земли, в паре Земля-Солнце направлен к Солнцу и так далее.

Зависимости силы тяжести от широты

Сила тяжести на Земле зависит от высоты тела под поверхностью планеты и от широты, на которой проводится эксперимент. Высота тела влияет на значение R, как видно, чем дальше расстояние от поверхности Земли, тем величина g меньше. Связь силы тяжести с широтой объясняется тем, что Земля имеет форму не шара, а геоида. У полюсов она немного сплюснута. Поэтому расстояние от центра Земли до экватора и до полюса будет разным - до 10 %. Такое расхождение делает весьма неудобным расчеты, например расчеты грузов трансконтинентальных перевозок. Поэтому за основу принимают показатель силы притяжения на средних широтах 9,81 м/с 2 .

Вес тела

В быту широко применяется такое понятие, как вес тела. В физике он обозначается буквой P. Вес - это сила, с которой тело давит на опору. В бытовом понятии вес часто подменяется понятием «масса», хотя это совершенно разные величины. В зависимости от того, какое значение принимает сила тяжести, изменяется и вес тела. Например, вес свинцовой детали на Земле и Луне будет отличаться. А вот масса остается неизменной и на Земле, и на Луне. Кроме этого, в определенных случаях вес тела может быть нулевым. Вес - величина, имеющая направление, а масса - скаляр.

Но так как согласно третьему закону Ньютона действие равно противодействию, вес тела равен силе реакции опоры.

Так как силу реакции простой опоры измерить довольно трудно, то опыт можно «перевернуть», подвесив какое-либо тело на пружину и измеряя степень растяжения этой пружины. При этом сила, растягивающая пружину с грузом, будет иметь вполне логичное F=mg, где m - масса, а g - ускорение свободного падения.

Перегрузка

Если груз с пружинкой поднять вверх, то ускорение силы тяжести и ускорение подъема будут направлены в противоположные стороны. Представить это можно так: F = m(g+a). Сила тяжести, а соответственно, и его вес, возрастают.

Для увеличения веса, связанного с дополнительным ускорением, существует специальный термин - перегрузка. Действие перегрузки испытывал каждый из нас, поднимаясь на лифте или взлетая на самолете. Особенно сильную перегрузку испытывают на себе космонавты и летчики сверхзвуковых самолетов при взлете своих летательных аппаратов.

Невесомость

Когда телу придается ускорение в направлении силы тяжести, то есть вниз в нашем случае, тогда F=m(g-a). Так, вес тела становится меньше. В предельном случае, когда a=g и направлены они в разные стороны, можно говорить о нулевом весе, то есть тело падает с постоянной скоростью. Состояние, при котором вес тела является нулевым, называют невесомостью. Человек испытывает состояние невесомости в космическом корабле, когда он движется с выключенными двигателями. Невесомость - обычное состояние для космонавтов и летчиков, летающих на сверхзвуковых самолетах.

Значение силы тяжести

Без силы тяжести не происходило бы многих, кажущихся нам естественными, вещей - не сходили бы лавины с гор, не шли бы дожди, не текли бы реки. Атмосфера Земли сохраняется благодаря силе тяжести. Для сравнения, планеты с меньшей массой, такие как Луна или Меркурий, растеряли свою атмосферу очень быстро и остались беззащитными перед потоком жесткого космического излучения. Атмосфера Земли играла решающую роль при возникновении жизни на Земле, ее видоизменении и сохранении.

Кроме силы тяжести, на Земле действует сила притяжения Луны. Благодаря ее близкому (в космических масштабах) соседству на Земле существуют приливы и отливы, сдвигаются континенты, а многие биологические ритмы совпадают с лунным календарем.

Таким образом, силу тяжести нужно рассматривать не как досадную помеху, а как полезный и необходимый закон природы.

Что такое сила?

Каждый из нас постоянно встречается с различными случаями действия тел друг на друга. В результате взаимодействия скорость движения какого-либо тела меняется.

Тело может начать движение или остановиться, а может изменить направление скорости своего движения.

Когда мы пинаем мяч – он начинает двигаться

Когда мяч попадает в сетку ворот, то останавливается

А если мы промазали и мяч попадает в штангу – то отскакивает от нее в другую сторону, т.е. изменяет направления скорости.

Часто не указывают, какое тело и как действовало на данное тело. Просто говорят, что на тело действует сила или к нему приложена сила. То есть, рассматривая пример с мячем, нам не всегда важно, что конкретно на него повлияло. Мы просто говорим, что у тела изменилась скорость под воздействием силы. Следовательно, силу можно рассматривать как причину изменения скорости движения.

В физике силой называют физическую величину, характеризующую изменение скорости тела.

Во всех наших примерах мы воздействовали на мяч с определенной силой, и при этом менялась его скорость.

Признаки действия силы на тело

Сила – это векторная величина, характеризующая действие тел друг на друга, то есть являющаяся мерой этого действия.

Известны четыре признака действия на тело силы:

Признак 1 - у тела может измениться значение скорости
(Все мы любим боулинг. Толкая руками шар, мы можем привести его в движение. Скорость шара меняется под действием руки человека. ИЛИ когда мы пинаем футбольный мяч)

Признак 2 - У тела может измениться направление движения

(Это когда мяч врезался в штангу ИЛИ изменяем направления летящего шарика ракеткой или другим предметом)

Признак 3 - у тела может произойти изменение размеров тела

(Это надувание надувного матраса или воздушного шарика)

Признак 4 - У тела может произойти изменение формы тела.

(Мы можем сжать ластик в руках или мнем баскетбольный мяч при игре или жмем руку)

Если есть хотя бы один из этих признаков, то говорят: “На тело действует некоторая сила”.

Сила, действующая на тело, может не только изменить скорость всего тела, но и отдельных его частей. Обратите внимание, когда мы мнем баскетбольный мяч руками, то скорость изменяется не у всего тела, а только у некоторых его частей. Например, мы сжимаем мяч пальцами, и только часть его частиц начинает двигаться. Это называется – деформация тела.

Деформация – изменение взаимного положения частиц тела, связанное с их перемещением друг относительно друга.

Деформацией называется любое изменение формы и размера тела. Еще один пример деформации – Батут, прикрепленный к опорам, прогибается, если на него встает человек.

Направление и единица измерения силы

Сила – физическая величина, которую можно измерить..

Известно. что сила является причиной изменения скорости тела. То есть, мы можем измерить, как сильно мы пнули мяч или толкнули шар в боулинге.Однако, сила имеет еще и направление, потому что мяч мы можем пнуть абсолютно в любую сторону также как и толкнуть шар, и от нас зависит, куда он полетит или покатится.

То есть сила – это величина векторная.

Обозначается в физике буквой F со стрелочкой над ней.

За единицу силы, принята сила, которая за время 1с изменяет скорость тела массой 1 кг на 1 м/с.

В честь английского физика Ньютона эта единица названа ньютоном .

Единица измерения силы – Ньютон, обозначается [H]

Часто применяют и другие единицы - килоньютоны(кН), миллиньютоны (мН):

1Н = 0,001 кН.

Сила, как и скорость, является векторной величиной. Она характеризуется не только числовым значением, но и направлением.

На чертеже силу изображают в виде отрезка прямой со стрелкой на конце.

Начало отрезка - точка А есть точка приложения силы. Длина отрезка условно обозначает в определенном масштабе модуль силы.

Итак, можно сказать, что результат действия силы на тело зависит от ее модуля, направления и точки приложения.

Сила притяжения земли


Все мы были на футболе и наблюдали за полетами футбольного мяча. Можно сделать одно наблюдение: как бы сильно не пинал мяч футболист, рано или поздно мяч оказывается на Земле.

Как бы мы не радовались победе нашей команды и подпрыгивали высоко-высоко, все равно приземлялись обратно.Любой предмет, будучи поднятым над поверхностью, стремится к Земле.

То есть, мы приходим к выводу, что есть какая-то неизменная сила, которая притягивает все предметы к Земле. Почему же это происходит? Как называется это явление?

Вот ответ на эти вопросы - На эти тела действует сила - сила притяжения к Земле. Из-за притяжения к Земле падают тела, поднятые над Землей, а потом опущенные.

Сила вытаскивания ноги с зыбучих песков со скоростью 0,1 м/с

равна силе поднятия легкового автомобиля.

Интересный факт: зыбучие пески – это ньютоновская жидкость,

которая не может поглотить человека полностью.

Поэтому увязшие в песках люди умирают от обезвоживания,

солнечного облучения или по другим причинам. .

Сила тяжести и сила тяготения

Сила притяжения к Земле называется силой тяжести. Сила тяжести действует на все тела, находящиеся на поверхности Земли. Но не только тела притягиваются к Земле – они сами притягивают к себе Землю. Как по расписанию, по два раза за каждые сутки поднимаются огромные волны на морях и океанах – это можно наблюдать на берегу в виде приливов и отливов. За счет чего? За счет того, что луна действует на Землю. Это взаимодействие. Впервые его описал английский физик Исаак Ньютон. Он утверждал, что все тела во Вселенной притягиваются друг к другу. И.Ньютон установил, «что чем больше массы взаимодействующих тел, тем сила, с которой они взаимодействуют, будет больше. Силы притяжения между телами уменьшаются, если увеличивается расстояние между ними». Вот это явление и называется силой всемирного тяготения.

Притяжение всех тел Вселенной друг к другу называется всемирным тяготением.