Слабо сильная ядерная сила. Слабые взаимодействия. Слабое и сильное ядерное взаимодействия

МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение

высшего профессионального образования

"Санкт-Петербургский государственный электротехнический университет "ЛЭТИ" им. В. И. Ульянова (Ленина)"

(СПбГЭТУ)

Факультет экономики и менеджмента

Кафедра физики


По дисциплине "Концепции современного естествознания"

на тему "Слабое взаимодействие"


Проверил:

Альтмарк Александр Моисеевич

Выполнила:

студентка гр. 3603

Колисецкая Мария Владимировна


Санкт-Петербург



1. Слабое взаимодействие - одно из четырех фундаментальных взаимодействий

История изучения

Роль в природе


Слабое взаимодействие - одно из четырех фундаментальных взаимодействий


Слабое взаимодействие, или слабое ядерное взаимодействие, - одно из четырёх фундаментальных взаимодействий в природе. Оно ответственно, в частности, за бета-распад ядра. Это взаимодействие называется слабым, поскольку два других взаимодействия, значимые для ядерной физики (сильное и электромагнитное ), характеризуются значительно большей интенсивностью. Однако оно значительно сильнее четвёртого из фундаментальных взаимодействий, гравитационного . Силы слабого взаимодействия не хватает, чтобы удерживать частицы друг около друга (т.е. образовывать связанные состояния). Оно может проявляться только при распадах и взаимных превращениях частиц.

Слабое взаимодействие является короткодействующим - оно проявляется на расстояниях, значительно меньших размера атомного ядра (характерный радиус взаимодействия 2·10?18 м).

Переносчиками слабого взаимодействия являются векторные бозоны , и. При этом различают взаимодействие так называемых заряженных слабых токов и нейтральных слабых токов . Взаимодействие заряженных токов (при участии заряженных бозонов) приводит к изменению зарядов частиц и превращению одних лептонов и кварков в другие лептоны и кварки. Взаимодействие нейтральных токов (при участии нейтрального бозона) не меняет заряды частиц и переводит лептоны и кварки в те же самые частицы.

Впервые слабые взаимодействия наблюдались при?-распаде атомных ядер. И, как оказалось, эти распады связаны с превращениями протона в нейтрон в ядре и обратно:


р? n + е+ + ?e, n ? р + е- + e,

где n - нейтрон, p - протон, e- - электрон, ??e - электронное антинейтрино.

Элементарные частицы принято делить на три группы:

) фотоны; эта группа состоит всего лишь из одной частицы - фотона - кванта электромагнитного излучения;

) лептоны (от греч. «лептос» - легкий), участвующие только в электромагнитном и слабом взаимодействиях. К лептонам относятся электронное и мюонное нейтрино, электрон, мюон и открытый в 1975 г. тяжелый лептон - t-лептон, или таон, с массой примерно 3487me, а также соответствующие им античастицы. Название лептонов связано с тем, что массы первых известных лептонов были меньше масс всех других частиц. К лептонам относится также таонное нейтрино, существование которого в последнее время также установлено;

) адроны (от греч. «адрос» - крупный, сильный). Адроны обладают сильным взаимодействием наряду с электромагнитным и слабым. Из рассмотренных выше частиц к ним относятся протон, нейтрон, пионы и каоны.


Свойства слабого взаимодействия


Слабое взаимодействие обладает отличительными свойствами:

В слабом взаимодействии принимают участие все фундаментальные фермионы (лептоны и кварки ). Фермионы (от фамилии итальянского физика Э. Ферми <#"22" src="doc_zip7.jpg" />, -x, -y, -z, -, .

Операция P изменяет знак любого полярного вектора

Операция пространственной инверсии переводит систему в зеркально симметричную. Зеркальная симметрия наблюдается в процессах под действием сильного и электромагнитного взаимодействий. Зеркальная симметрия в этих процессах означает, что в зеркально симметричных состояниях переходы реализуются с одинаковой вероятностью.

г. ? Янг Чжэньнин, Ли Цзундао получил нобелевскую премию по физике. За глубокие исследования так называемых законов четности, которые привели к важным открытиям в области элементарных частиц.

Помимо пространственной чётности, слабое взаимодействие не сохраняет также и комбинированной пространственно-зарядовой чётности, то есть единственное из известных взаимодействий нарушает принцип CP-инвариантности .

Зарядовая симметрия означает, что если существует какой-либо процесс с участием частиц, то при замене их на античастицы (зарядовом сопряжении), процесс также существует и происходит с той же вероятностью. Зарядовая симметрия отсутствует в процессах с участием нейтрино и антинейтрино. В природе существуют только левоспиральные нейтрино и правоспиральные антинейтрино. Если каждую из этих частиц (для определённости будем рассматривать электронное нейтрино?e и антинейтрино e) подвергнуть операции зарядового сопряжения, то они перейдут в несуществующие объекты с лептонными числами и спиральностями.

Таким образом, в слабых взаимодействиях нарушаются одновременно P- и C-инвариантность. Однако, если над нейтрино (антинейтрино) совершить две последовательные операции? P- и C-преобразования (порядок операций не важен), то вновь получим нейтрино, существующие в природе. Последовательность операций и (или в обратном порядке) носит название CP-преобразования. Результат CP-преобразования (комбинированной инверсии) ?e и e следующий:

Таким образом, для нейтрино и антинейтрино операция, переводящая частицу в античастицу, это не операция зарядового сопряжения, а CP-преобразование.


История изучения


Изучение слабых взаимодействий продолжалось длительный период.
В 1896 году Беккерель обнаружил, что соли урана испускают проникающее излучение (?-распад тория). Это стало началом исследования слабого взаимодействия.
В 1930 году Паули выдвинул гипотезу о том, что при?-распаде наряду с электронами (е) испускаются легкие нейтральные частицы? нейтрино (?). В том же году Ферми предложил квантово-полевую теорию?-распада. Распад нейтрона (n) есть следствие взаимодействия двух токов: адронныи ток переводит нейтрон в протон (р), лептонный - рождает пару электрон + нейтрино. В 1956 году Райнес впервые наблюдал реакцию ер? nе+ в опытах вблизи ядерного реактора.

Ли и Янг объяснили парадокс в распадах K+-мезонов (? ~ ? загадка) ? распад на 2 и 3 пиона. Он связан с несохранением пространственной четности. Зеркальная асимметрия обнаружена в?-распаде ядер, распадах мюонов, пионов, K-мезонов и гиперонов.
В 1957 году Гелл-Манн, Фейнман, Маршак, Сударшан предложили универсальную теорию слабого взаимодействия, основанную на кварковой структуре адронов. Эта теория, получившая название V-A теории, привела к описанию слабого взаимодействия с помощью диаграмм Фейнмана. Тогда же были открыты принципиально новые явления: нарушение СР-инвариантности и нейтральные токи.

В 1960-х годах Шелдоном Ли Глэшоу , Стивеном Вайнбергом и Абдусом Саламом на основе хорошо разработанной к тому времени квантовой теории поля была создана теория электрослабых взаимодействий , объединяющая в себе слабое и эектромагнитное взаимодействия. Ими были введены калибровочные поля и кванты этих полей - векторные бозоны , и в роли переносчиков слабого взаимодествия. Кроме того, было предсказано существование неизвестных ранее слабыхнейтральных токов . Эти токи были обнаружены экспериментально в 1973 году при изучении процессов упругого рассеяния нейтрино и антинейтрино нуклонами .

В 1991-2001 годах на ускорителе LEP2 (ЦЕРН) проводилось изучение распадов Z0-бозонов, которое показало, что в природе существует только три поколения лептонов: ?e, ?? и??.


Роль в природе

ядерное взаимодействие слабое

Наиболее распространённый процесс, обусловленный слабым взаимодействием, - b-распад радиоактивных атомных ядер. Явление радиоактивности <#"justify">Список используемой литературы


1. Новожилов Ю.В. Введение в теорию элементарных частиц. М.: Наука, 1972

Окунь Б. Слабое взаимодействие элементарных частиц. М.: Физматгиз, 1963

Слабое взаимодействие, или слабое ядерное взаимодействие - одно из четырех фундаментальных взаимодействий в природе. Оно ответственно, в частности, за бета-распад ядра. Это взаимодействие называется слабым, поскольку два других взаимодействия, значимые для ядерной физики (сильное и электромагнитное), характеризуются значительно большей интенсивностью. Однако оно значительно сильнее четвертого из фундаментальных взаимодействий, гравитационного. Это взаимодействие является наиболее слабым из фундаментальных взаимодействий, экспериментально наблюдаемых в распадах элементарных частиц, где принципиально существенными являются квантовые эффекты. Квантовые проявления гравитационного взаимодействия никогда не наблюдались. Слабое взаимодействие выделяется с помощью следующего правила: если в процессе взаимодействия участвует элементарная частица, называемая нейтрино (или антинейтрино), то данное взаимодействие является слабым.

Типичный пример слабого взаимодействия - это бета-распад нейтрона

где n - нейтрон, p - протон, e- - электрон, e - электронное антинейтрино.

Следует, однако, иметь в виду, что указанное выше правило совсем не означает, что любой акт слабого взаимодействия обязан сопровождаться нейтрино или антинейтрино. Известно, что имеет место большое число безнейтринных распадов. В качестве примера можно отметить процесс распада лямбда-гиперона на протон p и отрицательно заряженный пион. По современным представлениям нейтрон и протон не являются истинно элементарными частицами, а состоят из элементарных частиц, называемых кварками.

Интенсивность слабого взаимодействия характеризуется константой связи Ферми GF. Константа GF размерна. Чтобы образовать безразмерную величину, необходимо использовать какую-нибудь эталонную массу, например массу протона mp. Тогда безразмерная константа связи будет

Видно, что слабое взаимодействие гораздо интенсивнее гравитационного.

Слабое взаимодействие в отличие от гравитационного является короткодействующим. Это означает, что слабое взаимодействие между частицами начинает действовать, только если частицы находятся достаточно близко друг к другу. Если же расстояние между частицами превосходит некоторую величину, называемую характерным радиусом взаимодействия, слабое взаимодействие не проявляет себя. Экспериментально установлено, что характерный радиус слабого взаимодействия порядка 10-15 см, то есть слабое взаимодействие, сосредоточен на расстояниях меньше размеров атомного ядра. Хотя слабое взаимодействие существенно сосредоточено внутри ядра, оно имеет определенные макроскопические проявления. Кроме того, слабое взаимодействие играет важную роль в так называемых термоядерных реакциях, ответственных за механизм энерговыделения в звездах. Удивительнейшим свойством слабого взаимодействия является существование процессов, в которых проявляется зеркальная асимметрия. На первый взгляд кажется очевидным, что разница между понятиями левое и правое условна. Действительно, процессы гравитационного, электромагнитного и сильного взаимодействия инвариантны относительно пространственной инверсии, осуществляющей зеркальное отражение. Говорят, что в таких процессах сохраняется пространственная четность P. Однако экспериментально установлено, что слабые процессы могут протекать с несохранением пространственной четности и, следовательно, как бы чувствуют разницу между левым и правым. В настоящее время имеются твердые экспериментальные доказательства, что несохранение четности в слабых взаимодействиях носит универсальный характер, оно проявляет себя не только в распадах элементарных частиц, но и в ядерных и даже атомных явлениях. Следует признать, что зеркальная асимметрия представляет собой свойство Природы на самом фундаментальном уровне.


Прочие статьи:

Антропный принцип
Итак, было приведено достаточно научных аргументов, свидетельствующих о том, что если исходить из очевидного факта наличия разумной жизни, то мы должны признать необходимость наложения вполне определенных ограничений на фундаментальные св...

Об экологической пластичности гидробионтов
Пресноводные растения и животные экологически более пластичны (эвритермны, эвригаленны), чем морские, обитатели прибрежных зон более пластичны (эвритермны), чем глубоководные. Есть виды, обладающие узкой экологической пластичностью по отн...

Поведение животных при внутривидовых взаимоотношениях
Репродуктивный комплекс поведения включает в себя все то, что связано с размножением животных, и потому он имеет огромное значение для популяции вида, обеспечивает его существование во времени, связь поколений, микроэволюцию и соответстве...

В 1896 г. французский ученый Анри Беккерель обнаружил радиоактивность урана. Это был первый экспериментальный сигнал о неизвестных до того силах природы - слабом взаимодействии. Теперь мы знаем, что слабое взаимодействие кроется за многими привычными явлениями, - например, оно принимает участие в некоторых термоядерных реакциях, поддерживающих излучение Солнца и других звезд.

Название «слабое» досталось этому взаимодействию по недоразумению, - так, для протона оно в 1033 раз сильнее гравитационного взаимодействия (см. Тяготение, Единство сия природы). Это, скорее, разрушительное взаимодействие, единственная сила природы, которая не скрепляет вещество, а только разрушает его. Можно было назвать его и «беспринципным», так как в разрушении оно не считается с принципами пространственной четности и временной обратимости, которые соблюдают остальные силы.

Основные свойства слабого взаимодействия стали известны еще в 1930-х гг., главным образом благодаря работам итальянского физика Э. Ферми. Оказалось, что, в отличие от гравитационных и электрических, слабые силы имеют очень малый радиус действия. В те годы казалось, что радиуса действия вообще нет - взаимодействие происходит в одной точке пространства, и к тому же мгновенно. Это взаимодействие виртуально (на короткое время) превращает каждый протон ядра в нейтрон, позитрон - в позитрон и нейтрино, а каждый нейтрон - в протон, электрон и антинейтрино. В стабильных ядрах (см. Ядро атомное) эти превращения так и остаются виртуальными, подобно виртуальным рождениям электрон-позитронных пар или протон-антипротонных пар в вакууме.

Если разница масс ядер, отличающихся на единицу по заряду, достаточно велика, эти виртуальные превращения делаются реальными, и ядро изменяет свой заряд на 1, выбрасывая электрон и антинейтрино (электронный -распад) или позитрон и нейтрино (позитронный -распад). Нейтроны имеют массу, превышающую приблизительно на 1 МэВ сумму масс протона и электрогна. Поэтому свободный нейтрон распадается на протон, электрон и антинейтрино с выделением энергии приблизительно 1 МэВ. Время жизни свободного нейтрона примерно 10 мин, хотя в связанном состоянии, например, в дейтоне, который состоит из нейтрона и протона, эти частицы живут неограниченно долго.

Аналогичное событие происходит с мюоном (см. Пептоны) - он распадается на электрон, нейтрино и антинейтрино. Перед тем как распасться, мюон живет около с - гораздо меньше, чем нейтрон. Теория Ферми объясняла это разницей масс участвующих частиц. Чем больше энергии выделяется при распаде, тем быстрее он идет. Выделение энергии при -распаде около 100 МэВ, примерно в 100 раз больше, чем при распаде нейтрона. Время жизни частицы обратно пропорционально пятой степени этой энергии.

Как выяснилось в последние десятилетия, слабое взаимодействие нелокально, т. е. оно происходит не мгновенно и не в одной точке. По современной теории, слабое взаимодействие передается не мгновенно, а виртуальная пара электрон - антинейтрино рождается через с после того, как мюон переходит в нейтрино, и происходит это на расстоянии см. Ни одна линейка, ни один микроскоп не могут, конечно, измерить такое малое расстояние, так же как ни один секундомер не может измерить такой малый интервал времени. Как это почти всегда бывает, в современной физике мы должны довольствоваться косвенными данными. Физики строят различные гипотезы о механизме процесса и проверяют всевозможные следствия этих гипотез. Те гипотезы, которые противоречат хотя бы одному достоверному опыту, отметаются, а для проверки оставшихся ставятся новые опыты. Этот процесс в случае слабого взаимодействия продолжался около 40 лет, пока физики не пришли к убеждению, что слабое взаимодействие переносится сверхмассивными частицами - в 100 раз тяжелее протона. Эти частицы имеют спин 1 и называются векторными бозонами (открыты в 1983 г. в ЦЕРНе, Швейцария - Франция).

Есть два заряженных векторных бозона и один нейтральный (значок вверху, как обычно, указывает заряд в единицах протонного). В распадах нейтрона и мюона «работает» заряженный векторный бозон . Ход распада мюона изображен на рис. (вверху, справа). Такие рисунки называют диаграммами Фейнмана, они не только иллюстрируют процесс, но и помогают его рассчитать. Это своего рода стенографическая запись формулы для вероятности реакции; здесь она используется только для иллюстрации.

Мюон переходит в нейтрино, испуская -бозон, который распадается на электрон и антинейтрино. Выделяемой энергии недостаточно для реального рождения -бозона, поэтому он рождается виртуально, т. е. на очень короткое время. В данном случае это с. За это время поле, соответствующее -бозону, не успевает сформировать волну, или иначе, реальную частицу (см. Поля и частицы). Образуется сгусток поля размером см, и через с из него рождаются электрон и антинейтрино.

Для распада нейтрона можно было бы нарисовать такую же диаграмму, но тут она уже ввела бы нас в заблуждение. Дело в том, что размер нейтрона см, что в 1000 раз больше радиуса действия слабых сил. Поэтому эти силы действуют внутри нейтрона, где находятся кварки. Один из трех кварков нейтрона испускает -бозон, переходя при этом в другой кварк. Заряды кварков в нейтроне: -1/3, - 1/ 3 и так что один из двух кварков с отрицательным зарядом -1/3 переходит в кварк с положительным зарядом . В результате получатся кварки с зарядами - 1/3, 2/3, 2/3, составляющие вместе протон. Продукты реакции - электрон и антинейтрино - беспрепятственно вылетают из протона. Но ведь кварк, испустивший -бозон. получил отдачу и начал двигаться в противоположном направлении. Почему же он не вылетает?

Его удерживает сильное взаимодействие. Это взаимодействие увлечет за кварком его двух неразлучных спутников, в результате чего получится движущийся протон. По аналогичной схеме происходят слабые распады (связанные со слабым взаимодействием) остальных адронов. Все они сводятся к испусканию векторного бозона одним из кварков, переходу этого векторного бозона в лептоны (, и -частицы) и дальнейшему разлету продуктов реакции.

Иногда, впрочем, происходят и адронные распады: векторный бозон может распасться на пару кварк - антикварк, которая перейдет в мезоны.

Итак, большое количество различных реакций сводится к взаимодействию кварков и лептонов с векторными бозонами. Это взаимодействие универсально, т. е. одинаково для кварков и лептонов. Универсальность слабого взаимодействия в отличие от универсальности гравитационного или электромагнитного взаимодействия не получила пока исчерпывающего объяснения. В современных теориях слабое взаимодействие объединяется с электромагнитным взаимодействием (см. Единство сил природы).

О нарушении симметрии слабым взаимодействием см. Четность, Нейтрино. В статье Единство сил природы рассказано о месте слабых сил в картине микромира

Слабое взаимодействие

Это взаимодействие является наиболее слабым из фундаментальных взаимодействий, экспериментально наблюдаемых в распадах элементарных частиц, где принципиально существенными являются квантовые эффекты. Напомним, что квантовые проявления гравитационного взаимодействия никогда не наблюдались. Слабое взаимодействие выделяется с помощью следующего правила: если в процессе взаимодействия участвует элементарная частица, называемая нейтрино (или антинейтрино), то данное взаимодействие является слабым.

Слабое взаимодействие гораздо интенсивнее гравитационного.

Слабое взаимодействие в отличие от гравитационного является короткодействующим. Это означает, что слабое взаимодействие между частицами начинает действовать, только если частицы находятся достаточно близко друг к другу. Если же расстояние между частицами превосходит некоторую величину, называемую характерным радиусом взаимодействия, слабое взаимодействие не проявляет себя. Экспериментально установлено, что характерный радиус слабого взаимодействия порядка 10-15 см, то есть слабое взаимодействие, сосредоточен на расстояниях меньше размеров атомного ядра.

Почему можно говорить о слабом взаимодействии как о независимом виде фундаментальных взаимодействий? Ответ прост. Установлено, что есть процессы превращений элементарных частиц, которые не сводятся к гравитационным, электромагнитным и сильным взаимодействиям. Хороший пример, показывающий, что существуют три качественно различных взаимодействия в ядерных явлениях, связан с радиоактивностью. Эксперименты указывают на наличие трех различных видов радиоактивности: a-, b и g-радиоактивных распадов. При этом a-распад обусловлен сильным взаимодействием, g-распад - электромагнитным. Оставшийся b-распад не может быть объяснен электромагнитным и сильным взаимодействиями, и мы вынуждены принять, что есть еще одно фундаментальное взаимодействие, названное слабым. В общем случае необходимость введения слабого взаимодействия обусловлена тем, что в природе происходят процессы, в которых электромагнитные и сильные распады запрещены законами сохранения.

Хотя слабое взаимодействие существенно сосредоточено внутри ядра, оно имеет определенные макроскопические проявления. Как мы уже отмечали, оно связано с процессом b-радиоактивности. Кроме того, слабое взаимодействие играет важную роль в так называемых термоядерных реакциях, ответственных за механизм энерговыделения в звездах.

Удивительнейшим свойством слабого взаимодействия является существование процессов, в которых проявляется зеркальная асимметрия. На первый взгляд кажется очевидным, что разница между понятиями левое и правое условна. Действительно, процессы гравитационного, электромагнитного и сильного взаимодействия инвариантны относительно пространственной инверсии, осуществляющей зеркальное отражение. Говорят, что в таких процессах сохраняется пространственная четность P. Однако экспериментально установлено, что слабые процессы могут протекать с несохранением пространственной четности и, следовательно, как бы чувствуют разницу между левым и правым. В настоящее время имеются твердые экспериментальные доказательства, что несохранение четности в слабых взаимодействиях носит универсальный характер, оно проявляет себя не только в распадах элементарных частиц, но и в ядерных и даже атомных явлениях. Следует признать, что зеркальная асимметрия представляет собой свойство Природы на самом фундаментальном уровне.

В электромагнитном взаимодействии участвуют все заряженные тела, все заряженные элементарные частицы. В этом смысле оно достаточно универсально. Классической теорией электромагнитного взаимодействия является максвелловская электродинамика. В качестве константы связи принимается заряд электрона e.

Если рассмотреть два покоящихся точечных заряда q1 и q2, то их электромагнитное взаимодействие сведется к известной электростатической силе. Это означает, что взаимодействие является дальнодействующим и медленно спадает с ростом расстояния между зарядами. Заряженная частица испускает фотон, в силу чего состояние ее движения изменяется. Другая частица поглощает этот фотон и также изменяет состояние своего движения. В результате частицы как бы чувствуют наличие друг друга. Хорошо известно, что электрический заряд является размерной величиной. Удобно ввести безразмерную константу связи электромагнитного взаимодействия. Для этого надо использовать фундаментальные постоянные и c. В результате приходим к следующей безразмерной константе связи, называемой в атомной физике постоянной тонкой структуры

Легко заметить, что данная константа значительно превышает константы гравитационного и слабого взаимодействий.

С современной точки зрения электромагнитное и слабое взаимодействия представляют собой различные стороны единого электрослабого взаимодействия. Создана объединенная теория электрослабого взаимодействия - теория Вайнберга-Салама-Глэшоу, объясняющая с единых позиций все аспекты электромагнитных и слабых взаимодействий. Можно ли понять на качественном уровне, как происходит разделение объединенного взаимодействия на отдельные, как бы независимые взаимодействия?

Пока характерные энергии достаточно малы, электромагнитное и слабое взаимодействия отделены и не влияют друг на друга. С ростом энергии начинается их взаимовлияние, и при достаточно больших энергиях эти взаимодействия сливаются в единое электрослабое взаимодействие. Характерная энергия объединения оценивается по порядку величины как 102 ГэВ (ГэВ - это сокращенное от гигаэлектрон-вольт, 1 ГэВ = 109 эВ, 1 эВ = 1.6·10-12 эрг = 1.6·1019 Дж). Для сравнения отметим, что характерная энергия электрона в основном состоянии атома водорода порядка 10-8 ГэВ, характерная энергия связи атомного ядра порядка 10-2 ГэВ, характерная энергия связи твердого тела порядка 10-10 ГэВ. Таким образом, характерная энергия объединения электромагнитных и слабых взаимодействий огромна по сравнению с характерными энергиями в атомной и ядерной физике. По этой причине электромагнитное и слабое взаимодействия не проявляют в обычных физических явлениях своей единой сущности.

Сильное взаимодействие

Сильное взаимодействие ответственно за устойчивость атомных ядер. Поскольку атомные ядра большинства химических элементов стабильны, то ясно, что взаимодействие, которое удерживает их от распада, должно быть достаточно сильным. Хорошо известно, что ядра состоят из протонов и нейтронов. Чтобы положительно заряженные протоны не разлетелись в разные стороны, необходимо наличие сил притяжения между ними, превосходящих силы электростатического отталкивания. Именно сильное взаимодействие является ответственным за эти силы притяжения.

Характерной чертой сильного взаимодействия является его зарядовая независимость. Ядерные силы притяжения между протонами, между нейтронами и между протоном и нейтроном по существу одинаковы. Отсюда следует, что с точки зрения сильных взаимодействий протон и нейтрон неотличимы и для них используется единый термин нуклон, то есть частица ядра.

Итак, мы сделали обзор основных сведений, касающихся четырех фундаментальных взаимодействий Природы. Кратко описаны микроскопические и макроскопические проявления этих взаимодействий, картина физических явлений, в которых они играют важную роль.

Это третье фундаментальное взаимодействие, существующее только в микромире. Оно ответственно за превращение одних частиц-фермионов в другие, при этом цвет слабо взаимодействующих пептонов и кварков не меняется. Типичный пример слабого взаимодействия - процесс бета-распада, в ходе которого свободный нейтрон в среднем за 15 минут распадается на протон, электрон и электронное антинейтрино. Распад вызывается превращением внутри нейтрона кварка аромата d в кварк аромата u. Вылетающий электрон обеспечивает сохранение суммарного электрического заряда, а антинейтрино позволяет сохранить суммарный механический импульс системы.

Сильное взаимодействие

Основная функция сильного взаимодействия - соединять кварки и антикварки в адроны. Теория сильных взаимодействий находится в процессе создания. Она является типичной полевой теорией и названа квантовой хромодинамикой. Исходным положением ее служит постулат о существовании трех типов цветовых зарядов (красный, синий, зеленый), выражающих присущую веществу способность к объединению кварков в сильном взаимодействии. Каждый из кварков содержит некоторую комбинацию таких зарядов, но при этом полной их взаимокомпенсации не происходит, и кварк обладает результирующим цветом, то есть сохраняет способность к сильному взаимодействию с другими кварками. Но когда три кварка или кварк и антикварк объединяются в адрон, суммарная комбинация цветовых зарядов в нем такова, что адрон в целом обладает цветовой нейтральностью. Цветовые заряды создают поля с присущими им квантами - бозонами. Обмен виртуальными цветовыми бозонами между кварками и (или) антикварками служит материальной основой сильного взаимодействия. До открытия кварков и цветового взаимодействия фундаментальным считали ядерное взаимодействие, объединяющее протоны и нейтроны в ядрах атомов. С открытием кваркового уровня вещества под сильным взаимодействием стали понимать цветовые взаимодействия между кварками, объединяющимися в адроны. Ядерные силы перестали считаться фундаментальными, они должны как-то выражаться через цветные силы. Но это не просто сделать, ведь барионы (протоны и нейтроны), составляющие ядра, в целом цветонейтральны. По аналогии можно вспомнить, что и атомы в целом электрически нейтральны, но на молекулярном уровне проявляются химические силы, рассматриваемые как отголоски электрических атомных сил.

Рассмотренные четыре типа фундаментальных взаимодействий лежат в основе всех других известных форм движения материи, в том числе возникших на высших ступенях развития. Любые сложные формы движения при их разложении на структурные составляющие обнаруживаются как сложные модификации указанных фундаментальных взаимодействий.

2.Развитие научных взглядов на взаимодействие частиц до эволюционного создания теории «Великого объединения»

Теория "Великого объединения" – это теория, объединяющая электромагнитные, сильные и слабые взаимодействия. Упоминая про теорию "Великого объединения", речь заходит о том, что все силы, существующие в природе, являются проявлением одной всеобщей фундаментальной силы. Есть ряд соображений, дающих основания полагать, что в момент Большого взрыва, породившего нашу вселенную, существовала только эта сила. Однако с течением времени вселенная расширялась, а значит, остывала, и единая сила расщепилась на несколько разных, которые мы сейчас и наблюдаем. Теория "Великого объединения" должна описать электромагнитную, сильную, слабую и гравитационную силы как проявление одной всеобщей силы. Определенный прогресс уже есть: ученым удалось построить теорию, объединяющую электромагнитное и слабое взаимодействия. Однако основная работа над теорией "Великого объединения" еще впереди.

Современная физика частиц вынуждена обсуждать такие вопросы, которые, по сути дела, волновали еще античных мыслителей. Каково происхождение частиц и химических атомов, построенных из этих частиц? И как из частиц, как бы мы их ни называли, может быть построен Космос, видимая нами Вселенная? И еще – сотворена ли Вселенная, или существует извечно? Если можно так спрашивать, то каковы пути мысли, которые могут привести к убедительным ответам? Все эти вопросы аналогичны поискам истинных начал бытия, вопросам о природе этих начал.

Что бы мы ни говорили о Космосе, ясно одно, что все в природном мире так или иначе состоит из частиц. Но как понимать эту составленность? Известно, что частицы взаимодействуют – притягиваются или отталкиваются друг от друга. Физика частиц изучает разнообразные взаимодействия. [Поппер К. Об источниках знания и незнания // Вопр. истории естествознания и техники, 1992, № 3, с. 32.]

Электромагнитное взаимодействие привлекло к себе особенное внимание в XVIII–XIX вв. Обнаружилось сходство и различие электромагнитного взаимодействия и гравитационного. Подобно гравитации, силы электромагнитного взаимодействия обратно пропорциональны квадрату расстояния. Но, в отличие от гравитации, электромагнитное "тяготение" не только притягивает частицы (различные по знаку заряда), но и отталкивает их друг от друга (одинаково заряженные частицы). И не все частицы – носители электрического заряда. Например, фотон и нейтрон нейтральны в этом отношении. В 50-х годах XIX в. электромагнитная теория Д. К. Максвелла (1831–1879) объединила электрические и магнитные явления и тем самым прояснила действие электромагнитных сил. [Грюнбаум А. Происхождение против творения в физической космологии (теологические искажения современной физической космологии). – Вопр. философии, 1995, № 2, с. 19.]

Изучение явлений радиоактивности привело к открытию особого рода взаимодействия частиц, которое получило название слабого взаимодействия. Поскольку это открытие связано с изучением бета-радиоактивности, можно было бы назвать это взаимодействие бета-распадным. Однако в физической литературе принято говорить о слабом взаимодействии – оно слабее электромагнитного, хотя и значительно сильнее гравитационного. Открытию способствовали исследования В. Паули (1900–1958), предсказавшего, что при бета-распаде вылетает нейтральная частица, компенсирующая кажущееся нарушение закона сохранения энергии, названная нейтрино. И кроме того, открытию слабых взаимодействий способствовали исследования Э. Ферми (1901–1954), который наряду с другими физиками высказал предположение, что электроны и нейтрино до своего вылета из радиоактивного ядра не существуют в ядре, так сказать, в готовом виде, но образуются в процессе излучения. [Грюнбаум А. Происхождение против творения в физической космологии (теологические искажения современной физической космологии). – Вопр. философии, 1995, № 2, с. 21.]

Наконец, четвертое взаимодействие оказалось связанным с внутриядерными процессами. Названное сильным взаимодействием, оно проявляется как притяжение внутриядерных частиц – протонов и нейтронов. Вследствие большой величины оно оказывается источником огромной энергии.

Изучение четырех типов взаимодействий шло по пути поисков их глубинной связи. На этом неясном, во многом темном пути только принцип симметрии направлял исследование и привел к выявлению предполагаемой связи различных типов взаимодействий.

Для выявления таких связей пришлось обратиться к поискам особого типа симметрий. Простым примером подобного типа симметрии может служить зависимость работы, совершаемой при подъеме груза, от высоты подъема. Затрачиваемая энергия зависит от разности высот, но не зависит от характера пути подъема. Существенна только разность высот и совершенно не имеет значения, от какого уровня мы начинаем измерение. Можно сказать, что мы имеем здесь дело с симметрией относительно выбора начала отсчета.

Подобным образом можно вычислять энергию движения электрического заряда в электрическом поле. Аналогом высоты будет здесь напряжение поля или, иначе, электрический потенциал. Затрачиваемая энергия при движении заряда будет зависеть только от разности потенциалов между конечной и начальной точками в пространстве поля. Мы имеем здесь дело с так называемой калибровочной или, по-другому, с масштабной симметрией. Калибровочная симметрия, отнесенная к электрическому полю, тесно связана с законом сохранения электрического заряда.

Калибровочная симметрия оказалась важнейшим средством, порождающим возможность разрешить многие трудности в теории элементарных частиц и в многочисленных попытках объединения различных типов взаимодействий. В квантовой электродинамике, например, возникают различные расходимости. Устранить эти расходимости удается в силу того, что так называемая процедура перенормировки, устраняющая трудности теории, тесно связана с калибровочной симметрией. Появляется идея, что трудности при построении теории не только электромагнитных, но и других взаимодействий могут быть преодолены, если удастся найти другие, скрытые симметрии.

Калибровочная симметрия может принимать обобщенный характер и может быть отнесена к любому силовому полю. В конце 1960-х гг. С. Вайнберг (р. 1933) из Гарвардского университета и А. Салам (р. 1926) из Империал-колледжа в Лондоне, опираясь на работы Ш. Глэшоу (р. 1932), предприняли теоретическое объединение электромагнитного и слабого взаимодействий. Они использовали при этом идею калибровочной симметрии и связанное с этой идеей понятие калибровочного поля. [Якушев А. С. Основные концепции современного естествознания. – М., Факт-М, 2001, с. 29.]

Для электромагнитного взаимодействия применима простейшая форма калибровочной симметрии. Оказалось, что симметрия слабого взаимодействия сложнее, чем электромагнитного. Сложность эта обусловлена сложностью самого процесса, так сказать, механизма слабого взаимодействия.

В процессе слабого взаимодействия происходит, например, распад нейтрона. В этом процессе могут участвовать такие частицы, как нейтрон, протон, электрон и нейтрино. Причем за счет слабого взаимодействия происходит взаимное превращение частиц.

Концептуальные положения теории «Великого объединения»

В современной теоретической физике тон задают две новые концептуальные схемы: так называемая теория "Великого объединения" и суперсимметрия.

Эти научные направления совместно приводят к весьма привлекательной идее, согласно которой вся природа в конечном счете подчинена действию некой суперсилы, проявляющейся в различных "ипостасях". Эта сила достаточно мощна, чтобы создать нашу Вселенную и наделить ее светом, энергией, материей и придать ей структуру. Но суперсила – нечто большее, чем просто созидающее начало. В ней материя, пространство–время и взаимодействие слиты в нераздельное гармоничное целое, порождающее такое единство Вселенной, которое ранее никто и не предполагал. Назначение науки, по существу, заключается в поиске такого единства. [Овчинников Н. Ф. Структура и симметрия // Системные исследования, М., 1969, с. 137.]

Исходя из этого, возникает определенная уверенность объединения всех явлений живой и неживой природы в рамках единой описательной схемы. На сегодняшний день известны четыре фундаментальных взаимодействия или четыре силы в природе, ответственные за все известные взаимодействия элементарных частиц – сильное, слабое, электромагнитное и гравитационное взаимодействия. Сильные взаимодействия связывают между собой кварки. Слабые взаимодействия обусловливают некоторые виды ядерных распадов. Электромагнитные силы действуют между электрическими зарядами, а гравитационные – между массами. Наличие этих взаимодействий является достаточным и необходимым условием для построения окружающего нас мира. Например, без гравитации не только не было бы галактик, звезд и планет, но и Вселенная не могла бы возникнуть – ведь сами понятия расширяющейся Вселенной и Большого взрыва, от которого берет начало пространство–время, основаны на гравитации. Без электромагнитных взаимодействий не было бы ни атомов, ни химии или биологии, а также солнечного тепла и света. Без сильных ядерных взаимодействий не существовали бы ядра, а следовательно – атомы и молекулы, химия и биология, а звезды и Солнце не могли бы генерировать за счет ядерной энергии теплоту и свет.

Даже слабые ядерные взаимодействия играют определенную роль в образовании Вселенной. Без них невозможны были бы ядерные реакции в Солнце и звездах, по-видимому, не происходили бы вспышки сверхновых и необходимые для жизни тяжелые элементы не могли бы распространиться во Вселенной. Жизнь вполне могла бы и не возникнуть. Если согласиться с мнением, что все эти четыре совершенно различных взаимодействия, каждое из которых по-своему необходимо для возникновения сложных структур и определяющих эволюцию всей Вселенной, порождаются единственной простой суперсилой, то наличие единого фундаментального закона, действующего как в живой, так и в неживой природе, не вызывает сомнения. Современные исследования показывают, что когда-то эти четыре силы могли быть объединены в одну.

Это было возможно при огромных энергиях, характерных для эпохи ранней Вселенной вскоре после Большого взрыва. Действительно, теория объединения электромагнитных и слабых взаимодействий уже подтверждена экспериментально. Теории "Великого объединения" должны объединить эти взаимодействия с сильными, а теории "Всего Сущего" – единым образом описать все четыре фундаментальные взаимодействия как проявления одного взаимодействия. Тепловая история Вселенной, начиная с 10–43 сек. после Большого взрыва и до наших дней, показывает, что большая часть гелия-4, гелия-3, дейтронов (ядер дейтерия – тяжелого изотопа водорода) и лития-7 образовалась во Вселенной примерно через 1 мин после Большого взрыва.

Более тяжелые элементы появились внутри звезд десятки миллионов или миллиарды лет спустя, а возникновению жизни соответствует заключительный этап эволюционирующей Вселенной. Основываясь на проведенном теоретическом анализе и результатах компьютерного моделирования диссипативных систем, функционирующих вдали от равновесия, в условиях действия кодово-частотного низкоэнергетического потока, нами был сделан вывод о существовании во Вселенной двух параллельных процессов – энтропийного и информационного. Причем энтропийный процесс превращения материи в излучение не является доминирующим. [Солдатов В. К. Теория "Великого объединения". – М., Постскриптум, 2000 г., с. 38.]

В этих условиях возникает новый тип эволюционной самоорганизации материи, связывающий когерентное пространственно-временное поведение системы с динамическими процессами внутри самой системы. Тогда в масштабе Вселенной этот закон будет формулироваться следующим образом: "Если Большой взрыв привел к образованию 4-х фундаментальных взаимодействий, то дальнейшая эволюция пространственно-временной организации Вселенной связана с их объединением". Таким образом, в нашем представлении, закон возрастания энтропии необходимо применять не к отдельным частям Вселенной, а ко всему процессу ее эволюции. В момент своего образования Вселенная оказалась квантованной по пространственно-временным уровням иерархии, каждому из которых и отвечает одно из фундаментальных взаимодействий. Возникшая флуктуация, воспринимаемая в виде расширяющейся картины Вселенной, в определенный момент переходит к восстановлению своего равновесия. Процесс дальнейшей эволюции происходит в зеркальном отражении.

Другими словами, в наблюдаемой Вселенной одновременно происходит два процесса. Один процесс – антиэнтропийный – связан с восстановлением нарушенного равновесия, путем самоорганизации вещества и излучения в макроквантовые состояния (в качестве физического примера можно привести такие хорошо известные состояния вещества, как сверхтекучесть, сверхпроводимость и квантовый эффект Холла). Этот процесс, по всей видимости, и определяет последовательную эволюцию процессов термоядерного синтеза в звездах, образование планетных систем, минералов, растительного мира, одноклеточных и многоклеточных организмов. Отсюда автоматически следует самоорганизующая направленность третьего принципа прогрессивной эволюции живых организмов.

Другой процесс носит чисто энтропийный характер и описывает процессы циклического эволюционного перехода самоорганизующей материи (распад – самоорганизация). Не исключено, что указанные принципы могут послужить основой для создания математического аппарата, позволяющего объединить все четыре взаимодействия в одну суперсилу. Как уже отмечалось, именно этой задачей в настоящее время занято большинство физиков-теоретиков. Дальнейшая аргументация этого принципа выходит далеко за рамки этой статьи и связана с построением теории Эволюционной Самоорганизации Вселенной. Поэтому позволим себе сделать главный вывод и посмотреть, насколько он применим к биологическим системам, принципам их управления, а главное – к новым технологиям лечения и профилактики патологических состояний организма. В первую очередь нас будут интересовать принципы и механизмы поддержания самоорганизации и эволюции живых организмов, а также причины их нарушений, проявляющиеся в виде всевозможных патологий.

Первый из них – это принцип кодово-частотного управления, основное назначение которого состоит в поддержании, синхронизации и управлении энергетическими потоками внутри любой открытой самоорганизующей диссипативной системы. Выполнение этого принципа для живых организмов требует наличия на каждом структурном иерархическом уровне биологического объекта (молекулярном, субклеточном, клеточном, тканевом, органоидном, организменном, популяционном, биоценотическом, биотическом, ландшафтном, биосферном, космическом) наличия биоритмологического процесса, связанного с потреблением и расходом трансформируемой энергии, который и определяет активность и последовательность процессов внутри системы. Этот механизм занимает центральное место на ранних этапах возникновения жизни в процессах формирования структуры ДНК и принципа редупликации дискретных кодов наследственной информации, а также в таких процессах, как деление и последующая дифференциация клеток. Как известно, процесс деления клеток всегда происходит в строгой последовательности: профаза, метафаза, телофаза, а затем – анафаза. Можно нарушить условия деления, помешать ему, даже удалить ядро, но последовательность всегда сохранится. Вне всякого сомнения, наш организм оснащен совершеннейшими синхронизаторами: нервной системой, чутко реагирующей на малейшие изменения внешней и внутренней среды, более медленной гуморальной системой. В то же время инфузория-туфелька, при полном отсутствии нервной и гуморальной систем, живет, питается, выделяет, размножается, и все эти сложнейшие процессы идут не хаотично, а в строгой последовательности: любая реакция предопределяет следующую, а та в свою очередь выделяет продукты, которые необходимы для начала очередной реакции. [Солдатов В. К. Теория "Великого объединения". – М., Постскриптум, 2000 г., с. 59.]

Надо отметить, что еще теория Эйнштейна ознаменовала столь важный прогресс в понимании природы, что уже вскоре стал неизбежным пересмотр взглядов и на другие силы природы. В это время единственной "другой" силой, существование которой было твердо установлено, являлось электромагнитное взаимодействие. Однако внешне оно совершенно не походило на гравитацию. Более того, за несколько десятков лет до создания теории гравитации Эйнштейна электромагнетизм успешно описала теория Максвелла, и не было никаких оснований сомневаться в справедливости этой теории.

На протяжении всей жизни Эйнштейн мечтал о создании единой теории поля, в которой все силы природы сливались бы воедино на основе чистой геометрии. Поискам такой схемы Эйнштейн посвятил большую часть своей жизни после создания общей теории относительности. Однако по иронии судьбы ближе всех к реализации мечты Эйнштейна подошел малоизвестный польский физик Теодор Калуца, который еще в 1921 г. заложил основы нового и неожиданного подхода к объединению физики, до сих пор поражающего воображение своей дерзостью.

С открытием в 30-е годы XX столетия слабых и сильных взаимодействий идеи объединения гравитации и электромагнетизма в значительной мере потеряли свою привлекательность. Последовательная единая теория поля должна была включить в себя уже не две, а четыре силы. Очевидно, это нельзя было сделать, не достигнув глубокого понимания слабых и сильных взаимодействий. В конце 1970-х годов благодаря свежему ветру, принесенному теориями Великого объединения (ТВО) и супергравитацией, вспомнили старую теорию Калуцы–Клейна. С нее "сдули пыль, приодели по моде" и включили в нее все известные на сегодня взаимодействия.

В ТВО теоретикам удалось собрать в рамках одной концепции три очень различных вида взаимодействий; это обусловлено тем, что все три взаимодействия могут быть описаны с помощью калибровочных полей. Основное свойство калибровочных полей состоит в существовании абстрактных симметрий, благодаря которым этот подход обретает элегантность и открывает широкие возможности. Наличие симметрий силовых полей достаточно определенно указывает на проявление некоторой скрытой геометрии. В возвращенной к жизни теории Калуцы–Клейна симметрии калибровочных полей приобретают конкретность – это геометрические симметрии, связанные с дополнительными измерениями пространства.

Как и в первоначальном варианте, взаимодействия вводятся в теории путем присоединения к пространству-времени дополнительных пространственных измерений. Однако, поскольку теперь надо дать пристанище взаимодействиям трех типов, приходится вводить несколько дополнительных измерений. Простой подсчет количества операций симметрии, входящих в ТВО, приводит к теории с семью дополнительными пространственными измерениями (так что их общее число достигает десяти); если же учесть время, то всего пространство-время насчитывает одиннадцать измерений. [Солдатов В. К. Теория "Великого объединения". – М., Постскриптум, 2000 г., с. 69.]

Основные положения теории "Великого объединения" с точки зрения квантовой физики

В квантовой физике каждому масштабу длин сопоставляется масштаб энергий (или эквивалентных масс). Чем меньше изучаемый масштаб длин, тем выше необходимая для этого энергия. Для изучения кварковой структуры протона требуются энергии, эквивалентные по крайней мере десятикратной массе протона. Значительно выше по шкале энергий расположена масса, соответствующая Великому объединению. Если нам когда-либо удастся достичь столь огромной массы (энергии), от чего мы сегодня весьма далеки, то появится возможность изучить мир Х-частиц, в котором стираются различия между кварками и лептонами.

Какая же энергия необходима, чтобы проникнуть "внутрь" 7-сферы и исследовать дополнительные измерения пространства? Согласно теории Калуцы–Клейна, требуется превзойти масштаб Великого объединения и достичь энергий эквивалентных 10 19 массам протона. Лишь при таких невообразимо огромных энергиях удалось бы непосредственно наблюдать проявления дополнительных измерений пространства.

Эта огромная величина – 10 19 масс протона – носит название массы Планка, так как она была впервые введена Максом Планком, создателем квантовой теории. При энергии, соответствующей массе Планка, все четыре взаимодействия в природе слились бы в единую суперсилу, а десять пространственных измерений оказались бы полностью равноправными. Если бы удалось сконцентрировать достаточное количество энергии, "обеспечивающее достижение массы Планка, то полная размерность пространства проявилась бы во всем своем великолепии. [Якушев А. С. Основные концепции современного естествознания. – М., Факт-М, 2001, с. 122.]

Дав свободу воображению, можно представить, что однажды человечество овладеет суперсилой. Если бы это случилось, то мы обрели бы власть над природой, поскольку суперсила в конечном счете порождает все взаимодействия и все физические объекты; в этом смысле она является первоосновой всего сущего. Овладев суперсилой, мы смогли бы менять структуру пространства и времени, по-своему искривить пустоту и привести в порядок материю. Управляя суперсилой, мы смогли бы по своему желанию создавать или превращать частицы, генерируя новые экзотические формы материи. Мы даже смогли бы манипулировать размерностью самого пространства, создавая причудливые искусственные миры с немыслимыми свойствами. Мы стали бы поистине властелинами Вселенной!

Но как этого достичь? Прежде всего необходимо добыть достаточное количество энергии. Чтобы представить, о чем идет речь, напомним, что линейный ускоритель в Стэнфорде длиной 3 км разгоняет электроны до энергий, эквивалентных 20 массам протона. Для достижения энергии Планка ускоритель потребовалось бы удлинить в 10 18 раз, сделав его размером с Млечный Путь (около ста тысяч световых лет). Подобный проект не из тех, что удастся осуществить в обозримом будущем. [Уилер Дж. А. Квант и вселенная // Астрофизика, кванты и теория относительности, М., 1982, с. 276.]

В теории Великого объединения отчетливо различаются три пороговых значения, или масштаба, энергии. Прежде всего – это порог Вайнберга–Салама, эквивалентный почти 90 массам протона, выше которого электромагнитные и слабые взаимодействия сливаются в единое электрослабое. Второй масштаб, соответствующий 10 14 массам протона, характерен для Великого объединения и основанной на нем новой физики. Наконец, предельный масштаб – масса Планка, – эквивалентный 10 19 массам протона, соответствует полному объединению всех взаимодействий, в результате чего мир поразительно упрощается. Одна из самых больших нерешенных проблем состоит в объяснении существования этих трех масштабов, а также причины столь сильного различия первого и второго из них. [Солдатов В. К. Теория "Великого объединения". – М., Постскриптум, 2000 г., с. 76.]

Современная техника способна обеспечить достижение лишь первого масштаба. Распад протона мог бы дать нам косвенное средство для изучения физического мира в масштабе Великого объединения, хотя в настоящее время, по-видимому, нет никаких надежд непосредственно достичь этого предела, не говоря уже о масштабе массы Планка.

Означает ли это, что мы никогда не сможем наблюдать проявлений изначальной суперсилы и невидимых семи измерений пространства. Используя такие технические средства, как сверхпроводящий суперколлайдер, мы быстро продвигаемся по шкале достижимых в земных условиях энергий. Однако создаваемая людьми техника отнюдь не исчерпывает всех возможностей – существует и сама природа. Вселенная представляет собой гигантскую естественную лабораторию, в которой 18 млрд. лет назад был "проведен" величайший эксперимент в области физики элементарных частиц. Мы называем этот эксперимент Большим взрывом. Как будет сказано далее, этого изначального события оказалось достаточно для высвобождения – хотя и на очень короткое мгновение – суперсилы. Впрочем, этого, видимо, оказалось достаточно, чтобы призрачное существование суперсилы навсегда оставило свой след. [Якушев А. С. Основные концепции современного естествознания. – М., Факт-М, 2001, с. 165.]