Проверка условия равновесия тела имеющего ось вращения. Тема. Момент силы. Условия равновесия тела, которое имеет ось вращения. Равновесие тела, имеющего неподвижную ось вращения

Основным признаком взаимодействия тел в динамике является возникновение ускорений. Однако часто бывает нужно знать, при каких условиях тело, на которое действует несколько различных сил, не движется с ускорением. Подвесим

шар на нити. На шар действует сила тяжести, но не вызывает ускоренного движения к Земле. Этому препятствует действие равной по модулю и направленной в противоположную сторону силы упругости. Сила тяжести и сила упругости уравновешивают друг друга, их равнодействующая равна нулю, поэтому равно нулю и ускорение шара (рис. 40).

Точку, через которую проходит равнодействующая сил тяжести при любом расположении тела, называют центром тяжести (рис. 41).

Раздел механики, изучающий условия равновесия сил, называется статикой.

Равновесие невращающихся тел.

Равномерное прямолинейное поступательное движение тела или его покой возможны только при равенстве нулю геометрической суммы всех сил, приложенных к телу.

Невращающееся тело находится в равновесии, если геометрическая сумма сил, приложенных к телу, равна нулю.

Равновесие тел, имеющих ось вращения.

В повседневной жизни и технике часто встречаются тела, которые не могут двигаться поступательно, но могут вращаться вокруг оси. Примерами таких тел могут служить двери и окна, колеса автомобиля, качели и т. д. Если вектор силы Р лежит на прямой, пересекающей ось вращения, то эта сила уравновешивается силой упругости со стороны оси вращения (рис. 42).

Если же прямая, на которой лежит вектор силы F, не пересекает ось вращения, то эта сила не может быть уравновешена

силой упругости со стороны оси вращения, и тело поворачивается вокруг оси (рис. 43).

Вращение тела вокруг оси под действием одной силы может быть остановлено действием второй силы Опыт показывает, что если две силы по отдельности вызывают вращение тела в противоположных направлениях, то при их одновременном действии тёло находится в равновесии, если выполняется условие:

где - кратчайшие расстояния от прямых, на которых лежат векторы сил (линии действия сил), до оси вращения (рис. 44). Расстояние называется плечом силы, а произведение модуля силы на плечо называется моментом силы М:

Если моментам сил, вызывающим вращение тела вокруг оси по часовой стрелке, приписать положительный знак, а моментам сил, вызывающим вращение против часовой стрелки, - отрицательный знак, то условие равновесия тела, имеющего ось вращения, можно сформулировать в виде правила моментов: тело, имеющее неподвижную ось вращения, находится в равновесии, если алгебраическая сумма моментов всех приложенных к телу сил относительно этой оси равна нулю:

За единицу вращающего момента в СИ принимается момент силы в 1 Н, линия действия которой находится на расстоянии от оси вращения. Эту единицу называют ньютон-метром

Общее условие равновесия тела. Объединяя два вывода, можно сформулировать общее условие равновесия тела: тело находится в равновесии, если равны нулю геометрическая сумма векторов всех приложенных к нему сил и алгебраическая сумма моментов этих сил относительно оси вращения.

При выполнении общего условия равновесия тело необязательно находится в покое. Согласно второму закону Ньютона при равенстве нулю равнодействующей всех сил ускорение тела равно нулю и оно может находиться в покое или? двигаться равномерно и прямолинейно.

Равенство нулю алгебраической суммы моментов сил не означает также, что при этом тело обязательно находится в покое. На протяжении нескольких миллиардов лет с постоянным периодом продолжается вращение Земли вокруг оси именно потому, что алгебраическая сумма моментов сил, действующих на Землю со стороны других тел, очень мала. По той же причине продолжает вращение с постоянной частотой раскрученное велосипедное колесо, и только внешние силы останавливают это вращение.

Виды равновесия.

В практике большую роль играет не только выполнение условия равновесия тел, но и качественная характеристика равновесия, называемая устойчивостью. Различают три вида равновесия тел: устойчивое, неустойчивое и безразличное.

Равновесие называется устойчивым, если после небольших внешних воздействий тело возвращается в исходное состояние равновесия. Это происходит, если при небольшом смещении тела в любом направлении от первоначального положения равнодействующая сил, действующих на тело, становится отличной от нуля и направлена к положению равновесия. В устойчивом равновесии находится, например, шар на дне углубления (рис. 45).

Равновесие называется неустойчивым, если при небольшом смещении тела из положения равновесия равнодействующая приложенных к нему сил отлична от нуля и направлена от положения равновесия (рис. 46).

Еслн при небольших смещениях тела из первоначального положения равнодействующая приложенных к телу сил остается равной нулю, то тело находится в состоянии безразличного равновесия. В безразличном равновесии находится шар на горизонтальной поверхности (рис. 47).

Тело, имеющее неподвижную ось вращения, находится в устойчивом равновесии, если его центр тяжести расположен ниже оси вращения и находятся на вертикальной прямой, проходящей через ось вращения (рис. 48, а).

При небольшом отклонении от этого положения равновесия алгебраическая сумма моментов сил, действующих на тело, становится отличной от нуля и возникающий момент сил поворачивает тело к первоначальному положению равновесия (рис. 48, б).

Если же центр тяжести находится на вертикальной прямой, проходящей через ось вращения, но расположен выше оси вращения, то равновесие неустойчивое (рис. 49, а, б).

Тело находится в безразличном равновесии, когда ось вращения тела проходит через его центр тяжести (рис. 50).

Равновесие тела на опоре.

Если вертикальная линия, проведенная через центр тяжести С тела, пересекает площадь опоры, то тело находится в равновесии (рис. 51). Если же вертикальная линия, проведенная через центр тяжести, не пересекает площадь опоры, то тело опрокидывается (рис. 52).

Момент силы. Условие равновесия тела, имеющего ось вращения

Моментом силы называют величину, способную вызывать и изменять вращение тела. При этом выделяют момент силы относительно точки (центра) и относительно оси.

Рис. 4.2

Момент силы относительно неподвижной точки О представляет собой вектор определяемый векторным произведением радиуса-вектора проведенного из точки О в точку N приложения силы, на силу рис. 4.2:

где модуль момента силы М =Fr sina=F ×l (l ¾плечо силы, то есть, кратчайшее расстояние между линией действия силы и точкой О ). Направлен вектор перпендикулярно плоскости, проходящей через центр О и силу в сторону, откуда поворот, вызываемый силой, виден против хода часовой стрелки.

Пример. Пусть точечный груз массой m подвешенный на нерастяжимой и невесомой нити длиной R к гвоздю, вбитому в потолок, совершает колебания около положения равновесия, рис. 4.3.

Рис. 4.3

Для рассматриваемого момента времени, когда груз возвращается в положение равновесия, вектор момента силы совпадает по направлению с вектором угловой скорости его модуль равен M 0 =mgl =mgR sina; момент силы натяжения нити Т всегда равен нулю, так как плечо этой силы равно нулю.

Момент силы относительно неподвижной оси z является алгебраической величиной, равной проекции на эту ось вектора момента силы, определенного относительно произвольной точки О на оси z , рис. 4.4.

Рис. 4.4

Для решения обычных школьных задач достаточно рассмотрения момента силы относительно оси z , перпендикулярной плоскости, в которой лежат векторы и рис. 4.5.

Направление оси при этом выбирают таким образом, чтобы момент был положительным, если он вызывает вращение по часовой стрелке.

Рис. 4.5

На любое тело могут действовать моменты различных сил, однако, для его равновесия, при наличии неподвижной оси вращения z , необходимо, чтобы алгебраическая сумма моментов всех сил, действующих на тело, относительно этой оси была равна нулю

или, формулируя более простым языком, моменты всех сил M z , вращающих тело по часовой стрелке, должны быть равны моментам всех сил, вращающих его против часовой стрелки. При этом тело будет либо покоиться, либо равномерно вращаться вокруг оси.

Если у тела отсутствует закрепленная ось вращения, для его равновесия необходимо и достаточно выполнение условий (4.1) и (4.6) относительно любой возможной оси.

Условия равновесия часто используются для измерения неизвестных сил путем их сравнения с известными силами. Например, величину различных сил (гравитационных, электростатических, магнитных) измеряют, сравнивая их с силой упругости. В частности силу тяжести, действующую на тело, можно определить по показаниям пружинного динамометра.

Важной задачей статики является определение центра тяжести тела или системы тел.Центром тяжести является точка приложения равнодействующей всех сил тяжести, действующих на тело при любом его положении в пространстве (обычно находится путем пересечения линий подвеса тела). Сумма моментов всех элементарных сил тяжести относительно любой оси, которая проходит через центр тяжести, равна нулю.

У однородного тела центр тяжести находится на оси симметрии и пересечении осей симметрии, при этом он может оказаться вне самого тела (например, у кольца).

Пример. Два человека, массой m 1 = 60 кг и m 2 = 100 кг находятся в равновесии на разных концах горизонтально расположенной однородной прямоугольной доски, длиной l = 3 м и массой m 3 = 30 кг, имеющей одинаковую толщину и расположенной на поваленномдереве, рис. 4.6. На каком расстоянии х от правого края доски находится центр тяжести системы, состоящей из доски и двух человек или, иными словами, точка касания доски с деревом?

Рис. 4.6

Решение. Согласно условию (4.2) равнодействующая сил тяжести по модулю равна модулю вектора т. е.m 1 g +m 2 g +m 3 g =N . Данное выражение полезно для общих рассуждений и правильного построения рисунка, но для решения задачи вполне достаточно воспользоваться условием (4.6).

Выясним, при каких условиях тело, покоящееся относительно некоторой инерциальной системы отсчета, останется в покое.

Если тело покоится, то его ускорение равно нулю. Тогда согласно второму закону Ньютона должна быть равна нулю и равнодействующая приложенных к телу сил. Поэтому первое условие равновесия можно сформулировать так:

Если тело находится в покое, то векторная сумма (равнодействующая) приложенных к нему сил равна нулю:

Заметим, что одного условия (1) еще недостаточно для того, чтобы тело покоилось, Например, если тело имело начальную скорость, то оно будет продолжать двигаться с той же скоростью. Кроме того, как мы увидим дальше, даже если векторная сумма сил, приложенных к покоящемуся телу, равна нулю, оно может начать вращаться.

В случаях, когда покоящееся в начальный момент тело может рассматриваться как материальная точка, первого условия равновесия достаточно, чтобы тело осталось в покое. Рассмотрим примеры.

Пусть груз массой m подвешен на трех тросах и покоится (рис. 35.1). Узел А, связывающий тросы, можно считать материальной точкой, которая находится в равновесии.

Следовательно, векторная сумма приложенных к узлу А сил натяжения нитей равна нулю (рис. 35.2):

Покажем два способа применения этого уравнения при решении задач.

Используем проекции векторов. Выберем оси координат и обозначим углы между тросами 1, 2 и вертикалью, как показано на рисунке 35.2.

1. Объясните, почему в данном случае справедливы следующие уравнения:

Ox: –T 1 sin α 1 + T 2 sin α 2 = 0,
Oy: T 1 cos α 1 + T 2 cos α 2 – T 3 = 0,
T 3 = mg.

Воспользуйтесь этой системой уравнений при выполнении следующих заданий.

2. Чему равна сила натяжения каждого троса, если m = 10 кг, α 1 = α 2 = 30º?

3. Известно, что T 1 = 15 Н, α 1 = 30º, α 2 = 45º. Чему равны: а) сила натяжения второго троса T 2 ? 5) масса груза m?

4. Пусть α 1 = α 2 . Чему равны эти углы, если сила натяжения каждого троса: а) равна весу груза? б) в 10 раз больше веса груза?

Итак, силы, действующие на подвесы, могут многократно превышать вес груза!

Воспользуемся тем, что три вектора, сумма которых равна нулю, «замыкаются» в треугольник (рис. 35.3). Рассмотрим пример.

5. Фонарь массой m подвешен на трех тросах (рис. 35.4). Обозначим модули сил натяжения тросов T 1 , T 2 , T 3 . Угол α ≠ 0.
а) Изобразите силы, действующие на узел A, и объясните, почему T 3 > mg и T 3 > T 2 .
б) Выразите T 3 через m, g и T 2 .
Подсказка. Векторы сил 1 , 2 и 3 образуют прямоугольный треугольник.


2. Второе условие равновесия тела (правило моментов)

Убедимся на опыте в том, что одного первого условия равновесия недостаточно для того, чтобы тело оставалось в покое.

Поставим опыт
Прикрепим к куску картона две нити и потянем за них в противоположные стороны с равными по модулю силами (рис. 35.5). Векторная сумма приложенных к картону сил равна нулю, но он не останется в покое, а начнет поворачиваться.

Условие равновесие тела, закрепленного на оси

Второе условие равновесия тела – обобщение условия равновесия тела, закрепленного на оси. Оно знакомо вам из курса физики основной школы. (Это условие является следствием закона сохранения энергии в механике.) Напомним его.

Пусть на тело, закрепленное на оси О, действуют силы 1 и 2 (рис. 35.6). Тело может находиться в равновесии только при условии, что

F 1 l 1 = F 2 l 2 (2)


Здесь l 1 и l 2 – плечи сил, то расстояния от оси вращения О до линии действия сил 1 и 2 .

Чтобы найти плечо силы, надо линию действия силы и опустить перпендикуляр из оси вращения на эту линию. Его длина и есть плечо силы.

6. Перенесите в тетрадь рисунок 35.7. Одной клетке соответствует 1 м. Чему равны плечи сил 1 , 2 , 3 , 4 ?

Вращающее действие силы характеризуют моментом силы. Модуль момента силы равен произведению модуля силы на ее плечо. Момент силы считают положительным, если сила стремится вращать тело против часовой стрелки, и отрицательным – если по часовой стрелке. (Таким образом, знак момента силы, вращающей тело в какую-то сторону, совпадает со знакомым вам из школьного курса математики знаком угла поворота в ту же сторону на единичной окружности.)

Например, моменты изображенных на рисунке 35.8 сил относительно точки О таковы:

M 1 = F 1 l 1 ; M 2 = –F 2 l 2 .


Момент силы измеряется в ньютонах * метрах (Н * м).

7. Чему равны моменты изображенных на рисунке 35.7 сил относительно точки О? Одной клетке соответствует расстояние 1 м, а также сила 1 Н.

Перепишем соотношение (2), используя моменты сил:
M 1 + M 2 = 0. (3)
Это соотношение называют правилом моментов.

Если на покоящееся тело, закрепленное на оси, действуют несколько сил, то оно останется в покое только при условии, что алгебраическая сумма моментов всех этих сил равна нулю:

M 1 + M 2 + … + M n = 0.

Заметим, что одного этого условия недостаточно для того, чтобы тело покоилось. Если алгебраическая сумма моментов приложенных к телу сил равна нулю, но в начальный момент тело вращается, то оно будет продолжать вращаться с той же угловой скоростью.

Чтобы убедиться в этом, раскрутите велосипедное колесо приподнятого велосипеда или юлу. После этого они будут вращаться довольно долго: тормозить их будет только небольшая сила трения. Да и наша Земля миллиарды лет вращается вокруг своей оси, хотя вокруг оси никакие силы Землю не вращают!

Условие равновесия тела, не закрепленного на оси

Учтем теперь силу, действующую на закрепленное на оси тело со стороны оси. Так, рассмотренное выше тело (рис. 35.6) на самом деле находится в равновесии под действием трех сил: 1 , 2 и 3 (рис. 35.9, а).

А теперь заметим, что покоящееся тело не вращается вокруг любой оси.

Поэтому второе условие равновесия для тела, не закрепленного на оси, можно сформулировать так:

чтобы тело оставалось в покое, необходимо, чтобы алгебраическая сумма моментов всех приложенных к телу сил относительно любой оси была равна нулю:

M 1 + M 2 + … + M n = 0. (4)

(Мы считаем, что все приложенные к телу силы лежат в одной плоскости.)

Например, кусок картона, покоящийся под действием сил 1 , 2 и 3 (рис. 35.9, б), можно закрепить иглой в произвольной точке О 1 . Тело «не заметит» новой оси вращения O 1: оно как было, так и останется в покое.

При решении задач ось, относительно которой находят моменты сил, часто проводят через точку приложения силы или сил, которые не заданы в условии: тогда их моменты относительно этой оси равны нулю. Например, в следующем задании в качестве такой оси удобно взять нижний конец стержня.

Заметим, что одного второго условия равновесия также недостаточно для того, чтобы тело осталось в покое.

Покоящееся в начальный момент тело останется в покое только в том случае, если равны нулю и равнодействующая приложенных к телу сил, и алгебраическая сумма моментов этих сил относительно любой оси. (Строго говоря, для этого необходимо еще, чтобы равновесие было устойчивым (см. § 36).)

8. Верхний конец покоящегося легкого стержня длиной L удерживается горизонтальным тросом (рис. 35.10). Нижний конец стержня закреплен в шарнире (стержень может вращаться вокруг нижнего конца). Угол между стержнем и вертикалью равен α. К середине стержня подвешен груз массой m. Трением в шарнире можно пренебречь. Изобразите на чертеже вес груза m и силу натяжения троса , которые действуют на стержень. Чему равны:
а) плечо и момент силы тяжести относительно точки O?
б) плечо и момент силы относительно точки O?
в) модуль силы ?


Как можно переносить точку приложения силы?

Перенесем точку приложения сил из A в B вдоль линии действия силы (рис. 35.11).

При этом:
- не изменится векторная сумма действующих на тело сил;
- не изменится момент этой силы относительно любой оси, потому что не изменилось плечо l этой силы.

Итак, точку приложения силы можно переносить вдоль линии ее действия, не нарушая равновесия тела.

9. Объясните, почему тело может находиться в покое под действием трех непараллельных сил только при условии, что линии их действия пересекаются в одной точке (рис. 35.12).


Обратите внимание: точка пересечения линий действия этих сил может находиться (и часто находится!) вне тела.

10. Вернемся к заданию 8 (рис. 35.10).
а) Найдите точку пересечения линий действия веса груза и силы натяжения троса.
б) Найдите графически направление силы, действующей на стержень со стороны шарнира.
в) Куда надо перенести точку крепления горизонтально направленного троса, чтобы сила, действующая на стержень со стороны шарнира, была направлена вдоль стержня?

3. Центр тяжести

Центром тяжести называют точку приложения силы тяжести. Будем обозначать центр тяжести буквой С. Центр тяжести однородного тела правильной геометрической формы совпадает с его геометрическим центром.

Например, центр тяжести однородного:

  • диска совпадает с центром диска (рис. 35.13, а);
  • прямоугольника (в частности, квадрата) совпадает с точкой пересечения диагоналей (рис. 35.13, б);
  • прямоугольного параллелепипеда (в частности, куба) совпадает с точкой пересечения диагоналей, соединяющих противоположные вершины;
  • тонкого стержня совпадает с его серединой (рис. 35.13, в).


Для тел произвольной формы положение центра тяжести находят опытным путем:

если тело, подвешенное в одной точке, находится в равновесии, то его центр тяжести лежит на одной вертикали с точкой подвеса (рис. 35.13, г).

Действительно, если центр тяжести и точка подвеса не будут на одной вертикали, то алгебраическая сумма моментов силы тяжести и силы, действующей со стороны подвеса, не будет равна нулю (например, относительно центра тяжести).

Алгебраическая сумма моментов сил тяжести, действующих на все части тела, относительно центра тяжести тела равна нулю. (Иначе его невозможно было бы подвесить в одной точке.)

Это используют при расчете положения центра тяжести.

11. На концах легкого стержня длиной l укреплены шарики массой m1 и m2. На каком расстоянии от первого шарика находится центр тяжести этой системы?

12. Горизонтально расположенная однородная балка длиной 1 м и массой 100 кг висит на двух вертикальных тросах. Синий трос укреплен на расстоянии 20 см от левого конца балки, а зеленый – на расстоянии 30 см от ее правого конца. Изобразите на чертеже действующие на балку силы и их плечи относительно центра тяжести балки. Чему равны:
а) плечи сил? б) силы натяжения тросов?


Дополнительные вопросы и задания

13. На одинаковой высоте на расстоянии 1 м друг от друга закреплены концы нерастяжимого троса длиной 2 м. Какой максимальной массы груз можно подвесить к середине троса, чтобы сила натяжения троса не превышала 100 Н?

14. Фонарь подвешен на двух тросах. Силы натяжения тросов равны 10 Н и 20 Н, а угол между тросами равен 120º. Чему равна масса m фонаря?
Подсказка. Если сумма трех векторов равна нулю, то они образуют треугольник.

15. К куску картона, закрепленному на оси О, в точках А 1 и А 2 прикладывают силы 1 и 2 (рис. 35.14). Известно, что ОА 1 = 15 см, ОА 2 = 20 см, F 1 = 20 Н, F 2 = 30 Н, α = 60º, β = 30º.

а) Чему равны плечи сил 1 и 2 ?
б) Чему равны моменты этих сил (с учетом знака)?
в) Может ли картон остаться в покое? А если нет, то в какую сторону он начнет вращаться?

16. Два человека несут цилиндрическую трубу массой 30 кг и длиной 4 м. Первый держит трубу на расстоянии 1,2 м от конца. На каком расстоянии от другого конца держит трубу второй чело, век, если нагрузка на его плечо составляет 100 Н?

17. Легкий стержень длиной 1 м закреплен на горизонтальной оси. Если к левому концу стержня подвесить некоторый груз, а к правому – гирю массой 1 кг, то стержень будет находиться в равновесии. А если тот же груз подвесить к правому концу стержня, то стержень будет находиться в равновесии, если к его левому концу подвешена гиря массой 16 кг.
а) Чему равна масса груза?
б) На каком расстоянии от центра стержня находится ось?

Определение

Равновесием тела называют такое состояние, когда любое ускорение тела равняется нулю, то есть все действия на тело сил и моментов сил уравновешены. При этом тело может:

  • находиться в состоянии спокойствия;
  • двигаться равномерно и прямолинейно;
  • равномерно вращаться вокруг оси, которая проходит через центр его тяжести.

Условия равновесия тела

Если тело находится в равновесии, то одновременно выполняются два условия.

  1. Векторная сумма всех сил, действующих на тело, равна нулевому вектору : $\sum_n{{\overrightarrow{F}}_n}=\overrightarrow{0}$
  2. Алгебраическая сумма всех моментов сил, действующих на тело, равна нулю: $\sum_n{M_n}=0$

Два условия равновесия являются необходимыми, но не являются достаточными. Приведем пример. Рассмотрим равномерно катящееся без проскальзывания колесо по горизонтальной поверхности. Оба условия равновесия выполняются, однако тело движется.

Рассмотрим случай, когда тело не вращается. Для того, чтобы тело не вращалось и находилось в равновесии, необходимо, чтобы сумма проекций всех сил на произвольную ось равнялась нулю, то есть равнодействующая сил. Тогда тело или находится в спокойствии, или двигается равномерно и прямолинейно.

Тело, которое имеет ось вращения, будет находиться в равновесном состоянии, если выполняется правило моментов сил: сумма моментов сил, которые вращают тело по часовой стрелке, должна равняться сумме моментов сил, которые вращают его против часовой стрелки.

Чтобы получить нужный момент при наименьшем усилии, нужно прикладывать силу как можно дальше от оси вращения, увеличивая тем же плечо силы и соответственно уменьшая значение силы. Примеры тел, которые имеют ось вращения, : рычаг, двери, блоки, коловорот и тому подобное.

Три вида равновесия тел, которые имеют точку опоры

  1. стойкое равновесие, если тело, будучи выведенным из положения равновесия в соседнее ближайшее положение и оставлено в спокойствии, вернется в это положение;
  2. неустойчивое равновесие, если тело, будучи выведенным из положения равновесия в соседнее положение и оставлено в спокойствии, будет еще больше отклоняться от этого положения;
  3. безразличное равновесие - если тело, будучи выведенным в соседнее положение и оставлено в спокойствии, останется в новом своем положении.

Равновесие тела с закрепленной осью вращения

  1. стойким, если в положении равновесия центр тяжести С занимает самое низкое положение из всех возможных ближних положений, а его потенциальная энергия будет иметь наименьшее значение из всех возможных значений в соседних положениях;
  2. неустойчивым, если центр тяжести С занимает наивысший из всех ближних положений, а потенциальная энергия имеет наибольшее значение;
  3. безразличным, если центр тяжести тела С во всех ближних возможных положениях находится на одном уровне, а потенциальная энергия при переходе тела, не изменяется.

Задача 1

Тело A массой m = 8 кг поставлено на шероховатую горизонтальную поверхность стола. К телу привязана нить, перекинутая через блок B (рисунок 1, а). Какой груз F можно подвязать к концу нити, свешивающейся с блока, чтобы не нарушить равновесия тела A? Коэффициент трения f = 0,4; трением на блоке пренебречь.

Определим вес тела ~A: ~G = mg = 8$\cdot $9,81 = 78,5 Н.

Считаем, что все силы приложены к телу A. Когда тело поставлено на горизонтальную поверхность, то на него действуют только две силы: вес G и противоположно направленная реакция опоры RA (рис. 1, б).

Если же приложить некоторую силу F, действующую вдоль горизонтальной поверхности, то реакция RA, уравновешивающая силы G и F, начнет отклоняться от вертикали, но тело A будет находиться в равновесии до тех пор, пока модуль силы F не превысит максимального значения силы трения Rf max, соответствующей предельному значению угла ${\mathbf \varphi }$o(рис. 1, в).

Разложив реакцию RA на две составляющие Rf max и Rn, получаем систему четырех сил, приложенных к одной точке (рис. 1, г). Спроецировав эту систему сил на оси x и y, получим два уравнения равновесия:

${\mathbf \Sigma }Fkx = 0, F - Rf max = 0$;

${\mathbf \Sigma }Fky = 0, Rn - G = 0$.

Решаем полученную систему уравнений: F = Rf max, но Rf max = f$\cdot $ Rn, а Rn = G, поэтому F = f$\cdot $ G = 0,4$\cdot $ 78,5 = 31,4 Н; m = F/g = 31,4/9,81 = 3,2 кг.

Ответ: Масса груза т = 3,2 кг

Задача 2

Система тел, изображённая на рис.2, находится в состоянии равновесия. Масса груза тг=6 кг. Угол между векторами $\widehat{{\overrightarrow{F}}_1{\overrightarrow{F}}_2}=60{}^\circ $. $\left|{\overrightarrow{F}}_1\right|=\left|{\overrightarrow{F}}_2\right|=F$. Найти массу гирь.

Равнодействующая сил ${\overrightarrow{F}}_1и\ {\overrightarrow{F}}_2$ равна по модулю весу груза и противоположна ему по направлению: $\overrightarrow{R}={\overrightarrow{F}}_1+{\overrightarrow{F}}_2=\ -m\overrightarrow{g}$. По теореме косинусов, ${\left|\overrightarrow{R}\right|}^2={\left|{\overrightarrow{F}}_1\right|}^2+{\left|{\overrightarrow{F}}_2\right|}^2+2\left|{\overrightarrow{F}}_1\right|\left|{\overrightarrow{F}}_2\right|{cos \widehat{{\overrightarrow{F}}_1{\overrightarrow{F}}_2}\ }$.

Отсюда ${\left(mg\right)}^2=$; $F=\frac{mg}{\sqrt{2\left(1+{cos 60{}^\circ \ }\right)}}$;

Поскольку блоки подвижные, то $m_г=\frac{2F}{g}=\frac{2m}{\sqrt{2\left(1+\frac{1}{2}\right)}}=\frac{2\cdot 6}{\sqrt{3}}=6,93\ кг\ $

Ответ: масса каждой из гирь равна 6,93 кг

11.12.2014

Урок 26 (10 класс)

Тема. Момент силы. Условия равновесия тела, которое имеет ось вращения.

Равенство нулю суммы внешних сил, действующих на твердое тело, необходимо для его равновесия, но недостаточно. В этом легко убедиться. Приложите к доске, лежащей на столе, в различных точках две равные по модулю и противоположно направленные силы так, как показано на рисунке 7.2.

Сумма этих сил равна нулю: . Но доска, тем не менее, будет поворачиваться. Точно так же две одинаковые по модулю и противоположно направленные силы поворачивают руль велосипеда или автомобиля (рис.7.3 ). Почему так происходит, понять нетрудно. Ведь любое тело находится в равновесии, когда сумма всех сил, действующих на каждый его элемент, равна нулю. Но если сумма внешних сил равна нулю, то сумма всех сил, приложенных к каждому элементу тела, может быть не равна нулю. В этом случае тело не будет находиться в равновесии. В рассмотренных примерах доска и руль потому и не находятся в равновесии, что сумма всех сил, действующих на отдельные элементы этих тел, не равна нулю.

Выясним, какое же еще условие для внешних сил, кроме равенства нулю их суммы, должно выполняться, чтобы твердое тело находилось в равновесии. Для этого воспользуемся теоремой об изменении кинетической энергии.
Найдем, например, условие равновесия стержня, шарнирно закрепленного на горизонтальной оси в точке О (рис.7.4 ). Это простое устройство, как вам известно из курса физики 7 класса, представляет собой рычаг. Пусть к рычагу приложены перпендикулярно стержню силы и . В частности, это могут быть силы натяжения нитей, к концам которых прикреплены грузы. Кроме сил и на рычаг действует направленная вертикально вверх сила реакции со стороны оси рычага. При равновесии рычага сумма всех трех сил равна нулю:

Вычислим работу, которую совершают внешние силы при повороте рычага на очень малый угол . Точки приложения сил и пройдут пути s 1 =BB 1 и s 2 =CC 1 (дуги BB 1 и CC 1 при малых углах можно считать прямолинейными отрезками). РаботаA 1 =F 1 s 1 силы положительна, потому что точка B перемещается по направлению действия силы, а работа A 2 =-F 2 s 2 силы отрицательна, поскольку точка C движется в сторону, противоположную направлению силы . Сила работы не совершает, так как точка ее приложения не перемещается.
Пройденные пути s 1 и s 2 можно выразить через угол поворота рычага , измеренный в радианах: и .
Учитывая это, перепишем выражения для работы так:

Радиусы ВО и СО дуг окружностей, описываемых точками приложения сил и , являются перпендикулярами, опущенными из оси вращения на линии действия этих сил.

Кратчайшее расстояние от оси вращения до линии действия силы называют плечом силы .

Будем обозначать плечо силы буквой d . Тогда - плечо силы , а - плечо силы . При этом выражения (7.4) примут вид

Из формул (7.5) видно, что при заданном угле поворота тела (стержня) работа каждой приложенной к этому телу силы равна произведению модуля силы на плечо взятому со знаком «+» или «-». Это произведение будем называть моментом силы.
Моментом силы относительно оси вращения тела называется произведение модуля силы на ее плечо. Момент силы может быть положительным или отрицательным.
Момент силы обозначим буквой M :

Будем считать момент силы положительным , если она стремится повернуть тело против часовой стрелки, и отрицательным, если по часовой стрелке. Тогда момент силы равен M 1 =F 1 d 1 (см. рис. 7.4), а момент силы равен M 2 =-F 2 d 2 . Следовательно, выражения (7.5) для работы можно переписать в виде

а полную работу внешних сил выразить формулой:

Когда тело приходит в движение, его кинетическая энергия увеличивается. Для увеличения кинетической энергии внешние силы должны совершить работу. Согласно уравнению (7.7) ненулевая работа может быть совершена лишь в том случае, если суммарный момент внешних сил отличен от нуля. Если же суммарный момент внешних сил, действующих на тело, равен нулю, то работа не совершается и кинетическая энергия тела не увеличивается (остается равной нулю), следовательно, тело не приходит в движение. Равенство

и есть второе условие, необходимое для равновесия твердого тела.

При равновесии твердого тела сумма моментов всех внешних сил, действующих на него относительно любой оси, равна нулю.

Итак, в случае произвольного числа внешних сил условия равновесия абсолютно твердого тела следующие:

Если же тело не абсолютно твердое, то под действием приложенных к нему внешних сил оно может и не оставаться в равновесии, хотя сумма внешних сил и сумма их моментов относительно любой оси равна нулю. Это происходит потому, что под действием внешних сил тело может деформироваться и сумма всех сил, действующих на каждый его элемент, в этом случае не будет равна нулю.
Приложим, например, к концам резинового шнура две силы, равные по модулю и направленные вдоль шнура в противоположные стороны. Под действием этих сил шнур не будет находиться в равновесии (шнур растягивается), хотя сумма внешних сил равна нулю и нулю равна сумма их моментов относительно оси, проходящей через любую точку шнура.
Условия (7.9) являются необходимыми и достаточными для равновесия твердого тела. Если они выполняются, то твердое тело находится в равновесии, так как сумма сил, действующих на каждый элемент этого тела, равна нулю.

Домашнее задание

1. Е.В. Коршак, А.И. Ляшенко, В.Ф. Савченко. Физика. 10 класс, «Генеза», 2010. Читать §24, 25 (с.92-96).

2. Ответить на вопросы:

Что называется моментом силы?

Какие условия необходимы и достаточны для равновесия твердого тела?


Похожая информация.