Сильные и слабые электролиты определение примеры. Сильные электролиты. Как определить сильные и слабые электролиты

Электролиты классифицируются на две группы в зависимости от степени диссоциации - сильные и слабые электролиты. Сильные электролиты имеют степень диссоциации больше единицы или больше 30 %, слабые - меньше единицы или меньше 3 %.

Процесс диссоциация

Электролитическая диссоциация - процесс распада молекул на ионы - положительно заряженные катионы и отрицательно заряженные анионы. Заряженные частицы переносят электрический ток. Электролитическая диссоциация возможна только в растворах и расплавах.

Движущей силой диссоциации является распад ковалентных полярных связей под действием молекул воды. Полярные молекулы оттягиваются водными молекулами. В твёрдых веществах разрушаются ионные связи в процессе нагревания. Высокие температуры вызывают колебания ионов в узлах кристаллической решётки.

Рис. 1. Процесс диссоциации.

Вещества, которые легко распадаются на ионы в растворах или в расплавах и, следовательно, проводят электрический ток, называются электролитами. Неэлектролиты не проводят электричество, т.к. не распадаются на катионы и анионы.

В зависимости от степени диссоциации различают сильные и слабые электролиты. Сильные растворяются в воде, т.е. полностью, без возможности восстановления распадаются на ионы. Слабые электролиты распадаются на катионы и анионы частично. Степень их диссоциации меньше, чем у сильных электролитов.

Степень диссоциация показывает долю распавшихся молекул в общей концентрации веществ. Она выражается формулой α = n/N.

Рис. 2. Степень диссоциации.

Слабые электролиты

Список слабых электролитов:

  • разбавленные и слабые неорганические кислоты - H 2 S, H 2 SO 3 , H 2 CO 3 , H 2 SiO 3 , H 3 BO 3 ;
  • некоторые органические кислоты (большинство органических кислот - неэлектролиты) - CH 3 COOH, C 2 H 5 COOH;
  • нерастворимые основания - Al(OH) 3 , Cu(OH) 2 , Fe(OH) 2 , Zn(OH) 2 ;
  • гидроксид аммония - NH 4 OH.

Рис. 3. Таблица растворимости.

Реакция диссоциации записывается с помощью ионного уравнения:

  • HNO 2 ↔ H + + NO 2 – ;
  • H 2 S ↔ H + + HS – ;
  • NH 4 OH ↔ NH 4 + + OH – .

Многоосновные кислоты диссоциируют ступенчато:

  • H 2 CO 3 ↔ H + + HCO 3 – ;
  • HCO 3 – ↔ H + + CO 3 2- .

Нерастворимые основания также распадаются поэтапно:

  • Fe(OH) 3 ↔ Fe(OH) 2 + + OH – ;
  • Fe(OH) 2 + ↔ FeOH 2+ + OH – ;
  • FeOH 2+ ↔ Fe 3+ + OH – .

Воду относят к слабым электролитам. Вода практически не проводит электрический ток, т.к. слабо распадается на катионы водорода и анионы гироксид-иона. Образовавшиеся ионы обратно собираются в молекулы воды:

H 2 O ↔ H + + OH – .

Если вода легко проводит электричество, значит, в ней есть примеси. Дистиллированная вода неэлектропроводная.

Диссоциация слабых электролитов обратима. Образовавшиеся ионы вновь собираются в молекулы.

Что мы узнали?

К слабым электролитам относятся вещества, частично распадающиеся на ионы - положительные катионы и отрицательные анионы. Поэтому такие вещества плохо проводят электрический ток. К ним относятся слабые и разбавленные кислоты, нерастворимые основания, малорастворимые соли. Наиболее слабый электролит - вода. Диссоциация слабых электролитов - обратимая реакция.

Сильные и слабые электролиты

Кислоты, основания и соли в водных растворах диссоциируют — распадаются на ионы. Этот процесс может быть обратимым или необратимым.

При необратимой диссоциации в растворах все вещество или почти все распадается на ионы. Это характерно для сильных электролитов (рис. 10.1, а, с. 56). К сильным электролитам относятся некоторые кислоты и все растворимые в воде соли и основания (гидроксиды щелочных и щелочноземельных элементов) (схема 5, с. 56).

Рис. 10.1. Сравнение числа ионов в растворах с одинаковым исходным количеством электролита: а — хлоридная кислота (сильный электролит); б — нитритная кислота

(слабый электролит)

Схема 5. Классификация электролитов по силе

При обратимой диссоциации протекает два противоположных процесса: одновременно с распадом вещества на ионы (диссоциацией) происходит обратный процесс объединения ионов в молекулы вещества (ассоциация). Благодаря этому часть вещества в растворе существует в виде ионов, а часть — в виде молекул (рис. 10.1, б). Электролиты,

которые при растворении в воде распадаются на ионы только частично, называют слабыми электролитами. К их числу относится вода, многие кислоты, а также нерастворимые гидроксиды и соли (схема 5).

В уравнениях диссоциации слабых электролитов вместо обычной стрелки записывают двунаправленную стрелку (знак обратимости):

Силу электролитов можно объяснить полярностью химической связи, которая разрывается при диссоциации. Чем более полярна связь, тем легче под действием молекул воды она превращается в ионную, следовательно, тем сильнее электролит. В солях и гидроксидах полярность связи наибольшая, поскольку между ионами металлических элементов, кислотными остатками и гидроксид-ионами существует ионная связь, поэтому все растворимые соли и основания — сильные электролиты. В оксигенсодержащих кислотах при диссоциации разрывается связь O-H, полярность которой зависит от качественного и количественного состава кислотного остатка. Силу большинства оксигенсодержащих кислот можно определить, если обычную формулу кислоты записать в виде E(OH) m O n . Если в этой формуле будет n < 2 — кислота слабая, если n >2 — сильная.

Зависимость силы кислот от состава кислотного остатка


Степень диссоциации

Силу электролитов количественно характеризует степень электролитической диссоциации а, показывающая долю молекул вещества, которые распались в растворе на ионы.

Степень диссоциации а равна отношению числа молекул N или количества вещества n, распавшегося на ионы, к общему числу молекул N 0 или количеству растворенного вещества n 0:

Степень диссоциации можно выражать не только в долях единицы, но и в процентах:

Значение а может изменяться от 0 (диссоциация отсутствует) до 1, или 100 % (полная диссоциация). Чем лучше распадается электролит, тем больше значение степени диссоциации.

По значению степени электролитической диссоциации электролиты часто разделяют не на две, а на три группы: сильные, слабые и электролиты средней силы. Сильными электролитами считают те, степень диссоциации которых более 30 %, а слабыми — со степенью менее 3 %. Электролиты с промежуточными значениями а — от 3 % до 30 % — называют электролитами средней силы. По этой классификации таковыми считаются кислоты: HF, HNO 2 , H 3 PO 4 , H 2 SO 3 и некоторые другие. Две последние кислоты являются электролитами средней силы только по первой стадии диссоциации, а по другим — это слабые электролиты.


Степень диссоциации — величина переменная. Она зависит не только от природы электролита, но и от его концентрации в растворе. Эту зависимость впервые определил и исследовал Вильгельм Оствальд. Сегодня ее называют законом разведения Оствальда: при разбавлении раствора водой, а также при повышении температуры степень диссоциации увеличивается.

Вычисление степени диссоциации

Пример. В одном литре воды растворили гидроген флуорид количеством вещества 5 моль. Полученный раствор содержит 0,06 моль ионов Гидрогена. Определите степень диссоциации флуоридной кислоты (в процентах).

Запишем уравнение диссоциации флуоридной кислоты:

При диссоциации из одной молекулы кислоты образуется один ион Гидрогена. Если в растворе содержится 0,06 моль ионов H+, это означает, что продиссоцииро-вало 0,06 моль молекул гидроген флуорида. Следовательно, степень диссоциации равна:

Выдающийся немецкий физико-химик, лауреат Нобелевской премии по химии 1909 года. Родился в Риге, учился в Дерптском университете, где начал преподавательскую и научную деятельность. В 35 лет переехал в Лейпциг, где возглавил Физико-химический институт. Изучал законы химического равновесия, свойства растворов, открыл закон разведения, названный его именем, разработал основы теории кислотно-основного катализа, много времени уделял истории химии. Основал первую в мире кафедру физической химии и первый физико-химический журнал. В личной жизни обладал странными привычками: чувствовал отвращение к стрижке, а со своим секретарем общался исключительно при помощи велосипедного звонка.

Ключевая идея

Диссоциация слабых электролитов — обратимый процесс, а сильных —

необратимый.

Контрольные вопросы

116. Дайте определение сильных и слабых электролитов.

117. Приведите примеры сильных и слабых электролитов.

118. Какую величину используют для количественной характеристики силы электролита? Является ли она постоянной в любых растворах? Как можно увеличить степень диссоциации электролита?

Задания для усвоения материала

119. Приведите по одному примеру соли, кислоты и основания, которые являются: а) сильным электролитом; б) слабым электролитом.

120. Приведите пример вещества: а) двухосновная кислота, которая по первой стадии является электролитом средней силы, а по второй — слабым электролитом; б) двухосновная кислота, которая по обеим стадиями является слабым электролитом.

121. В некоторой кислоте по первой стадии степень диссоциации составляет 100 %, а по второй — 15 %. Какая кислота это может быть?

122. Каких частиц больше в растворе гидроген сульфида: молекул H 2 S, ионов H+, ионов S 2- или ионов HS - ?

123. Из приведенного перечня веществ отдельно выпишите формулы: а) сильных электролитов; б) слабых электролитов.

NaCl, HCl, NaOH, NaNO 3 , HNO 3 , HNO 2 , H 2 SO 4 , Ba(OH) 2 , H 2 S, K 2 S, Pb(NO 3) 2 .

124. Составьте уравнения диссоциации стронций нитрата, меркурий(11) хлорида, кальций карбоната, кальций гидроксида, сульфидной кислоты. В каких случаях диссоциация происходит обратимо?

125. В водном растворе натрий сульфата содержится 0,3 моль ионов. Какую массу этой соли использовали для приготовления такого раствора?

126. В растворе гидроген флуорида объемом 1 л содержится 2 г этой кислоты, а количество вещества ионов Гидрогена составляет 0,008 моль. Какое количество вещества флуорид-ионов в этом растворе?

127. В трех пробирках содержатся одинаковые объемы растворов хлорид-ной, флуоридной и сульфидной кислот. Во всех пробирках количества вещества кислот равны. Но в первой пробирке количество вещества ионов Гидрогена составляет 3 . 10 -7 моль, во второй — 8 . 10 -5 моль, а в третьей — 0,001 моль. В какой пробирке содержится каждая кислота?

128. В первой пробирке содержится раствор электролита, степень диссоциации которого составляет 89 %, во второй — электролит со степенью диссоциации 8 %о, а в третьей — 0,2 %о. Приведите по два примера электролитов разных классов соединений, которые могут содержаться в этих пробирках.

129*. В дополнительных источниках найдите информацию о зависимости силы электролитов от природы веществ. Установите зависимость между строением веществ, природой химических элементов, которые их образуют, и силой электролитов.

Это материал учебника

Величина a выражается в долях единицы или в % и зависит от природы электролита, растворителя, температуры, концентрации и состава раствора.

Особую роль играет растворитель: в ряде случаев при переходе от водных растворов к органическим растворителям степень диссоциации электролитов может резко возрасти или уменьшиться. В дальнейшем, при отсутствии специальных указаний, будем считать, что растворителем является вода.

По степени диссоциации электролиты условно разделяют на сильные (a > 30%), средние (3% < a < 30%) и слабые (a < 3%).

К сильным электролитам относят:

1) некоторые неорганические кислоты (HCl, HBr, HI, HNO 3 , H 2 SO 4 , HClO 4 и ряд других);

2) гидроксиды щелочных (Li, Na, K, Rb, Cs) и щелочноземельных (Ca, Sr, Ba) металлов;

3) почти все растворимые соли.

К электролитам средней силы относят Mg(OH) 2 , H 3 PO 4 , HCOOH, H 2 SO 3 , HF и некоторые другие.

Слабыми электролитами считают все карбоновые кислоты (кроме HCOOH) и гидратированные формы алифатических и ароматических аминов. Слабыми электролитами являются также многие неоргани-ческие кислоты (HCN, H 2 S, H 2 CO 3 и др.) и основания (NH 3 ∙H 2 O).

Несмотря на некоторые совпадения, в целом не следует отождествлять растворимость вещества с его степенью диссоциации. Так, уксусная кислота и этиловый спирт неограниченно растворимы в воде, но в то же время первое вещество является слабым электро-литом, а второе - неэлектролит.

Кислоты и основания

Несмотря на то, что понятия «кислота» и «основание» широко используются для описания химических процессов, единого подхода к классификации веществ с точки зрения отнесения их к кислотам или основаниям нет. Существующие в настоящее время теории (ионная теория С. Аррениуса , протолитическая теория И. Бренстеда и Т. Лоури и электронная теория Г. Льюиса ) имеют определенные ограничения и, таким образом, применимы лишь в частных случаях. Остановимся подробнее на каждой из этих теорий.

Теория Аррениуса.

В ионной теории Аррениуса понятия «кислота» и «основание» тесно связаны с процессом электролитической диссоциации:

Кислотой является электролит, диссоциирующий в растворах с образованием ионов Н + ;

Основанием является электролит, диссоциирующий в растворах с образованием ионов ОН - ;

Амфолитом (амфотерным электролитом) является электролит, диссоциирующий в растворах с образованием как ионов Н + , так и ионов ОН - .

Например:

НА ⇄ Н + + А - nH + + MeO n n - ⇄ Ме(ОН) n ⇄ Ме n + + nОН -

В соответствии с ионной теорией кислотами могут быть как нейтральные молекулы, так и ионы, например:

HF ⇄ H + + F -

H 2 PO 4 - ⇄ H + + HPO 4 2 -

NH 4 + ⇄ H + + NH 3

Аналогичные примеры можно привести и для оснований:

КОН К + + ОН -

- ⇄ Al(OH) 3 + ОН -

+ ⇄ Fe 2+ + ОН -

К амфолитам относят гидроксиды цинка, алюминия, хрома и некоторые другие, а также аминокислоты, белки, нуклеиновые кислоты.

В целом, кислотно-основное взаимодействие в растворе сводится к реакции нейтрализации:

H + + ОН - H 2 O

Однако, ряд экспериментальных данных показывает ограниченность ионной теории. Так, аммиак, органические амины, оксиды металлов типа Na 2 O, СаО, анионы слабых кислот и т.д. в отсутствии воды проявляют свойства типичных оснований, хотя не имеют в своем составе гидроксид-ионов.

С другой стороны, многие оксиды (SO 2 , SO 3 , Р 2 О 5 и т.д.), галогениды, галогенангидриды кислот, не имея в своем составе ионов водорода, даже в отсутствии воды проявляют кислотные свойства, т.е. нейтрализуют основания.

Кроме того, поведение электролита в водном растворе и в неводной среде может быть противоположным.

Так, CH 3 COOH в воде является слабой кислотой:

CH 3 COOH ⇄ CH 3 COO - + H + ,

а в жидком фтороводороде проявляет свойства основания:

HF + CH 3 COOH ⇄ CH 3 COOH 2 + + F -

Исследования подобных типов реакций и в особенности реакций, протекающих в неводных растворителях, привели к созданию более общих теорий кислот и оснований.

Теория Бренстеда и Лоури.

Дальнейшим развитием теории кислот и оснований явилась предложенная И. Бренстедом и Т. Лоури протолитическая (протонная) теория. В соответствии с этой теорией:

Кислотой называют любое вещество, молекулы (или ионы) которого способны отдавать протон, т.е. быть донором протона;

Основанием называют любое вещество, молекулы (или ионы) которого способны присоединять протон, т.е. быть акцептором протона;

Таким образом, понятие основания значительно расширяется, что подтверждается следующими реакциями:

ОН - + Н + Н 2 О

NH 3 + H + NH 4 +

H 2 N-NH 3 + + H + H 3 N + -NH 3 +

По теории И. Бренстеда и Т. Лоури кислота и основание составляют сопряженную пару и связаны равновесием:

КИСЛОТА ⇄ ПРОТОН + ОСНОВАНИЕ

Поскольку реакция переноса протона (протолитическая реакция) обратима, причем в обратном процессе тоже передается протон, то продукты реакции являются друг по отношению к другу кислотой и основанием. Это можно записать в виде равновесного процесса:

НА + В ⇄ ВН + + А - ,

где НА – кислота, В – основание, ВН + – кислота, сопряженная с основанием В, А - – основание, сопряженное с кислотой НА.

Примеры.

1) в реакции:

HCl + OH - ⇄ Cl - + H 2 O,

HCl и H 2 O – кислоты, Cl - и OH - – соответствующие сопряженные с ними основания;

2) в реакции:

HSO 4 - + H 2 O ⇄ SO 4 2 - + H 3 O + ,

HSO 4 - и H 3 O + – кислоты, SO 4 2 - и H 2 O – основания;

3) в реакции:

NH 4 + + NH 2 - ⇄ 2NH 3 ,

NH 4 + – кислота, NH 2 - – основание, а NH 3 выступает в роли как кислоты (одна молекула), так и основания (другая молекула), т.е. демонстрирует признаки амфотерности – способности проявлять свойства кислоты и основания.

Такой способностью обладает и вода:

2Н 2 О ⇄ Н 3 О + + ОН -

Здесь одна молекула Н 2 О присоединяет протон (основание), образуя сопряженную кислоту – ион гидроксония Н 3 О + , другая отдает протон (кислота), образуя сопряженное основание ОН - . Этот процесс называется автопротолизом .

Из приведенных примеров видно, что в отличие от представлений Аррениуса, в теории Бренстеда и Лоури реакции кислот с основаниями не приводят к взаимной нейтрализации, а сопровождаются образованием новых кислот и оснований.

Необходимо также отметить, что протолитическая теория рассматривает понятия «кислота» и «основание» не как свойство, но как функцию, которую выполняет рассматриваемое соединение в протолитической реакции. Одно и то же соединение может в одних условиях реагировать как кислота, в других – как основание. Так, в водном растворе СН 3 СООН проявляет свойства кислоты, а в 100%-й H 2 SO 4 – основания.

Однако, несмотря на свои достоинства, протолитическая теория, как и теория Аррениуса, не применима к веществам, не содержащим атомов водорода, но, в тоже время, проявляющим функцию кислоты: галогенидам бора, алюминия, кремния, олова.

Теория Льюиса.

Иным подходом к классификации веществ с точки зрения отнесения их к кислотам и основаниям явилась электронная теория Льюиса. В рамках электронной теории:

кислотой называют частицу (молекулу или ион), способную присоединять электронную пару (акцептор электронов);

основанием называют частицу (молекулу или ион), способную отдавать электронную пару (донор электронов).

Согласно представлениям Льюиса, кислота и основание взаимодействуют друг с другом с образованием донорно-акцепторной связи. В результате присоединения пары электронов у атома с электронным дефицитом возникает завершенная электронная конфигурация - октет электронов. Например:

Аналогичным образом можно представить и реакцию между нейтральными молекулами:

Реакция нейтрализации в терминах теории Льюиса рассматривается как присоединение электронной пары гидроксид-иона к иону водорода, предоставляющему для размещения этой пары свободную орбиталь:

Таким образом, сам протон, легко присоединяющий электронную пару, с точки зрения теории Льюиса, выполняет функцию кислоты. В этой связи, кислоты по Бренстеду могут рассматриваться как продукты реакции между льюисовскими кислотами и основаниями. Так, HCl является продуктом нейтрализации кислоты H + основанием Cl - , а ион H 3 O + образуется в результате нейтрализации кислоты H + основанием H 2 O.

Реакции между кислотами и основаниями Льюиса также иллюстрируют следующие примеры:

К основаниям Льюиса также относят галогенид-ионы, аммиак, алифатические и ароматические амины, кислородсодержащие органические соединения типа R 2 CO, (где R - органический радикал).

К кислотам Льюиса относят галогениды бора, алюминия, кремния, олова и других элементов.

Очевидно, что в теории Льюиса понятие «кислота» включает в себя более широкий круг химических соединений. Это объясняется тем, что по Льюису отнесение вещества к классу кислот обусловлено исключительно строением его молекулы, определяющим электронно-акцепторные свойства, и не обязательно связано с наличием атомов водорода. Льюисовские кислоты, не содержащие атомов водорода, называют апротонными .


Эталоны решения задач

1. Написать уравнение электролитической диссоциации Al 2 (SO 4) 3 в воде.

Сульфат алюминия является сильным электролитом и в водном растворе подвергается полному распаду на ионы. Уравнение диссоциации:

Al 2 (SO 4) 3 + (2x + 3y)H 2 O 2 3+ + 3 2 - ,

или (без учета процесса гидратации ионов):

Al 2 (SO 4) 3 2Al 3+ + 3SO 4 2 - .

2. Чем является ион HCO 3 - с позиций теории Бренстеда-Лоури?

В зависимости от условий ион HCO 3 – может как отдавать протоны:

HCO 3 - + OH - CO 3 2 - + H 2 O (1),

так и присоединять протоны:

HCO 3 - + H 3 O + H 2 CO 3 + H 2 O (2).

Таким образом, в первом случае ион HCO 3 - является кислотой, во втором - основанием, т. е. является амфолитом.

3. Определить, чем с позиций теории Льюиса является ион Ag + в реакции:

Ag + + 2NH 3 +

В процессе образования химических связей, который протекает по донорно-акцепторному механизму, ион Ag + , имея свободную орбиталь, является акцептором электронных пар, и, таким образом, проявляет свойства кислоты Льюиса.

4. Определить ионную силу раствора в одном литре которого находятся 0,1 моль KCl и 0,1 моль Na 2 SO 4 .

Диссоциация представленных электролитов протекает в соответствии с уравнениями:

Na 2 SO 4 2Na + + SO 4 2 -

Отсюда: С(K +) = С(Cl -) = С(KCl) = 0,1 моль/л;

С(Na +) = 2×С(Na 2 SO 4) = 0,2 моль/л;

С(SO 4 2 -) = С(Na 2 SO 4) = 0,1 моль/л.

Ионную силу раствора вычисляем по формуле:

5. Определить концентрацию CuSO 4 в растворе данного электролита с I = 0,6 моль/л.

Диссоциация CuSO 4 протекает по уравнению:

CuSO 4 Cu 2+ + SO 4 2 -

Примем С(CuSO 4) за x моль/л, тогда, в соответствии с уравнением реакции, С(Cu 2+) = С(SO 4 2 -) = x моль/л. В данном случае выражение для расчета ионной силы будет иметь вид:

6. Определить коэффициент активности иона K + в водном растворе KCl с С(KCl) = 0,001 моль/л.

который в данном случае примет вид:

.

Ионную силу раствора найдем по формуле:

7. Определить коэффициент активности иона Fe 2+ в водном растворе, ионная сила которого равна 1.

В соответствии с законом Дебая-Хюккеля:

следовательно:

8. Определить константу диссоциации кислоты HA, если в растворе этой кислоты с концентрацией 0,1 моль/л a = 24%.

По величине степени диссоциации можно определить, что данная кислота является электролитом средней силы. Следовательно, для расчета константы диссоциации кислоты используем закон разведения Оствальда в его полной форме:

9. Определить концентрацию электролита, если a = 10%, K д = 10 - 4 .

Из закона разведения Оствальда:

10. Степень диссоциации одноосновной кислоты HA не превышает 1%. (HA) = 6,4×10 - 7 . Определить степень диссоциации HA в ее растворе с концентрацией 0,01 моль/л.

По величине степени диссоциации можно определить, что данная кислота является слабым электролитом. Это позволяет использовать приближенную формулу закона разведения Оствальда:

11. Степень диссоциации электролита в его растворе с кон-центрацией 0,001 моль/л равна 0,009. Определить константу диссоциации этого электролита.

Из условия задачи видно, что данный электролит является слабым (a = 0,9%). Поэтому:

12. (HNO 2) = 3,35. Сравнить силу HNO 2 с силой одно-основной кислоты HA, степень диссоциации которой в растворе с С(HA) = 0,15 моль/л равна 15%.

Рассчитаем (HA), используя полную форму уравнения Оствальда:

Так как (HA) < (HNO 2), то кислота HA является более сильной кислотой по сравнению с HNO 2 .

13. Имеются два раствора KCl, содержащие при этом и другие ионы. Известно, что ионная сила первого раствора (I 1) равна 1, а второго (I 2) составляет величину 10 - 2 . Сравнить коэффициенты активности f (K +) в данных растворах и сделать вывод, как отличаются свойства этих растворов от свойств бесконечно разбавленных растворов KCl.

Коэффициенты активности ионов K + рассчитаем, используя закон Дебая-Хюккеля:

Коэффициент активности f - это мера отклонения в поведении раствора электролита данной концентрации от его поведения при бесконечном разведении раствора.

Так как f 1 = 0,316 сильнее отклоняется от 1, чем f 2 = 0,891, то в растворе с большей ионной силой наблюдается большее отклонение в поведении раствора KCl от его поведения при бесконечном разведении.


Вопросы для самоконтроля

1. Что такое электролитическая диссоциация?

2. Какие вещества называют электролитами и неэлектролитами? Приведите примеры.

3. Что такое степень диссоциации?

4. От каких факторов зависит степень диссоциации?

5. Какие электролиты считаются сильными? Какие средней силы? Какие слабыми? Приведите примеры.

6. Что такое константа диссоциации? От чего зависит и от чего не зависит константа диссоциации?

7. Как связаны между собой константа и степень диссоциации в бинарных растворах средних и слабых электролитов?

8. Почему растворы сильных электролитов в своем поведении обнаруживают отклонения от идеальности?

9. В чем заключается суть термина «кажущаяся степень диссоциации»?

10. Что такое активность иона? Что такое коэффициент актив-ности?

11. Как изменяется величина коэффициента активности с разбавлением (концентрированием) раствора сильного электролита? Каково предельное значение коэффициента активности при бесконечном разведении раствора?

12. Что такое ионная сила раствора?

13. Как вычисляют коэффициент активности? Сформулируйте закон Дебая-Хюккеля.

14. В чем суть ионной теории кислот и оснований (теории Аррениуса)?

15. В чем состоит принципиальное отличие протолитической теории кислот и оснований (теории Бренстеда и Лоури) от теории Аррениуса?

16. Как трактует электронная теория (теория Льюиса) понятие «кислота» и «основание»? Приведите примеры.


Варианты задач для самостоятельного решения

Вариант №1

1. Написать уравнение электролитической диссоциации Fe 2 (SO 4) 3 .

НА + H 2 O ⇄ Н 3 O + + А - .

Вариант №2

1. Написать уравнение электролитической диссоциации CuCl 2 .

2. Определить, чем с позиций теории Льюиса является ион S 2 - в реакции:

2Ag + + S 2 - ⇄ Ag 2 S.

3. Вычислить молярную концентрацию электролита в растворе, если a = 0,75%, а = 10 - 5 .

Вариант №3

1. Написать уравнение электролитической диссоциации Na 2 SO 4 .

2. Определить, чем с позиций теории Льюиса является ион CN - в реакции:

Fe 3 + + 6CN - ⇄ 3 - .

3. Ионная сила раствора CaCl 2 равна 0,3 моль/л. Рассчитать С(CaCl 2).

Вариант №4

1. Написать уравнение электролитической диссоциации Ca(OH) 2 .

2. Определить, чем с позиций теории Бренстеда является молекула H 2 O в реакции:

H 3 O + ⇄ H + + H 2 O.

3. Ионная сила раствора K 2 SO 4 составляет 1,2 моль/л. Рассчитать С(K 2 SO 4).

Вариант №5

1. Написать уравнение электролитической диссоциации K 2 SO 3 .

NH 4 + + H 2 O ⇄ NH 3 + H 3 O + .

3. (CH 3 COOH) = 4,74. Сравнить силу CH 3 COOH с силой одноосновной кислоты HA, степень диссоциации которой в растворе с С(HA) = 3,6×10 - 5 моль/л равна 10%.

Вариант №6

1. Написать уравнение электролитической диссоциации K 2 S.

2. Определить, чем с позиций теории Льюиса является молекула AlBr 3 в реакции:

Br - + AlBr 3 ⇄ - .

Вариант №7

1. Написать уравнение электролитической диссоциации Fe(NO 3) 2 .

2. Определить, чем с позиций теории Льюиса является ион Cl - в реакции:

Cl - + AlCl 3 ⇄ - .

Вариант №8

1. Написать уравнение электролитической диссоциации K 2 MnO 4 .

2. Определить, чем с позиций теории Бренстеда является ион HSO 3 - в реакции:

HSO 3 - + OH – ⇄ SO 3 2 - + H 2 O.

Вариант №9

1. Написать уравнение электролитической диссоциации Al 2 (SO 4) 3 .

2. Определить, чем с позиций теории Льюиса является ион Co 3+ в реакции:

Co 3+ + 6NO 2 - ⇄ 3 - .

3. В 1 л раствора содержится 0,348 г K 2 SO 4 и 0,17 г NaNO 3 . Определить ионную силу этого раствора.

Вариант №10

1. Написать уравнение электролитической диссоциации Ca(NO 3) 2 .

2. Определить, чем с позиций теории Бренстеда является молекула H 2 O в реакции:

B + H 2 O ⇄ OH - + BH + .

3. Вычислить концентрацию электролита в растворе, если a = 5%, а = 10 - 5 .

Вариант №11

1. Написать уравнение электролитической диссоциации KMnO 4 .

2. Определить, чем с позиций теории Льюиса является ион Cu 2+ в реакции:

Cu 2+ + 4NH 3 ⇄ 2 + .

3. Вычислить коэффициент активности иона Cu 2+ в растворе CuSO 4 c С(CuSO 4) = 0,016 моль/л.

Вариант №12

1. Написать уравнение электролитической диссоциации Na 2 CO 3 .

2. Определить, чем с позиций теории Бренстеда является молекула H 2 O в реакции:

K + + xH 2 O ⇄ + .

3. Имеются два раствора NaCl, содержащие и другие электролиты. Значения ионной силы этих растворов соответственно равны: I 1 = 0,1 моль/л, I 2 = 0,01 моль/л. Сравнить коэффициенты активности f (Na +) в данных растворах.

Вариант №13

1. Написать уравнение электролитической диссоциации Al(NO 3) 3 .

2. Определить, чем с позиций теории Льюиса является молекула RNH 2 в реакции:

RNH 2 + H 3 O + ⇄ RNH 3 + + H 2 O.

3. Сравнить коэффициенты активности катионов в растворе, содержащем FeSO 4 и KNO 3 , при условии, что концентрации электролитов составляют, соответственно, 0,3 и 0,1 моль/л.

Вариант №14

1. Написать уравнение электролитической диссоциации K 3 PO 4 .

2. Определить, чем с позиций теории Бренстеда является ион H 3 O + в реакции:

HSO 3 - + H 3 O + ⇄ H 2 SO 3 + H 2 O.

Вариант №15

1. Написать уравнение электролитической диссоциации K 2 SO 4 .

2. Определить, чем с позиций теории Льюиса является Pb(OH) 2 в реакции:

Pb(OH) 2 + 2OH - ⇄ 2 - .

Вариант №16

1. Написать уравнение электролитической диссоциации Ni(NO 3) 2 .

2. Определить, чем с позиций теории Бренстеда является ион гидроксония (H 3 O +) в реакции:

2H 3 O + + S 2 - ⇄ H 2 S + 2H 2 O.

3. Ионная сила раствора, содержащего только Na 3 PO 4 , равна 1,2 моль/л. Определить концентрацию Na 3 PO 4 .

Вариант №17

1. Написать уравнение электролитической диссоциации (NH 4) 2 SO 4 .

2. Определить, чем с позиций теории Бренстеда является ион NH 4 + в реакции:

NH 4 + + OH - ⇄ NH 3 + H 2 O.

3. Ионная сила раствора, содержащего одновременно KI и Na 2 SO 4 , равна 0,4 моль/л. С(KI) = 0,1 моль/л. Определить концен-трацию Na 2 SO 4 .

Вариант №18

1. Написать уравнение электролитической диссоциации Cr 2 (SO 4) 3 .

2. Определить, чем с позиций теории Бренстеда является молекула белка в реакции:


БЛОК ИНФОРМАЦИИ

Шкала значений pH

Таблица 3. Взаимосвязь концентраций ионов H + и OH - .


Эталоны решения задач

1. Концентрация ионов водорода в растворе составляет 10 - 3 моль/л. Рассчитать значения pH, pOH и [ОН - ] в данном растворе. Определить среду раствора.

Примечание. Для вычислений используются соотношения: lg10 a = a ; 10 lga = а .

Среда раствора с pH = 3 является кислой, так как pH < 7.

2. Вычислить рН раствора соляной кислоты с молярной концентрацией 0,002 моль/л.

Так как в разбавленном растворе НС1 » 1, а в растворе одноосновной кислоты C(к-ты) = C( к-ты), то можем записать:

3. К 10 мл раствора уксусной кислоты с C( СН 3 СООН) = 0,01 моль/л добавили 90 мл воды. Найти разность значений pН раствора до и после разбавления, если (СН 3 СООН) = 1,85×10 - 5 .

1) В исходном растворе слабой одноосновной кислоты СН 3 СООН:

Следовательно:

2) Добавление к 10 мл раствора кислоты 90 мл воды соответ-ствует 10-кратному разбавлению раствора. Поэтому.

Инструкция

Суть данной теории заключается в том, что при расплавлении (растворении в воде) практически все электролиты раскладываются на ионы, которые как положительно, так и отрицательно заряженные (что и называется электролитической диссоциацией). Под воздействием электрического тока отрицательные ( «-») к аноду (+), а положительно заряженные (катионы, «+»), движутся к катоду (-). Электролитическая диссоциация – это обратимый процесс (обратный процесс носит название «моляризация»).

Степень (a) электролитической диссоциации находится в зависимости от самого электролита, растворителя, и от их концентрации. Это отношение числа молекул (n) , которые распались на ионы к общему числу введенных в раствор молекул (N). Получаете: a = n / N

Таким образом, сильные электролиты - вещества, полностью распадающиеся на ионы при растворении в воде. К сильным электролитам, как правило, вещества с сильнополярными или связями: это соли, которые хорошо растворимы, (HCl, HI, HBr, HClO4, HNO3, H2SO4), а также сильные основания (KOH, NaOH, RbOH, Ba(OH)2, CsOH, Sr(OH)2, LiOH, Ca(OH)2). В сильном электролите вещество, растворенное в нем, находится по большей части в виде ионов ( ); молекул, которые недиссоциированные - практически нет.

Слабые электролиты - такие вещества, которые диссоциируют на ионы лишь частично. Слабые электролиты вместе с ионами в растворе содержат молекулы недиссоциированные. Слабые электролиты не дают в растворе сильной концентрации ионов.

К слабым относятся:
- органические кислоты (почти все) (C2H5COOH, CH3COOH и пр.);
- некоторые из кислот (H2S, H2CO3 и пр.);
- практически все соли, малорастворимые в воде, гидроксид аммония, а также все основания (Ca3(PO4)2; Cu(OH)2; Al(OH)3; NH4OH);
- вода.

Они практически не проводят электрический ток, или проводят, но плохо.

Обратите внимание

Хотя чистая вода проводит электрический ток очень плохо, она все-таки имеет измеримую электрическую проводимость, объясняемую тем, что вода немного диссоциирует на гидроксид-ионы и ионы водорода.

Полезный совет

Большинство электролитов – вещества агрессивные, поэтому при работе с ними будьте предельно осторожны и соблюдайте правила техники безопасности.

Сильное основание - неорганическое химическое соединение, образованное гидроксильной группой -ОН и щелочным (элементы I группы периодической системы: Li, K, Na, RB, Cs) или щелочноземельным металлом (элементы II группы Ba, Ca). Записываются в виде формул LiOH, KOH, NaOH, RbOH, CsOH, Са(ОН) ₂, Ва(ОН) ₂.

Вам понадобится

  • выпарительная чашка
  • горелка
  • индикаторы
  • металлический стержень
  • Н₃РО₄

Инструкция

Сильные основания проявляют , характерные для всех . Наличие в растворе определяется по изменению окраски индикатора. К пробе с исследуемым раствором добавьте , фенолфталеин или опустите лакмусовую бумажку. Метилоранж дает желтую окраску, фенолфталеин – пурпурную, а лакмусовая бумага окрашивается в синий цвет. Чем сильнее основание, тем интенсивнее окрашивается индикатор.

Если необходимо узнать какие именно щелочи вам представлены, то проведите качественный анализ растворов. Наиболее распространенные сильные основания – лития, калия, натрия, бария и кальция. Основания вступают в реакцию с кислотами (реакции нейтрализации) с образованием соли и воды. При этом можно выделить Са(ОН) ₂, Ва(ОН) ₂ и LiOH. При с кислотой образуются нерастворимые . Остальные гидроксиды осадков не дадут, т.к. все соли К и Na растворимы.
3 Са(ОН) ₂ + 2 Н₃РО₄ --→ Ca₃(PO₄)₂↓+ 6 H₂О

3 Ва(ОН) ₂ +2 Н₃РО₄ --→ Ва₃(PO₄)₂↓+ 6 H₂О

3 LiOH + Н₃РО₄ --→ Li₃РО₄↓ + 3 H₂О
Процедите их и высушите. Внесите высушенные осадки в пламя горелки. По изменению окраски пламени можно качественно определить ионы лития, кальция и бария. Соответственно вы определите где какой гидроксид. Соли лития окрашивают пламя горелки в карминово-красный цвет. Соли бария – в зеленый, а соли кальция – в малиновый.

Оставшиеся щелочи образуют растворимые ортофосфаты.

3 NaOH + Н₃РО₄--→ Na₃РО₄ + 3 H₂О

3 KOH + Н₃РО₄--→ K₃РО₄ + 3 H₂О

Необходимо выпарить воду до сухого остатка. Выпаренные соли на металлическом стержне поочередно внесите в пламя горелки. Там, соль натрия – пламя окрасится в ярко-желтый цвет, а калия – в розово-фиолетовый. Таким образом имея минимальный набор оборудования и реактивов вы определили все данные вам сильные основания.

Электролит – вещество, которое в твердом состоянии является диэлектриком, то есть не проводит электрического тока, однако, в растворенном или расплавленном виде становится проводником. Почему происходит такая резкая смена свойств? Дело в том, что молекулы электролита в растворах или расплавах диссоциируют на положительно заряженные и отрицательно заряженные ионы, благодаря чему эти вещества в таком агрегатном состоянии способны проводить электрический ток. Электролитическими свойствами обладает большинство солей, кислот, оснований.

Инструкция

Какие вещества относятся к сильным ? Такие вещества, в растворах или расплавах которых подвергаются практически 100% молекул, причем вне зависимости от концентрации раствора. В перечень входит абсолютное большинство растворимых щелочей, солей и некоторые кислоты, такие как соляная, бромистая, йодистая, азотная и т.д.

А как ведут себя в растворах или расплавах слабые электролиты ? Во-первых, они диссоциируют в очень малой степени (не больше 3% от общего количества молекул), во-вторых, их идет тем хуже и медленнее, чем выше концентрация раствора. К таким электролитам относятся, например, (гидроксид аммония), большинство органических и неорганических кислот (включая плавиковую – HF) и, разумеется, всем нам знакомая вода. Поскольку лишь ничтожно малая доля ее молекул распадается на водород-ионы и гидроксил-ионы.

Запомните, что степень диссоциации и, соответственно, сила электролита находятся в зависимости факторов: природы самого электролита, растворителя, температуры. Поэтому само это разделение в известной степени условно. Ведь одно и то же вещество может при различных условиях быть и сильным электролитом, и слабым. Для оценки силы электролита была введена специальная величина – константа диссоциации, определяемая на основе закона действующих масс. Но она применима лишь по отношению к слабым электролитам; сильные электролиты закону действующих масс не подчиняются.

Источники:

  • сильные электролиты список

Соли – это химические вещества, состоящие из катиона, то есть положительно заряженного иона, металла и отрицательно заряженного аниона – кислотного остатка. Типов солей много: нормальные, кислые, основные, двойные, смешанные, гидратные, комплексные. Это зависит от составов катиона и аниона. Как можно определить основание соли?

Теорию электролитической диссоциации предложил шведский ученый С. Аррениус в 1887 году.

Электролитическая диссоциация - это распад молекул электролита с образованием в растворе положительно заряженных (катионов) и отрицательно заряженных (анионов) ионов.

Например, уксусная кислота диссоциирует так в водном растворе:

CH 3 COOH⇄H + +CH 3 COO - .

Диссоциация относиться к обратимым процессам. Но различные электролиты диссоциируют по-разному. Степень зависит от природы электролита, его концентрации, природы растворителя, внешних условий (температуры, давления).

Степень диссоциации α - отношение числа молекул, распавшихся на ионы, к общему числу молекул:

α=v´(x)/v(x).

Степень может варьироваться от 0 до 1 (от отсутствия диссоциации до ее полного завершения). Обозначается в процентах. Определяется экспериментальным путем. При диссоциации электролита происходит увеличение числа частиц в растворе. Степень диссоциации показывает силу электролита.

Различают сильные и слабые электролиты .

Сильные электролиты - это те электролиты, степень диссоциации которой превышает 30%.

Электролиты средней силы - это те, степень диссоциации которой делит в пределах от 3% до 30%.

Слабые электролиты - степень диссоциации в водном 0,1 М растворе меньше 3%.

Примеры слабых и сильных электролитов.

Сильные электролиты в разбавленных растворах нацело распадаются на ионы, т.е. α = 1. Но эксперименты показывают, что диссоциация не может быть равна 1, она имеет приближенное значение, но не равна 1. Это не истинная диссоциация, а кажущаяся.

Например, пусть у некоторого соединения α = 0,7. Т.е. по теории Аррениуса в растворе «плавает» 30% непродиссоцииовавших молекул. А 70% образовали свободные ионы. А электролстатическая теория дает другое определение этому понятию: если α = 0,7, то все молекулы диссоциированы на ионы, но ионы свободны лишь на 70%, а оставшиеся 30% - связаны электростатическими взаимодействиями.

Кажущаяся степень диссоциации.

Степень диссоциации зависит не только от природы растворителя и растворяемого вещества, но и от концентрации раствора и температуры.

Уравнение диссоциации можно представить в следующем виде:

AK ⇄ A- + K + .

И степень диссоциации можно выразить так:

С увеличением концентрации раствора степень диссоциации электролита падает. Т.е. значения степени для конкретного электролита не является величиной постоянной.

Так как диссоциация - процесс обратимый, то уравнения скоростей реакции можно записать следующим образом:

Если диссоциация равновесна, то скорости равны и в результате получаем константу равновесия (константу диссоциации):

К зависит от природы растворителя и от температуры, но не зависит от концентрации растворов. Из уравнения видно, что чем больше недиссоциированных молекул, тем меньше величина константы диссоциации электролита.

Многоосновные кислоты диссоциируют ступенчато, и каждая ступень имеет свое значение константы диссоциации.

Если диссоциирует многоосновная кислота, то легче всего отщепляется первый протон, а при возрастании заряда аниона, притяжение возрастает, и поэтому протон отщепляется намного труднее. Например,

Константы диссоциации ортофосфорной кислоты на каждой ступени должны сильно различаться:

I - стадия:

II - стадия:

III - стадия:

На первой ступени ортофосфорная кислота - кислота средней силы, а 2ой - слабая, на 3ей - очень слабая.

Примеры констант равновесия для некоторых растворов электролитов.

Рассмотрим пример:

Если в раствор, в котором содержатся ионы серебра внести металлическую медь, то в момент равновесия, концентрация ионов меди должна быть больше, чем концентрация серебра.

Но у константы низкое значение:

AgCl⇄Ag + +Cl - .

Что говорит о том, что к моменту достижения равновесия растворилось очень мало хлорида серебра.

Концентрация металлической меди и серебра введены в константу равновесия.

Ионное произведение воды.

В приведенной таблице есть данные:

Эту константу называют ионным произведением воды , которое зависит только от температуры. Согласно диссоциации на 1 ион Н + приходится один гидроксид-ион. В чистой воде концентрация этих ионов одинакова: [H + ] = [OH - ].

Отсюда, [H + ] = [OH - ] = = 10-7 моль/л.

Если добавить в воду постороннее вещество, например, хлороводородную кислоту, то концентрация ионов водорода возрастет, но ионное произведение воды от концентрации не зависит.

А если добавить щелочь, то повысится концентрация ионов, а количество водорода понизится.

Концентрация и взаимосвязаны: чем больше одна величина, тем меньше другая.

Кислотность раствора (рН).

Кислотность растворов обычно выражается концентрацией ионов Н + . В кислых средах рН <10 -7 моль/л, в нейтральных - рН = 10 -7 моль/л, в щелочных - рН > 10 -7 моль/л.
Кислотность раствора выражают через отрицательный логарифм концентрации ионов водорода, называя ее рН .

рН = - lg [ H + ].

Взаимосвязь между константой и степенью диссоциации.

Рассмотрим пример диссоциации уксусной кислоты:

Найдем константу:

Молярная концентрация С=1/ V , подставим в уравнение и получим:

Эти уравнения являются законом разведения В. Оствальда , согласно которому константа диссоциации электролита не зависит от разведения растовра.