Производная синуса 2 х. Производная синуса: (sin x)′. Как найти производную функции у = f(x)

ГЛАВА VIII.

ПРОПОРЦИОНАЛЬНОСТЬ ОТРЕЗКОВ. ПОДОБИЕ ФИГУР.

§ 93. ПОСТРОЕНИЕ ПОДОБНЫХ ФИГУР.

1. Построение подобных треугольников.

Мы уже знаем, что для построения треугольника, подобного данному, достаточно из какой-нибудь точки, взятой на стороне треугольника, провести прямую, параллельную стороне треугольника. Получим треугольник, подобный данному (черт. 382):

/\ AСВ /\ A"С"B"

2. Построение подобных многоугольников.

Для построения многоугольника, подобного данному, мы можем поступить таким образом: разобьём данный многоугольник диагоналями, проведёнными из какой-либо его вершины, на треугольники (черт. 383). На какой-нибудь стороне данного многоугольника ABCDE, например на стороне АЕ, возьмём какую-нибудь точку E" и проведём прямую, параллельную стороне ED, до пересечения её с диагональю AD, например, в точке D".

Из точки D" проведём прямую, параллельную стороне DC, до пересечения её с диагональю АС в точке С". Из точки С" проведём прямую, параллельную стороне СВ, до пересечения со стороной АВ в точке В". Полученный многоугольник AB"C"D"E" подобен данному многоугольнику ABCDE.

Справедливость этого утверждения доказать самостоятельно.

Если требуется построить многоугольник, подобный данному, с указанным коэффициентом подобия, то исходная точка Е" берётся на стороне АЕ или её продолжении соответственно данному коэффициенту подобия.

3. Съёмка плана земельного участка.

а) Съёмка плана производится с помощью особого прибора, называемого мензулой (черт. 384).

Мензула представляет собой квадратную доску, помещённую на треножнике. При вычерчивании плана доска приводится в горизонтальное положение, что проверяется с помощью уровня. Для проведения прямых линий по нужному направлению употребляется алидада, снабжённая диоптрами. В каждом диоптре имеется прорезь, в которой натянут волосок, что позволяет достаточно точно наводить алидаду в нужном направлении. На мензулу кнопками укрепляют лист белой бумаги, на котором и вычерчивается план.

Для того чтобы снять план с земельного участка ABCDE, выбирают внутри участка какую-нибудь точку О так, чтобы из неё были видны все вершины земельного участка (черт. 385).

С помощью вилки с отвесом (черт. 386) устанавливают мензулу так, чтобы точка О, отмеченная на листе бумаги, приходилась против избранной на участке точки О.

Затем из точки О на листе бумаги, прикреплённом к мензуле, прочерчивают при помощи алидады лучи в направлениях на точки А, В, С, D и Е; измеряют расстояния
ОА, ОВ, ОС, OD и ОЕ и откладывают на этих лучах в принятом масштабе отрезки
ОА", ОВ", ОС, OD" и ОЕ".

Точки А", В", С, D" и Е" соединяют. Получается многоугольник A"B"C"D"E", представляющий собой план данного земельного участка в принятом масштабе.

Описанный нами способ мензульной съёмки называется п о л я р н ы м.

Существуют и другие способы съёмки плана с помощью мензулы, о которых можно прочитать в специальных руководствах по мензульной съёмке.

На каждом плане обыкновенно даётся масштаб, по которому можно установить истинные размеры снятого участка, а также и его площадь.

На плане также указывается направление стран света.

Практическая работа.

а) Сделать в школьной мастерской простейшую модель мензулы и снять с её помощью план какого-нибудь небольшого земельного участка.

б) Съёмку плана земельного участка можно произвести с помощью астролябии.

Пусть надо снять план земельного участка ABCDE. Возьмём одну из вершин участка, например А, за исходную и с помощью астролябии измерим углы при вершине А, т. е.
/ 1, / 2, / 3 (черт. 387).

Потом с помощью мерной цепи измерим расстояния АЕ, AD, АС и АВ. В зависимости от размеров участка и размеров листа бумаги, на который наносится план, выбирается масштаб для вычерчивания плана.

При точке А, которую принимаем за вершину многоугольника, строим три угла, соответственно равные / 1, / 2 и / 3; затем в выбранном масштабе на сторонах этих углов от точки А" откладываем отрезки А"Е", A"D", А"С" и А"В". Соединив отрезками точки А" и Е", Е" и D", D" и С, С" и В", В" и А", получим многоугольник A"B"C"D"E", подобный многоугольнику ABCDE. Это будет план данного земельного участка, начерченный в избранном масштабе.

Во многих случаях бывает удобно строить не искомую фигуру, а начать с построения фигуры, ей подобной, после чего нетрудно перейти к требуемой. В этом случае данные для построения фигуры разделяются на два класса: одни дают возможность построить фигуру, подобную искомой, а другие служат для того, чтобы от этой фигуры перейти к требуемой. Этот прием особенно удобен в тех случаях, когда только одна из данных величин определяет какой-нибудь линейный элемент искомой фигуры, а все другие представляют собой углы или отношения сторон. Например, если для построения треугольника даны два угла или угол и отношение сторон, заключающих этот угол, или отношение трех сторон и, кроме того, один линейный элемент: сторона, высота, медиана, биссектриса, радиус вписанной или описанной окружности и т.д., то вначале, не обращая внимания на данный линейный элемент, строят фигуру, подобную искомой, а потом, вводя требуемую линию, переходят к искомой фигуре. Метод подобия успешно применяется при решении задач на вписывание одних фигур в другие.

Рассмотрим примеры.

ПРИМЕР 12. Построить треугольник по двум углам и медиане, проведенной из вершины третьего угла.

Анализ. Пусть треугольник АВС искомый (рис.22). Треугольники подобны, если два угла одного треугольника равны двум углам другого треугольника, в подобных треугольниках сходственные медианы пропорциональны. Построим произвольный треугольник МВК, два угла которого равны данным; он будет подобен искомому. В этом треугольнике проведем медиану из вершины третьего угла. Пусть ВТ – медиана. Тогда коэффициент подобия – отношение данной медианы к получившейся при построении треугольника МВК, подобного искомому.

Построение . Построим произвольный треугольник МВК, два угла которого равны данным; он будет подобен искомому. В этом треугольнике проведем медиану из вершины третьего угла. Пусть ВТ – медиана. На ВТ от точки В отложим отрезок, равный длине данной медианы – получим точку О. Через О проведем прямую параллельную l прямой МК. Пусть А – точка пересечения продолжения ВМ за точку М с прямой l , а С – точка пересечения продолжения ВК за точку К с прямой l . Треугольник АВС искомый.

Доказательство . Из построения следует, что треугольник МВК подобен треугольнику АВС. Значит, два угла А и В последнего равны заданным. Кроме того, медиана ВО имеет заданную длину, т.е. треугольник обладает всем заданным условиям.

Исследование . Задача всегда имеет решение и притом одно, если сумма заданных углов меньше 180 о.

ПРИМЕР 13 . В данный треугольник вписать квадрат так, чтобы две его вершины лежали на основании треугольника, а две другие – на сторонах треугольника.

Решение . Пусть АВС – данный треугольник (рис.24). Построим произвольный квадрат МКРН так, чтобы М и К лежали на АС, а Р лежала на АВ. Проведем луч АН. Пусть Т – точка пересечения этого луча со стороной ВС. Проведем отрезки ТЕ ║АС, ТХ ║РК, ЕО║ТХ. Четырехугольник ОЕТХ – искомый.

Доказательство . DАНМ¥DАТХ, значит ТХ^АС и . DАРН¥DАЕТ, значит ЕТ║РН и . Отсюда ЕТ=ТХ и ÐЕТХ=90 о. Аналогично показывается, что ЕТ=ЕО, т.е. ОЕТХ – квадрат.

Представлено доказательство и вывод формулы для производной синуса - sin(x). Примеры вычисления производных от sin 2x, синуса в квадрате и кубе. Вывод формулы для производной синуса n-го порядка.

Производная по переменной x от синуса x равна косинусу x:
(sin x)′ = cos x .

Доказательство

Для вывода формулы производной синуса, мы воспользуемся определением производной:
.

Чтобы найти этот предел, нам нужно преобразовать выражение таким образом, чтобы свести его к известным законам, свойствам и правилам. Для этого нам нужно знать четыре свойства.
1) Значение первого замечательного предела:
(1) ;
2) Непрерывность функции косинус:
(2) ;
3) Тригонометрические формулы . Нам понадобится следующая формула:
(3) ;
4) Свойство пределов:
Если и , то
(4) .

Применяем эти правила к нашему пределу. Сначала преобразуем алгебраическое выражение
.
Для этого применим формулу
(3) .
В нашем случае
; . Тогда
;
;
;
.

Теперь сделаем подстановку . При , . Применим первый замечательный предел (1):
.

Сделаем такую же подстановку и используем свойство непрерывности (2):
.

Поскольку пределы, вычисленные выше, существуют, то применяем свойство (4):

.

Формула производной синуса доказана.

Примеры

Рассмотрим простые примеры нахождения производных от функций, содержащих синус. Мы найдем производные от следующих функций:
y = sin 2x; y = sin 2 x и y = sin 3 x .

Пример 1

Найти производную от sin 2x .

Решение

Сначала найдем производную от самой простой части:
(2x)′ = 2(x)′ = 2 · 1 = 2.
Применяем .
.
Здесь .

Ответ

(sin 2x)′ = 2 cos 2x.

Пример 2

Найти производную от синуса в квадрате:
y = sin 2 x .

Решение

Перепишем исходную функцию в более понятном виде:
.
Найдем производную от самой простой части:
.
Применяем формулу производной сложной функции.

.
Здесь .

Можно применить одну из формул тригонометрии. Тогда
.

Ответ

Пример 3

Найти производную от синуса в кубе:
y = sin 3 x .

Производные высших порядков

Заметим, что производную от sin x первого порядка можно выразить через синус следующим образом:
.

Найдем производную второго порядка, используя формулу производной сложной функции :

.
Здесь .

Теперь мы можем заметить, что дифференцирование sin x приводит к увеличению его аргумента на . Тогда производная n-го порядка имеет вид:
(5) .

Докажем это, применяя метод математической индукции.

Мы уже проверили, что при , формула (5) справедлива.

Предположим, что формула (5) справедлива при некотором значении . Докажем, что из этого следует, что формула (5) выполняется для .

Выпишем формулу (5) при :
.
Дифференцируем это уравнение, применяя правило дифференцирования сложной функции:

.
Здесь .
Итак, мы нашли:
.
Если подставить , то эта формула примет вид (5).

Формула доказана.

Определение. Пусть функция \(y = f(x) \) определена в некотором интервале, содержащем внутри себя точку \(x_0 \). Дадим аргументу приращение \(\Delta x \) такое, чтобы не выйти из этого интервала. Найдем соответствующее приращение функции \(\Delta y \) (при переходе от точки \(x_0 \) к точке \(x_0 + \Delta x \)) и составим отношение \(\frac{\Delta y}{\Delta x} \). Если существует предел этого отношения при \(\Delta x \rightarrow 0 \), то указанный предел называют производной функции \(y=f(x) \) в точке \(x_0 \) и обозначают \(f"(x_0) \).

$$ \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = f"(x_0) $$

Для обозначения производной часто используют символ y". Отметим, что y" = f(x) - это новая функция, но, естественно, связанная с функцией y = f(x), определенная во всех точках x, в которых существует указанный выше предел. Эту функцию называют так: производная функции у = f(x) .

Геометрический смысл производной состоит в следующем. Если к графику функции у = f(x) в точке с абсциссой х=a можно провести касательную, непараллельную оси y, то f(a) выражает угловой коэффициент касательной:
\(k = f"(a) \)

Поскольку \(k = tg(a) \), то верно равенство \(f"(a) = tg(a) \) .

А теперь истолкуем определение производной с точки зрения приближенных равенств. Пусть функция \(y = f(x) \) имеет производную в конкретной точке \(x \):
$$ \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = f"(x) $$
Это означает, что около точки х выполняется приближенное равенство \(\frac{\Delta y}{\Delta x} \approx f"(x) \), т.е. \(\Delta y \approx f"(x) \cdot \Delta x \). Содержательный смысл полученного приближенного равенства заключается в следующем: приращение функции «почти пропорционально» приращению аргумента, причем коэффициентом пропорциональности является значение производной в заданной точке х. Например, для функции \(y = x^2 \) справедливо приближенное равенство \(\Delta y \approx 2x \cdot \Delta x \). Если внимательно проанализировать определение производной, то мы обнаружим, что в нем заложен алгоритм ее нахождения.

Сформулируем его.

Как найти производную функции у = f(x) ?

1. Зафиксировать значение \(x \), найти \(f(x) \)
2. Дать аргументу \(x \) приращение \(\Delta x \), перейти в новую точку \(x+ \Delta x \), найти \(f(x+ \Delta x) \)
3. Найти приращение функции: \(\Delta y = f(x + \Delta x) - f(x) \)
4. Составить отношение \(\frac{\Delta y}{\Delta x} \)
5. Вычислить $$ \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} $$
Этот предел и есть производная функции в точке x.

Если функция у = f(x) имеет производную в точке х, то ее называют дифференцируемой в точке х. Процедуру нахождения производной функции у = f(x) называют дифференцированием функции у = f(x).

Обсудим такой вопрос: как связаны между собой непрерывность и дифференцируемость функции в точке.

Пусть функция у = f(x) дифференцируема в точке х. Тогда к графику функции в точке М(х; f(x)) можно провести касательную, причем, напомним, угловой коэффициент касательной равен f"(x). Такой график не может «разрываться» в точке М, т. е. функция обязана быть непрерывной в точке х.

Это были рассуждения «на пальцах». Приведем более строгое рассуждение. Если функция у = f(x) дифференцируема в точке х, то выполняется приближенное равенство \(\Delta y \approx f"(x) \cdot \Delta x \). Если в этом равенстве \(\Delta x \) устремить к нулю, то и \(\Delta y \) будет стремиться к нулю, а это и есть условие непрерывности функции в точке.

Итак, если функция дифференцируема в точке х, то она и непрерывна в этой точке .

Обратное утверждение неверно. Например: функция у = |х| непрерывна везде, в частности в точке х = 0, но касательная к графику функции в «точке стыка» (0; 0) не существует. Если в некоторой точке к графику функции нельзя провести касательную, то в этой точке не существует производная.

Еще один пример. Функция \(y=\sqrt{x} \) непрерывна на всей числовой прямой, в том числе в точке х = 0. И касательная к графику функции существует в любой точке, в том числе в точке х = 0. Но в этой точке касательная совпадает с осью у, т. е. перпендикулярна оси абсцисс, ее уравнение имеет вид х = 0. Углового коэффициента у такой прямой нет, значит, не существует и \(f"(0) \)

Итак, мы познакомились с новым свойством функции - дифференцируемостью. А как по графику функции можно сделать вывод о ее дифференцируемости?

Ответ фактически получен выше. Если в некоторой точке к графику функции можно провести касательную, не перпендикулярную оси абсцисс, то в этой точке функция дифференцируема. Если в некоторой точке касательная к графику функции не существует или она перпендикулярна оси абсцисс, то в этой точке функция не дифференцируема.

Правила дифференцирования

Операция нахождения производной называется дифференцированием . При выполнении этой операции часто приходится работать с частными, суммами, произведениями функций, а также с «функциями функций», то есть сложными функциями. Исходя из определения производной, можно вывести правила дифференцирования, облегчающие эту работу. Если C - постоянное число и f=f(x), g=g(x) - некоторые дифференцируемые функции, то справедливы следующие правила дифференцирования :

$$ C"=0 $$ $$ x"=1 $$ $$ (f+g)"=f"+g" $$ $$ (fg)"=f"g + fg" $$ $$ (Cf)"=Cf" $$ $$ \left(\frac{f}{g} \right) " = \frac{f"g-fg"}{g^2} $$ $$ \left(\frac{C}{g} \right) " = -\frac{Cg"}{g^2} $$ Производная сложной функции:
$$ f"_x(g(x)) = f"_g \cdot g"_x $$

Таблица производных некоторых функций

$$ \left(\frac{1}{x} \right) " = -\frac{1}{x^2} $$ $$ (\sqrt{x}) " = \frac{1}{2\sqrt{x}} $$ $$ \left(x^a \right) " = a x^{a-1} $$ $$ \left(a^x \right) " = a^x \cdot \ln a $$ $$ \left(e^x \right) " = e^x $$ $$ (\ln x)" = \frac{1}{x} $$ $$ (\log_a x)" = \frac{1}{x\ln a} $$ $$ (\sin x)" = \cos x $$ $$ (\cos x)" = -\sin x $$ $$ (\text{tg} x)" = \frac{1}{\cos^2 x} $$ $$ (\text{ctg} x)" = -\frac{1}{\sin^2 x} $$ $$ (\arcsin x)" = \frac{1}{\sqrt{1-x^2}} $$ $$ (\arccos x)" = \frac{-1}{\sqrt{1-x^2}} $$ $$ (\text{arctg} x)" = \frac{1}{1+x^2} $$ $$ (\text{arcctg} x)" = \frac{-1}{1+x^2} $$

На этом занятии мы будем учиться применять формулы и правила дифференцирования.

Примеры. Найти производные функций.

1. y=x 7 +x 5 -x 4 +x 3 -x 2 +x-9. Применяем правило I , формулы 4, 2 и 1 . Получаем:

y’=7x 6 +5x 4 -4x 3 +3x 2 -2x+1.

2. y=3x 6 -2x+5. Решаем аналогично, используя те же формулы и формулу 3.

y’=3∙6x 5 -2=18x 5 -2.

Применяем правило I , формулы 3, 5 и 6 и 1.

Применяем правило IV , формулы 5 и 1 .

В пятом примере по правилу I производная суммы равна сумме производных, а производную 1-го слагаемого мы только что находили (пример 4 ), поэтому, будем находить производные 2-го и 3-го слагаемых, а для 1-го слагаемого можем сразу писать результат.

Дифференцируем 2-ое и 3-е слагаемые по формуле 4 . Для этого преобразуем корни третьей и четвертой степеней в знаменателях к степеням с отрицательными показателями, а затем, по 4 формуле, находим производные степеней.

Посмотрите на данный пример и полученный результат. Уловили закономерность? Хорошо. Это означает, что мы получили новую формулу и можем добавить ее в нашу таблицу производных.

Решим шестой пример и выведем еще одну формулу.

Используем правило IV и формулу 4 . Получившиеся дроби сократим.

Смотрим на данную функцию и на ее производную. Вы, конечно, поняли закономерность и готовы назвать формулу:

Учим новые формулы!

Примеры.

1. Найти приращение аргумента и приращение функции y=x 2 , если начальное значение аргумента было равно 4 , а новое -4,01 .

Решение.

Новое значение аргумента х=х 0 +Δx . Подставим данные: 4,01=4+Δх, отсюда приращение аргумента Δх =4,01-4=0,01. Приращение функции, по определению, равно разности между новым и прежним значениями функции, т.е. Δy=f (х 0 +Δх) - f (x 0). Так как у нас функция y=x 2 , то Δу =(х 0 +Δx) 2 — (х 0) 2 =(х 0) 2 +2x 0 · Δx+(Δx) 2 — (х 0) 2 =2x 0 · Δx+(Δx) 2 =

2 · 4 · 0,01+(0,01) 2 =0,08+0,0001=0,0801.

Ответ: приращение аргумента Δх =0,01; приращение функции Δу =0,0801.

Можно было приращение функции найти по-другому: Δy =y (х 0 +Δx) -y (х 0)=у(4,01) -у(4)=4,01 2 -4 2 =16,0801-16=0,0801.

2. Найти угол наклона касательной к графику функции y=f (x) в точке х 0 , если f "(х 0) = 1 .

Решение.

Значение производной в точке касания х 0 и есть значение тангенса угла наклона касательной (геометрический смысл производной). Имеем: f "(х 0) = tgα = 1 → α = 45°, так как tg45°=1.

Ответ: касательная к графику данной функции образует с положительным направлением оси Ох угол, равный 45° .

3. Вывести формулу производной функции y=x n .

Дифференцирование — это действие нахождения производной функции.

При нахождении производных применяют формулы, которые были выведены на основании определения производной, так же, как мы вывели формулу производной степени: (x n)" = nx n-1 .

Вот эти формулы.

Таблицу производных легче будет заучить, проговаривая словесные формулировки:

1. Производная постоянной величины равна нулю.

2. Икс штрих равен единице.

3. Постоянный множитель можно вынести за знак производной.

4. Производная степени равна произведению показателя этой степени на степень с тем же основанием, но показателем на единицу меньше.

5. Производная корня равна единице, деленной на два таких же корня.

6. Производная единицы, деленной на икс равна минус единице, деленной на икс в квадрате.

7. Производная синуса равна косинусу.

8. Производная косинуса равна минус синусу.

9. Производная тангенса равна единице, деленной на квадрат косинуса.

10. Производная котангенса равна минус единице, деленной на квадрат синуса.

Учим правила дифференцирования .

1. Производная алгебраической суммы равна алгебраической сумме производных слагаемых.

2. Производная произведения равна произведению производной первого множителя на второй плюс произведение первого множителя на производную второго.

3. Производная «у», деленного на «вэ» равна дроби, в числителе которой "у штрих умноженный на «вэ» минус «у, умноженный на вэ штрих», а в знаменателе — «вэ в квадрате».

4. Частный случай формулы 3.

Учим вместе!

Страница 1 из 1 1