Системы тригонометрических уравнений. Тригонометрические уравнения. Подготовка к ЕГЭ по математике

В данном практическом уроке будут рассмотрены несколько типовых примеров, которые демонстрируют методы решения тригонометрических уравнений и их систем.

Данный урок поможет Вам подготовиться к одному из типов задания В5 и С1 .

Подготовка к ЕГЭ по математике

Эксперимент

Урок 10. Тригонометрические функции. Тригонометрические уравнения и их системы.

Практика

Конспект урока

Основную часть урока мы посвятим решению тригонометрических уравнений и систем, но начнем с заданий на свойства тригонометрических функций, которые с решением уравнений не связаны. Рассмотрим вычисление периода тригонометрических функций со сложным аргументом.

Задача №1 . Вычислить период функций а) ; б) .

Воспользуемся указанными в лекции формулами.

а) Для функции период . В нашем случае , т.е. .

б) Для функции период . У нас , т.к. аргумент можно представить не только разделенным на три, но и умноженным на . Остальные действия с функцией (умножение на , добавление 1) не влияет на аргумент, поэтому нас не интересуют.

Получаем, что

Ответ. а) ; б) .

Переходим к основной части нашей практики и начинаем решение тригонометрических уравнений. Для удобства разберем решение тех же примеров, которые мы упоминали в лекции, когда перечисляли основные виды уравнений.

Задача №2 . Решить уравнение: а) ; б) ; в) ; г) .

Для нахождения корней таких уравнений пользуемся формулами общих решений.

Для вычисления значений аркфункции пользуемся нечетностью арктангенса и таблицей значений тригонометрических функций, что мы подробно рассматривали на предыдущем уроке. Далее не будем отдельно останавливаться на этих действиях.

г) При решении уравнения хочется написать по общей формуле, что , но этого делать нельзя. Здесь принципиально важна проверка области значений косинуса, которая проверяется вначале решения уравнения.

Поскольку , что не лежит в области значений функции, следовательно, уравнение не имеет решений.

Важно не перепутать значение с табличным значением косинуса , будьте внимательны!

Замечание . Достаточно часто в задачах на решение тригонометрических уравнений и систем требуется указать не общее решение, демонстрирующее бесконечное семейство корней, а выбрать только несколько из них, которые лежат в определенном диапазоне значений. Давайте проделаем эти действия на примере ответа к пункту «в».

Дополнительная задача к пункту «в» . Указать количество корней уравнения , которые принадлежат промежутку и перечислить их.

Общее решение нам уже известно:

Для того чтобы указать корни, принадлежащие указанному промежутку, их необходимо по очереди выписать, подставляя конкретные значения параметра. Подставлять будем целые числа, начиная с , т.к. корни нас интересуют из диапазона, который близок к нулю.

При подстановке мы получим еще большее значение корня, поэтому нет смысла этого делать. Теперь подставим отрицательные значения:

Подставлять по тем же соображениям не имеет смысла. Следовательно, мы нашли единственный корень уравнения, который принадлежит указанному диапазону.

Ответ. ; указанному диапазону принадлежит одно значение корня уравнения.

Аналогичная постановка вопроса о поиске определенных значений корней уравнений может встречаться и в заданиях других типов, далее мы не будем тратить на это время. Поиск необходимых корней всегда будет выполняться аналогично. Иногда для этого изображают тригонометрическую окружность. Попробуйте сами нанести на окружность корни уравнений из пунктов «а» и «б», которые попадают в диапазон .

Задача №3 . Решить уравнение .

Воспользуемся методом нахождения корней с использованием тригонометрической окружности, как это было показано на лекции.

Наносим на окружность точки, соответствующие углам, при которых . Такой угол один.

Первое значение угла, соответствующего указанной точке - точка находится на луче, который является началом отсчета. Далее, чтобы попасть еще раз в эту же точку, но уже при другом значении угла, необходимо к первому найденному корню прибавить и получим следующий корень . Для получения следующего корня необходимо проделать ту же операцию и т.д.

Таким образом, можем указать общее решение, которое будет демонстрировать, что для получения всех корней уравнения к первому значению необходимо любое целое количество раз добавлять :

Напомним, что аналогичным способом решаются уравнения вида:

Задача №4 . Решить уравнение .

Наличие сложного аргумента не меняет того, что уравнение, по сути, является простейшим, и подход к решению сохраняется. Просто теперь в роли аргумента выступает . Его и пишем в формуле общего решения:

Задача №5 . Решить уравнение .

Самое главное, это не допустить типичную ошибку и не сократить обе стороны уравнения на , т.к. при этом мы потеряем корни уравнения, соответствующие . Грамотный подход к решению предполагает перенос всех выражений в одну сторону и вынесение общего множителя.

На этом этапе необходимо вспомнить, что если произведение равно нулю, то это возможно в том случае, если либо один из множителей равен нулю, либо другой. Таким образом, наше уравнение превращается в совокупность уравнений:

Первое уравнение решаем, как частный случай простейшего уравнения. Проделайте это самостоятельно, мы выпишем готовый результат. Во втором уравнении выполним действия, чтобы привести его к простейшему виду со сложным аргументом и решим по общей формуле корней.

Обратите внимание на такой нюанс - при записи общей формулы корней второго уравнения мы используем другой параметр «». Это связано с тем, что мы решаем совокупность независимых уравнений и в них не должно быть общих параметров. В результате получаем два независимых семейства решений.

Ответ. ; .

Задача №6 . Решить уравнение .

Для упрощения воспользуемся формулой преобразования произведения тригонометрических функций в сумму

Воспользуемся четностью косинуса и взаимоуничтожим одинаковое слагаемое в двух частях уравнения.

Перенесем все в одну сторону и воспользуемся формулой разности косинусов, чтобы получить произведение функций, которое будет равно нулю. Применим для этого формулу .

Cократим обе стороны уравнения на :

Мы свели уравнение к форме произведения, которая у нас получилась в предыдущем примере. Предлагаем вам самим дорешать его до конца. Укажем окончательный ответ.

В принципе, это уже окончательный ответ. Однако его можно записать компактнее в виде одного семейства решений, а не двух. В первом решении указаны все четверти частей , а во втором все половины частей , но половины входят в четверти, поскольку половина - это две четверти. Таким образом, второе семейство корней входит в первое, и итоговый ответ можно описать первым семейством решений.

Чтобы лучше разобраться в этих рассуждениях, попробуйте нанести полученные корни на тригонометрическую окружность.

Ответ. или .

Мы рассмотрели одно уравнение с использованием преобразований тригонометрических функций, однако их огромное множество, как и типов преобразований. Уравнение на использование универсальной тригонометрической подстановки, пример которой мы не приводили на позапрошлом уроке, мы рассмотрим после того, как разберем метод замены.

Задача №7 . Решить уравнение .

В данном случае необходимо сначала попробовать свести уравнение к использованию одной тригонометрической функции. Т.к. легко выражается через с использованием тригонометрической единицы, мы легко сведем уравнение к синусам.

Подставим выражение в наше уравнение:

Поскольку все сведено к одной функции можем выполнить замену: .

Получили квадратное уравнение, которое легко решить любыми удобными для вас способами, например, с использованием теоремы Виета легко получить, что:

Первое уравнение не имеет решений, т.к. значение синуса выходит за допустимую область .

Второе уравнение предлагаем вам решить самостоятельно, т.к. это уже рассмотренный нами тип частных случаев простейших уравнений. Выпишем его корни:

Ответ..

Задача №8 . Решить уравнение .

В указанном уравнении сразу не видны способы решения, которые мы уже рассмотрели. В таких случаях надо попробовать применить формулы универсальной тригонометрической подстановки, которые помогут привести уравнение к одной функции.

Воспользуемся формулами: и , которые приведут все уравнение к .

Сейчас видно, что можно выполнить замену .

Сложим дроби и умножим обе части уравнения на знаменатель, т.к. он , не равен нулю.

Мы привели уравнение к уже рассмотренной ранее форме, т.е. к произведению множителей, которое равно нулю.

Выполним обратную подстановку:

Оба полученных семейства решений можно легко объединить в одно:

Ответ..

Задача №9 . Решите уравнение . В ответ укажите только корни, кратные .

Указанное уравнение усложняется после приведения к синусам или косинусам, как это хочется сделать с помощью формулы тригонометрической единицы. Поэтому используется другой способ.

Указанное уравнение мы назвали однородным, так называют уравнения, в которых после перестановки местами неизвестных функций или переменных ничего не изменится. Переставьте местами синус с косинусом, и вы убедитесь, что это наш случай.

Решают однородные уравнения делением обеих частей на старшую степень функции. В нашем случае это или или . Выбираем ту, которая нам больше нравится, и делим на нее обе стороны уравнения. Возьмем, например, для этого . При этом обязательно необходимо проверить, не потеряем ли мы при таком делении корни, соответствующие , т.е. . Для этого сначала подставим в исходное уравнение.

Поскольку мы получили не тождество, то не будут соответствовать корни нашего уравнения.

Теперь можем смело делить на :

Мы свели уравнение к замене, а такой метод решения уже был рассмотрен. Как говорится «выливаем воду из чайника» и сводим задачу к уже известной. Дорешайте далее сами. Мы укажем окончательный ответ:

Поскольку в условии задачи от нас требуют указать только корни кратные , то в ответ запишем только первое семейство решений.

Задача №10 . Решить уравнение .

Указанное уравнение удивляет тем, что в нем две неизвестные, а как мы знаем, решить в общем случае такое уравнение нельзя. Другая проблема заключается в том, что это уравнение принципиально отличается от всех рассмотренных ранее, т.к. неизвестная в нем находится не только в аргументе тригонометрической функции.

Чтобы его решить, обратим внимание на свойства функций, которые приравниваются слева и справа. Конкретно нас интересует, какими значениями ограничены эти функции.

Для косинуса нам известна область значений:

Для квадратичной функции:

Из этого можно сделать вывод, что эти выражения могут иметь только одно общее значение, когда каждое из них равно 1. Получаем систему уравнений:

Оба уравнения получаются независимыми и содержат по одной переменной, поэтому легко решаются уже известными нам методами.

Конечно же указанный способ неочевиден, а задача относится к заданиям повышенной сложности. Данный метод иногда называют «мини-макс», т.к. используется равенство минимального и максимального значения функций.

Теперь рассмотрим отдельно методы решения систем тригонометрических уравнений. Методы их решений стандартны, просто мы еще будем пользоваться формулами преобразований тригонометрических функций. Разберем самые часто встречающиеся типы таких систем.

Задача №11 . Решить систему уравнений .

Решаем методом подстановки, выражаем из более простого линейного уравнения, например, и подставляем его во второе уравнение:

Во втором уравнении пользуемся тем, что является периодом синуса, т.е. его можно убрать, и синус нечетная функция, т.е. из нее выносится минус.

По формуле сложения гармонических колебаний приводим к одной тригонометрической функции второе уравнение. Попробуйте выполнить эти преобразования самостоятельно.

Подставим полученное решение в выражение для :

В данном случае мы используем один и тот же параметр для обоих семейств решений, т.к. они зависимы друг от друга.

Системы из простейших тригонометрических уравнений.

Задача №12 . Решить систему уравнений .

Оба уравнения в системе являются частными случаями простейших уравнений, мы умеем их решать, и система быстро сводится к линейной.

Параметры в обоих уравнениях различны, т.к. мы решили уравнения независимо друг от друга и переменные еще не выражались одна через другую.

Теперь решаем линейную систему методом подстановки или сложения, как вам больше нравится, проделайте эти действия самостоятельно. Укажем конечный результат.

Обратите внимание на запись решения системы, когда переменные зависят одновременно от двух параметров. Для того чтобы выписать численные значения корней в таком случае подставляются по очереди все целые значения параметров , которые не зависят друг от друга.

В этой практической части урока мы с вами рассмотрели несколько типовых примеров, в которых продемонстрировали методы решения тригонометрических уравнений и их систем.

Здравствуйте, Дорогие друзья! Сегодня мы рассмотрим задание из части С. Это система из двух уравнений. Уравнения довольно своеобразны. Здесь и синус, и косинус, да ещё и корни имеются. Необходимо умение решать квадратные и , простейшие . В представленном задании их подробные решения не представлены, это вы уже должны уметь делать. По указанным ссылкам можете посмотреть соответствующую теорию и практические задания.

Основная трудность в подобных примерах заключается в том, что необходимо полученные решения сопоставлять с найденной областью определения, здесь легко можно допустить ошибку из-за невнимательности.

Решением системы всегда является пара(ры) чисел х и у, записывается как (х;у). Обязательно после того как получили ответ делайте проверку. Для вас представлено три способа, нет, не способа, а три пути рассуждения, которыми можно пойти. Лично мне наиболее близок третий. Приступим:

Решите систему уравнений:

ПЕРВЫЙ ПУТЬ!

Найдём область определения уравнения. Известно, что подкоренное выражение имеет неотрицательное значение:

Рассмотрим первое уравнение:

1. Оно равно нулю при х = 2 или при х = 4, но 4 радиана не принадлежит определения выражения (3).

*Угол в 4 радиана (229,188 0) лежит в третьей четверти, в ней значение синуса отрицательно. Поэтому

остаётся только корень х = 2.

Рассмотрим второе уравнении при х = 2.

При этом значении х выражение 2 – y – у 2 должно быть равно нулю, так как

Решим 2 – y – у 2 = 0, получим y = – 2 или y = 1.

Отметим, что при y = – 2 корень из cos y не имеет решения.

*Угол в –2 радиана (– 114,549 0) лежит в третьей четверти, а в ней значение косинуса отрицательно.

Поэтому остаётся только y = 1.

Таким образом, решением системы будет пара (2;1).

2. Первое уравнение так же равно нулю при cos y = 0, то есть при

Но учитывая найденную область определения (2), получим:

Рассмотрим второе уравнение при этом у.

Выражение 2 – y – у 2 при у = – Пи/2 не равно нулю, значит для того, чтобы оно имело решение должно выполнятся условие:

Решаем:

Учитывая найденную область определения (1) получаем, что

Таким образом, решением системы является ещё одна пара:

ВТОРОЙ ПУТЬ!

Найдём область определения для выражения:

Известно, что выражение под корнем имеет неотрицательное значение.
Решая неравенство 6х – х 2 + 8 ≥ 0, получим 2 ≤ х ≤ 4 (2 и 4 это радианы).

Рассмотрим Случай 1:

Пусть х = 2 или х = 4.

Если х = 4, то sin x < 0. Если х = 2, то sin x > 0.

Учитывая то, что sin x ≠ 0, получается, что в этом случае во втором уравнении системы 2 – y – у 2 = 0.

Решая уравнение получим, что y = – 2 или y = 1.

Анализируя полученные значения можем сказать, что х = 4 и y = – 2 не является корнями, так как получим sin x < 0 и cos y < 0 соответственно, а выражение стоящее под корнем должно быть ≥ 0 (то есть числом неотрицательным).

Видно, что х = 2 и y = 1 входят область определения.

Таким образом, решением является пара (2;1).

Рассмотрим Случай 2:

Пусть теперь 2 < х < 4, тогда 6х – х 2 + 8 > 0. Исходя из этого можем сделать вывод, что в первом уравнении cos y должен быть равен нулю.

Решаем уравнение, получим:

Во втором уравнении при нахождении области определения выражения:

Получим:

2 – y – у 2 ≥ 0

– 2 ≤ у ≤ 1

Из всех решений уравнения cos y = 0 этому условию удовлетворяет только:

При данном значении у, выражение 2 – y – у 2 ≠ 0. Следовательно, во втором уравнении sin x будет равен нулю, получим:

Из всех решений этого уравнения интервалу 2 < х < 4 принадлежит только

Значит решением системы будет ущё пара:

*Область определения сразу для всех выражений в системе находить не стали, рассмотрели выражение из первого уравнения (2 случая) и далее уже по ходу определяли соответствие найденных решений с установленной областью определения. На мой взгляд не очень удобно, как-то путано получается.

ТРЕТИЙ ПУТЬ!

Он схож с первым, но есть отличия. Также сначала находится область определения для выражений. Затем отдельно решается первое и второе уравнение, далее находится решение системы.

Найдём область определения. Известно, что подкоренное выражение имеет неотрицательное значение:

Решая неравенство 6х – х 2 + 8 ≥ 0 получим 2 ≤ х ≤ 4 (1).

Величины 2 и 4 это радианы, 1 радиан как мы знаем ≈ 57,297 0

В градусах приближённо можем записать 114,549 0 ≤ х ≤ 229,188 0 .

Решая неравенство 2 – y – у 2 ≥ 0 получим – 2 ≤ у ≤ 1 (2).

В градусах можем записать – 114,549 0 ≤ у ≤ 57,297 0 .

Решая неравенство sin x ≥ 0 получим, что

Решая неравенство cos y ≥ 0 получим, что

Известно, что произведение равно нулю тогда, когда один из множителей равен нулю (и другие при этом не теряют смысла).

Рассмотрим первое уравнение:

Значит

Решением cos y = 0 является:

Решением 6х – х 2 + 8 = 0 являются х = 2 и х = 4.

Рассмотрим второе уравнение:

Значит

Решением sin x = 0 является:

Решением уравнения 2 – y – у 2 = 0 будут y = – 2 или y = 1.

Теперь учитывая область определения проанализируем

полученные значения:

Так как 114,549 0 ≤ х ≤ 229,188 0 , то данному отрезку принадлежит только одно решение уравнения sin x = 0, это x = Пи.

Так как – 114,549 0 ≤ у ≤ 57,297 0 , то данному отрезку принадлежит только одно решение уравнения cos y = 0, это

Рассмотрим корни х = 2 и х = 4.

Верно!

Таким образом, решением системы будут две пары чисел:

*Здесь учитывая найденную область определения мы исключили все полученные значения, не принадлежащие ей и далее перебрали все варианты возможных пар. Далее проверили, какие из них являются решением системы.

Рекомендую сразу в самом начале решения уравнений, неравенств, их систем, если имеются корни, логарифмы, тригонометрические функции, обязательно находить область определения. Есть, конечно, такие примеры, где проще бывает сразу решить, а потом просто проверить решение, но таких относительное меньшинство.

Вот и всё. Успеха Вам!

Методы решения тригонометрических уравнений

Введение 2

Методы решения тригонометрических уравнений 5

Алгебраический 5

Решение уравнений с помощью условия равенства одноимённых тригонометрических функций 7

Разложение на множители 8

Приведение к однородному уравнению 10

Введение вспомогательного угла 11

Преобразование произведения в сумму 14

Универсальная подстановка 14

Заключение 17

Введение

До десятого класса порядок действий многих упражнений, ведущий к цели, как правило, однозначно определен. Например, линейные и квадратные уравнения и неравенства, дробные уравнения и уравнения, приводимые к квадратным, и т.п. Не разбирая подробно принцип решения каждого из упомянутых примеров, отметим то общее, что необходимо для их успешного решения.

В большинстве случаев надо установить, к какому типу относится задача, вспомнить последовательность действий, ведущих к цели, и выполнить эти действия. Очевидно, что успех или неуспех ученика в овладении приемами решения уравнений зависит главным образом от того, насколько он сумеет правильно определить тип уравнения и вспомнить последовательность всех этапов его решения. Разумеется, при этом предполагается, что ученик владеет навыками выполнения тождественных преобразований и вычислений.

Совершенно иная ситуация получается, когда школьник встречается с тригонометрическими уравнениями. При этом установить факт, что уравнение является тригонометрическим, нетрудно. Сложности возникают при нахождении порядка действий, которые бы привели к положительному результату. И здесь перед учеником встают две проблемы. По внешнему виду уравнения трудно определить тип. А не зная типа, почти невозможно выбрать нужную формулу из нескольких десятков, имеющихся в распоряжении.

Чтобы помочь ученикам найти верную дорогу в сложном лабиринте тригонометрических уравнений, их сначала знакомят с уравнениями, которые после введения новой переменной приводятся к квадратным. Затем решают однородные уравнения и приводимые к ним. Все заканчивается, как правило, уравнениями, для решения которых надо разложить на множители левую часть, приравняв затем каждый из множителей к нулю.

Понимая, что разобранных на уроках полутора десятков уравнений явно недостаточно, чтобы пустить ученика в самостоятельное плавание по тригонометрическому "морю", учитель добавляет от себя еще несколько рекомендаций.

Чтобы решить тригонометрическое уравнение, надо попытаться:

Привести все функции входящие в уравнение к «одинаковым углам»;

Привести уравнение к "одинаковым функциям";

Разложить левую часть уравнения на множители и т.п.

Но, несмотря на знание основных типов тригонометрических уравнений и нескольких принципов поиска их решения, многие ученики по-прежнему оказываются в тупике перед каждым уравнением, незначительно отличающимся от тех, что решались раньше. Остается неясным, к чему следует стремиться, имея то или иное уравнение, почему в одном случае надо применять формулы двойного угла, в другом - половинного, а в третьем - формулы сложения и т.д.

Определение 1. Тригонометрическим называется уравнение, в котором неизвестное содержится под знаком тригонометрических функций.

Определение 2. Говорят, что в тригонометрическом уравнении одинаковые углы, если все тригонометрические функции, входящие в него, имеют равные аргументы. Говорят, что в тригонометрическом уравнении одинаковые функции, если оно содержит только одну из тригонометрических функций.

Определение 3. Степенью одночлена, содержащего тригонометрические функции, называется сумма показателей степеней тригонометрических функций, входящих в него.

Определение 4. Уравнение называется однородным, если все одночлены, входящие в него, имеют одну и ту же степень. Эта степень называется порядком уравнения.

Определение 5. Тригонометрическое уравнение, содержащее только функции sin и cos , называется однородным, если все одночлены относительно тригонометрических функций имеют одинаковую степень, а сами тригонометрические функции имеют равные углы и число одночленов на 1 больше порядка уравнения.

Методы решения тригонометрических уравнений.

Решение тригонометрических уравнений состоит из двух этапов: преобразование уравнения для получения его простейшего вида и решение полученного простейшего тригонометрического уравнения. Существует семь основных методов решения тригонометрических уравнений.

I . Алгебраический метод. Этот метод хорошо известен из алгебры. (Метод замены переменный и подстановки).

Решить уравнения.

1)

Введём обозначение x =2 sin 3 t , получим

Решая это уравнение, получаем:
или

т.е. можно записать

При записи полученного решения из-за наличия знаков степень
записывать не имеет смысла.

Ответ:

Обозначим

Получаем квадратное уравнение
. Его корнями являются числа
и
. Поэтому данное уравнение сводится к простейшим тригонометрическим уравнениям
и
. Решая их, находим, что
или
.

Ответ:
;
.

Обозначим

не удовлетворяет условию

Значит

Ответ:

Преобразуем левую часть уравнения:

Таким образом, данное исходное уравнение можно записать в виде:

, т.е.

Обозначив
, получим
Решив данное квадратное уравнение имеем:

не удовлетворяет условию

Записываем решение исходного уравнения:

Ответ:

Подстановка
сводит данное уравнение к квадратному уравнению
. Его корнями являются числа
и
. Так как
, то заданное уравнение корней не имеет.

Ответ: корней нет.

II . Решение уравнений с помощью условия равенства одноимённых тригонометрических функций.

а)
, если

б)
, если

в)
, если

Используя данные условия, рассмотрим решение следующих уравнений:

6)

Пользуясь сказанным в п. а) получаем, что уравнение имеет решение в том и только в том случае, когда
.

Решая это уравнение, находим
.

Имеем две группы решений:

.

7) Решить уравнение:
.

Пользуясь условием п. б) выводим, что
.

Решая эти квадратные уравнения, получаем:

.

8) Решить уравнение
.

Из данного уравнения выводим, что . Решая это квадратное уравнение, находим, что

.

III . Разложение на множители.

Этот метод рассматриваем на примерах.

9) Решить уравнение
.

Решение. Перенесём все члены уравнения влево: .

Преобразуем и разложим на множители выражение в левой части уравнения:
.

.

.

1)
2)

Т.к.
и
не принимают значение нуль

одновременно, то разделим обе части

уравнения на
,

Ответ:

10) Решить уравнение:

Решение.

или


Ответ:

11) Решить уравнение

Решение:

1)
2)
3)

,


Ответ:

IV . Приведение к однородному уравнению.

Чтобы решить однородное уравнение надо:

Перенести все его члены в левую часть;

Вынести все общие множители за скобки;

Приравнять все множители и скобки к нулю;

Скобки, приравненные к нулю, дают однородное уравнение меньшей степени, которое следует разделить на
(или
) в старшей степени;

Решить полученное алгебраическое уравнение относительно
.

Рассмотрим примеры:

12) Решить уравнение:

Решение.

Разделим обе части уравнения на
,

Вводя обозначения
, именем

корни этого уравнения:

отсюда 1)
2)

Ответ:

13) Решить уравнение:

Решение. Используя формулы двойного угла и основное тригонометрическое тождество, приводим данное уравнение к половинному аргументу:

После приведения подобных слагаемых имеем:

Разделив однородное последнее уравнение на
, получим

Обозначу
, получим квадратное уравнение
, корнями которого являются числа

Таким образом

Выражение
обращается в нуль при
, т.е. при
,
.

Полученное нами решение уравнения не включает в себя данные числа.

Ответ:
, .

V . Введение вспомогательного угла.

Рассмотрим уравнение вида

Где a, b, c - коэффициенты, x - неизвестное.

Разделим обе части этого уравнения на

Теперь коэффициенты уравнения обладают свойствами синуса и косинуса, а именно: модуль каждого из них не превосходит единицы, а сумма их квадратов равна 1.

Тогда можно обозначить их соответственно
(здесь - вспомогательный угол) и наше уравнение принимает вид: .

Тогда

И его решение

Заметим, что введенные обозначения взаимно заменяемы.

14) Решить уравнение:

Решение. Здесь
, поэтому делим обе части уравнения на

Ответ:

15) Решить уравнение

Решение. Так как
, то данное уравнение равносильно уравнению


Так как
, то существует такой угол , что
,
(т.е.
).

Имеем

Так как
, то окончательно получаем:


.

Заметим, что уравнение вида имеют решение тогда и только тогда, когда

16) Решить уравнение:

Для решения данного уравнения сгруппируем тригонометрические функции с одинаковыми аргументами

Разделим обе части уравнения на два

Преобразуем сумму тригонометрических функций в произведение:

Ответ:

VI . Преобразование произведения в сумму.

Здесь используются соответствующие формулы.

17) Решить уравнение:

Решение. Преобразуем левую часть в сумму:

VII. Универсальная подстановка.

,

эти формулы верны для всех

Подстановка
называется универсальной.

18) Решить уравнение:

Решение: Заменим и
на их выражение через
и обозначим
.

Получаем рациональное уравнение
, которое преобразуется в квадратное
.

Корнями этого уравнения являются числа
.

Поэтому задача свелась к решению двух уравнений
.

Находим, что
.

Значение вида
исходному уравнению не удовлетворяет, что проверяется проверкой - подстановкой данного значения t в исходное уравнение.

Ответ:
.

Замечание. Уравнение 18 можно было решить иным способом.

Разделим обе части этого уравнения на 5 (т.е. на
):
.

Так как
, то существует такое число
, что
и
. Поэтому уравнение принимает вид:
или
. Отсюда находим, что
где
.

19) Решить уравнение
.

Решение. Так как функции
и
имеют наибольшее значение, равное 1, то их сумма равна 2, если
и
, одновременно, то есть
.

Ответ:
.

При решении этого уравнения применялась ограниченность функций и .

Заключение.

Работая над темой « Решения тригонометрических уравнений » каждому учителю полезно выполнять следующие рекомендации:

    Систематизировать методы решения тригонометрических уравнений.

    Выбрать для себя шаги по выполнению анализа уравнения и признаки целесообразности использования того или иного метод решения.

    Продумать способы самоконтроля своей деятельности по реализации метода.

    Научиться составлять « свои » уравнения на каждый из изучаемых методов.

Приложение №1

Решите однородные или приводящиеся к однородным уравнения.

1.

Отв.

Отв.

Отв.

5.

Отв.

Отв.

7.

Отв.

Отв.

При решении многих математических задач , особенно тех, которые встречаются до 10 класса, порядок выполняемых действий, которые приведут к цели, определен однозначно. К таким задачам можно отнести, например, линейные и квадратные уравнения, линейные и квадратные неравенства, дробные уравнения и уравнения, которые сводятся к квадратным. Принцип успешного решения каждой из упомянутых задач заключается в следующем: надо установить, к какому типу относится решаемая задача, вспомнить необходимую последовательность действий, которые приведут к нужному результату, т.е. ответу, и выполнить эти действия.

Очевидно, что успех или неуспех в решении той или иной задачи зависит главным образом от того, насколько правильно определен тип решаемого уравнения, насколько правильно воспроизведена последовательность всех этапов его решения. Разумеется, при этом необходимо владеть навыками выполнения тождественных преобразований и вычислений.

Иная ситуация получается с тригонометрическими уравнениями. Установить факт того, что уравнение является тригонометрическим, совсем нетрудно. Сложности появляются при определении последовательности действий, которые бы привели к правильному ответу.

По внешнему виду уравнения порой бывает трудно определить его тип. А не зная типа уравнения, почти невозможно выбрать из нескольких десятков тригонометрических формул нужную.

Чтобы решить тригонометрическое уравнение, надо попытаться:

1. привести все функции входящие в уравнение к «одинаковым углам»;
2. привести уравнение к «одинаковым функциям»;
3. разложить левую часть уравнения на множители и т.п.

Рассмотрим основные методы решения тригонометрических уравнений.

I. Приведение к простейшим тригонометрическим уравнениям

Схема решения

Шаг 1. Выразить тригонометрическую функцию через известные компоненты.

Шаг 2. Найти аргумент функции по формулам:

cos x = a; x = ±arccos a + 2πn, n ЄZ.

sin x = a; x = (-1) n arcsin a + πn, n Є Z.

tg x = a; x = arctg a + πn, n Є Z.

ctg x = a; x = arcctg a + πn, n Є Z.

Шаг 3. Найти неизвестную переменную.

Пример.

2 cos(3x – π/4) = -√2.

Решение.

1) cos(3x – π/4) = -√2/2.

2) 3x – π/4 = ±(π – π/4) + 2πn, n Є Z;

3x – π/4 = ±3π/4 + 2πn, n Є Z.

3) 3x = ±3π/4 + π/4 + 2πn, n Є Z;

x = ±3π/12 + π/12 + 2πn/3, n Є Z;

x = ±π/4 + π/12 + 2πn/3, n Є Z.

Ответ: ±π/4 + π/12 + 2πn/3, n Є Z.

II. Замена переменной

Схема решения

Шаг 1. Привести уравнение к алгебраическому виду относительно одной из тригонометрических функций.

Шаг 2. Обозначить полученную функцию переменной t (если необходимо, ввести ограничения на t).

Шаг 3. Записать и решить полученное алгебраическое уравнение.

Шаг 4. Сделать обратную замену.

Шаг 5. Решить простейшее тригонометрическое уравнение.

Пример.

2cos 2 (x/2) – 5sin (x/2) – 5 = 0.

Решение.

1) 2(1 – sin 2 (x/2)) – 5sin (x/2) – 5 = 0;

2sin 2 (x/2) + 5sin (x/2) + 3 = 0.

2) Пусть sin (x/2) = t, где |t| ≤ 1.

3) 2t 2 + 5t + 3 = 0;

t = 1 или е = -3/2, не удовлетворяет условию |t| ≤ 1.

4) sin (x/2) = 1.

5) x/2 = π/2 + 2πn, n Є Z;

x = π + 4πn, n Є Z.

Ответ: x = π + 4πn, n Є Z.

III. Метод понижения порядка уравнения

Схема решения

Шаг 1. Заменить данное уравнение линейным, используя для этого формулы понижения степени:

sin 2 x = 1/2 · (1 – cos 2x);

cos 2 x = 1/2 · (1 + cos 2x);

tg 2 x = (1 – cos 2x) / (1 + cos 2x).

Шаг 2. Решить полученное уравнение с помощью методов I и II.

Пример.

cos 2x + cos 2 x = 5/4.

Решение.

1) cos 2x + 1/2 · (1 + cos 2x) = 5/4.

2) cos 2x + 1/2 + 1/2 · cos 2x = 5/4;

3/2 · cos 2x = 3/4;

2x = ±π/3 + 2πn, n Є Z;

x = ±π/6 + πn, n Є Z.

Ответ: x = ±π/6 + πn, n Є Z.

IV. Однородные уравнения

Схема решения

Шаг 1. Привести данное уравнение к виду

a) a sin x + b cos x = 0 (однородное уравнение первой степени)

или к виду

б) a sin 2 x + b sin x · cos x + c cos 2 x = 0 (однородное уравнение второй степени).

Шаг 2. Разделить обе части уравнения на

а) cos x ≠ 0;

б) cos 2 x ≠ 0;

и получить уравнение относительно tg x:

а) a tg x + b = 0;

б) a tg 2 x + b arctg x + c = 0.

Шаг 3. Решить уравнение известными способами.

Пример.

5sin 2 x + 3sin x · cos x – 4 = 0.

Решение.

1) 5sin 2 x + 3sin x · cos x – 4(sin 2 x + cos 2 x) = 0;

5sin 2 x + 3sin x · cos x – 4sin² x – 4cos 2 x = 0;

sin 2 x + 3sin x · cos x – 4cos 2 x = 0/cos 2 x ≠ 0.

2) tg 2 x + 3tg x – 4 = 0.

3) Пусть tg x = t, тогда

t 2 + 3t – 4 = 0;

t = 1 или t = -4, значит

tg x = 1 или tg x = -4.

Из первого уравнения x = π/4 + πn, n Є Z; из второго уравнения x = -arctg 4 + πk, k Є Z.

Ответ: x = π/4 + πn, n Є Z; x = -arctg 4 + πk, k Є Z.

V. Метод преобразования уравнения с помощью тригонометрических формул

Схема решения

Шаг 1. Используя всевозможные тригонометрические формулы, привести данное уравнение к уравнению, решаемому методами I, II, III, IV.

Шаг 2. Решить полученное уравнение известными методами.

Пример.

sin x + sin 2x + sin 3x = 0.

Решение.

1) (sin x + sin 3x) + sin 2x = 0;

2sin 2x · cos x + sin 2x = 0.

2) sin 2x · (2cos x + 1) = 0;

sin 2x = 0 или 2cos x + 1 = 0;

Из первого уравнения 2x = π/2 + πn, n Є Z; из второго уравнения cos x = -1/2.

Имеем х = π/4 + πn/2, n Є Z; из второго уравнения x = ±(π – π/3) + 2πk, k Є Z.

В итоге х = π/4 + πn/2, n Є Z; x = ±2π/3 + 2πk, k Є Z.

Ответ: х = π/4 + πn/2, n Є Z; x = ±2π/3 + 2πk, k Є Z.

Умения и навыки решать тригонометрические уравнения являются очень важными, их развитие требует значительных усилий, как со стороны ученика, так и со стороны учителя.

С решением тригонометрических уравнений связаны многие задачи стереометрии, физики, и др. Процесс решения таких задач как бы заключает в себе многие знания и умения, которые приобретаются при изучении элементов тригонометрии.

Тригонометрические уравнения занимают важное место в процессе обучения математики и развития личности в целом.

Остались вопросы? Не знаете, как решать тригонометрические уравнения?
Чтобы получить помощь репетитора – зарегистрируйтесь .
Первый урок – бесплатно!

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.


Готовые работы

ДИПЛОМНЫЕ РАБОТЫ

Многое уже позади и теперь ты - выпускник, если, конечно, вовремя напишешь дипломную работу. Но жизнь - такая штука, что только сейчас тебе становится понятно, что, перестав быть студентом, ты потеряешь все студенческие радости, многие из которых, ты так и не попробовал, всё откладывая и откладывая на потом. И теперь, вместо того, чтобы навёрстывать упущенное, ты корпишь над дипломной работой? Есть отличный выход: скачать нужную тебе дипломную работу с нашего сайта - и у тебя мигом появится масса свободного времени!
Дипломные работы успешно защищены в ведущих Университетах РК.
Стоимость работы от 20 000 тенге

КУРСОВЫЕ РАБОТЫ

Курсовой проект - это первая серьезная практическая работа. Именно с написания курсовой начинается подготовка к разработке дипломных проектов. Если студент научиться правильно излагать содержание темы в курсовом проекте и грамотно его оформлять, то в последующем у него не возникнет проблем ни с написанием отчетов, ни с составлением дипломных работ, ни с выполнением других практических заданий. Чтобы оказать помощь студентам в написании этого типа студенческой работы и разъяснить возникающие по ходу ее составления вопросы, собственно говоря, и был создан данный информационный раздел.
Стоимость работы от 2 500 тенге

МАГИСТЕРСКИЕ ДИССЕРТАЦИИ

В настоящее время в высших учебных заведениях Казахстана и стран СНГ очень распространена ступень высшего профессионального образования, которая следует после бакалавриата - магистратура. В магистратуре обучаются с целью получения диплома магистра, признаваемого в большинстве стран мира больше, чем диплом бакалавра, а также признаётся зарубежными работодателями. Итогом обучения в магистратуре является защита магистерской диссертации.
Мы предоставим Вам актуальный аналитический и текстовый материал, в стоимость включены 2 научные статьи и автореферат.
Стоимость работы от 35 000 тенге

ОТЧЕТЫ ПО ПРАКТИКЕ

После прохождения любого типа студенческой практики (учебной, производственной, преддипломной) требуется составить отчёт. Этот документ будет подтверждением практической работы студента и основой формирования оценки за практику. Обычно, чтобы составить отчёт по практике, требуется собрать и проанализировать информацию о предприятии, рассмотреть структуру и распорядок работы организации, в которой проходится практика, составить календарный план и описать свою практическую деятельность.
Мы поможет написать отчёт о прохождении практики с учетом специфики деятельности конкретного предприятия.