Предел варианты. Значение слова «предел. Критерий Коши существования предела функции

Продолжаем разбирать готовые ответы по теории пределов и сегодня остановимся только на случае, когда переменная в функции или номер в последовательности стремится к бесконечности. Инструкция по вычислению предела при переменной стремящейся к бесконечности приведена ранее, здесь только остановимся на отдельных случаях, которые не являются всем очевидными и простыми.

Пример 35. Имеем последовательность в виде дроби, где в числителе и знаменателе находятся корневые функции.
Нужно найти предел при номере стремящемся к бесконечности.
Здесь раскрывать иррациональности в числителе не нужно, а только внимательно проанализировать корни и найти где содержится более высокая степень номера.
В первом корни числителя имеем множителем n^4 , то есть n^2 можем вынести за скобки.
Тоже самое проделаем со знаменателем.
Далее оцениваем значение подкоренных выражений при предельном переходе.

Получили деления на ноль, что является неправильно в школьном курсе, но в предельном переходе это допустимо.
Только с поправкой, "чтобы оценить куда стремится функция".
Поэтому приведенную запись не все преподаватели могут трактовать правильной, хотя и понимают, что результирующий преде от этого не изменится.
Давайте рассмотрим ответ, составленный по требованиям преподавателей согласно теорией.
Для упрощения оценим только главные доданки под корнем

Далее в числителе степень равен 2, в знаменателе 2/3 , следовательно числитель быстрее растет, а значит предел стремится к бесконечности.
Его знак зависит от множителей при n^2, n^(2/3) , поэтому он положительный.

Пример 36. Рассмотрим пример предела на деление показательных функций. Таких примеров на практических рассматривается мало, поэтому не все студенты с легкостью видят, как раскрывать неопределенности, что возникают.
Максимальный множитель для числителя и знаменателя равен 8^n , на него и упрощаем

Далее оцениваем вклад каждого слагаемого
Слагаемые 3/8 стремятся к нулю при переменной направляюейся к бесконечности, поскольку 3/8<1 (свойство степенно-показательной функции).

Пример 37. Предел последовательности с факториалами раскрывается розписанням факториала к наибольшему общему множителю для числителя и знаменателя.
Далее на него сокращаем и оцениваем лимит по значению показателей номера в числителе и знаменателе.
В нашем примере знаменатель быстрее растет, поэтому предел равен нулю.


Здесь использована следующее

свойство факториала.

Пример 38. Не применяя правила Лопиталя сравниваем максимальные показатели переменной в числителе и знаменателе дроби.
Так как знаменатель содержит старший показатель переменной 4>2 то и растет он быстрее.
Отсюда делаем вывод, что предел функции стремится к нулю.

Пример 39. Раскрываем особенность вида бесконечность разделить на бесконечность методом вынесения x^4 с числителя и знаменателя дроби.
В результате предельного перехода получим бесконечность.

Пример 40. Имеем деление полиномов, нужно определить предел при переменной стремящейся к бесконечности.
Старший степень переменной в числителе и знаменателе равен 3, это значит что граница существует и равна сталой.
Вынесем x^3 и выполним предельный переход

Пример 41. Имеем особенность типа единица в степени бесконечность.
А это значит, что выражение в скобках и сам показатель надо свести под вторую важную границу.
Распишем числитель, чтобы выделить в нем выражение идентичное знаменателе.
Далее переходим к выражению, содержащем единицу плюс слагаемое.
В степени нужно выделить множителем 1/(слагаемое).
Таким образом получим экспоненту в степени предела дробной функции.

Для раскрития особенности использовали второй предел:

Пример 42. Имеем особенность типа единица в степени бесконечность.
Для ее раскрытия следует свести функцию под второй замечатеьный предел.
Как это сделать подробно показано в приведенной далее формуле


Подобных задач Вы можете найти очень много. Их суть в том, чтобы в показателе получить нужный степень, а он равен обратному значению слагаемого в скобках при единицы.
Таким методом получаем экспоненту. Дальнейшее вычисление сводится к вичислению предела степени экспоненты.

Здесь экспоненциальная функция стремится к бесконечности , поскольку значение больше единицы e=2.72>1.

Пример 43 В знаменателе дроби имеем неопределенность типа бесконечность минус бесконечность, фактически равное делению на ноль.
Чтобы избавиться корня домножим на сопряженное выражение, а дальше по формуле разности квадратов перепишем знаменатель.
Получим неопределенность бесконечность разделить на бесконечность, поэтому выносим переменную в наибольшей степени и сокращаем на нее.
Далее оцениваем вклад каждого слагаемого и находим предел функции на бесконечности

Призрак «минус бесконечности» уже давно витал в этой статье. Рассмотрим пределы с многочленами, в которых . Принципы и методы решения будут точно такими же, что и в первой части урока, за исключением ряда нюансов.

Рассмотрим 4 фишки, которые потребуются для решения практических заданий:

1) Вычислим предел

Значение предела зависит только от слагаемого , поскольку оно обладает самым высоким порядком роста. Если , то бесконечно большое по модулю отрицательное число в ЧЁТНОЙ степени , в данном случае – в четвёртой, равно «плюс бесконечности»: . Константа («двойка») положительна , поэтому:

2) Вычислим предел

Здесь старшая степень опять чётная , поэтому: . Но перед расположился «минус» (отрицательная константа –1), следовательно:

3) Вычислим предел

Значение предела зависит только от . Как вы помните из школы, «минус» «выскакивает» из-под нечётной степени, поэтому бесконечно большое по модулю отрицательное число в НЕЧЁТНОЙ степени равно «минус бесконечности», в данном случае: .
Константа («четвёрка») положительна , значит:

4) Вычислим предел

Первый парень на деревне снова обладает нечётной степенью, кроме того, за пазухойотрицательная константа, а значит: Таким образом:
.

Пример 5

Найти предел

Используя вышеизложенные пункты, приходим к выводу, что здесь неопределённость . Числитель и знаменатель одного порядка роста, значит, в пределе получится конечное число. Узнаем ответ, отбросив всех мальков:

Решение тривиально:

Пример 6

Найти предел

Это пример для самостоятельного решения. Полное решение и ответ в конце урока.

А сейчас, пожалуй, самый тонкий из случаев:

Пример 7

Найти предел

Рассматривая старшие слагаемые, приходим к выводу, что здесь неопределённость . Числитель более высокого порядка роста, чем знаменатель, поэтому сразу можно сказать, что предел равен бесконечности. Но какой бесконечности, «плюс» или «минус»? Приём тот же – в числителе и знаменателе избавимся от мелочи:

Решаем:



Разделим числитель и знаменатель на

Проанализируем бесконечно малые слагаемые знаменателя:

Если , то слагаемые с чётными степенями будут стремиться к бесконечно малым положительным числам (обозначаются через ), а слагаемые с нечётными степенями будут стремиться к бесконечно малым отрицательным числам (обозначаются через ).

Теперь зададимся вопросом, какое из этих четырёх слагаемых будет стремиться к нулю (неважно с каким знаком) медленнее всего ? Вспомним наивный приём: сначала «икс» равно –10, потом –100, затем –1000 и т.д. Медленнее всего к нулю будет приближаться слагаемое . Образно говоря, это самый «жирный» ноль, который «поглощает» все остальные нули. По этой причине на завершающем этапе и появилась запись .

Следует отметить, что знаки бесконечно малых слагаемых числителя нас не интересуют, поскольку там нарисовалась осязаемая добротная единичка. Поэтому в числителе я поставил «просто нули». К слову, знаки при нулях не имеют значения и во всех примерах, где в пределе получается конечное число (Примеры №№5,6).

Без измен, на то он и математический анализ, чтобы анализировать =)

Впрочем, о бесконечно малых функциях позже, а то вы нажмёте маленький крестик справа вверху =)

Пример 8

Найти предел

Это пример для самостоятельного решения.

Предел функции - число a будет пределом некоторой изменяемой величины, если в процессе своего изменения эта переменная величина неограниченно приближается к a .

Или другими словами, число A является пределом функции y = f (x) в точке x 0 , если для всякой последовательности точек из области определения функции , не равных x 0 , и которая сходится к точке x 0 (lim x n = x0) , последовательность соответствующих значений функции сходится к числу A .

График функции, предел которой при аргументе, который стремится к бесконечности, равен L :

Значение А является пределом (предельным значением) функции f (x) в точке x 0 в случае, если для всякой последовательности точек , которая сходится к x 0 , но которая не содержит x 0 как один из своих элементов (т.е. в проколотой окрестности x 0 ), последовательность значений функции сходится к A .

Предел функции по Коши.

Значение A будет являться пределом функции f (x) в точке x 0 в случае, если для всякого вперёд взятого неотрицательного числа ε будет найдено соответствующее ему неотрицательно число δ = δ(ε) такое, что для каждого аргумента x , удовлетворяющего условию 0 < | x - x0 | < δ , будет выполнено неравенство | f (x) A | < ε .

Будет очень просто, если вы понимаете суть предела и основные правила нахождения его. То, что предел функции f (x) при x стремящемся к a равен A , записывается таким образом:

Причем значение, к которому стремится переменная x , может быть не только числом, но и бесконечностью (∞), иногда +∞ или -∞, либо предела может вообще не быть.

Чтоб понять, как находить пределы функции , лучше всего посмотреть примеры решения.

Необходимо найти пределы функции f (x) = 1/ x при:

x → 2, x → 0, x ∞.

Найдем решение первого предела. Для этого можно просто подставить вместо x число, к которому оно стремится, т.е. 2, получим:

Найдем второй предел функции . Здесь подставлять в чистом виде 0 вместо x нельзя, т.к. делить на 0 нельзя. Но мы можем брать значения, приближенные к нулю, к примеру, 0,01; 0,001; 0,0001; 0,00001 и так далее, причем значение функции f (x) будет увеличиваться: 100; 1000; 10000; 100000 и так далее. Т.о., можно понять, что при x → 0 значение функции, которая стоит под знаком предела, будет неограниченно возрастать, т.е. стремиться к бесконечности. А значит:

Касаемо третьего предела. Такая же ситуация, как и в прошлом случае, невозможно подставить в чистом виде. Нужно рассмотреть случай неограниченного возрастания x . Поочередно подставляем 1000; 10000; 100000 и так далее, имеем, что значение функции f (x) = 1/ x будет убывать: 0,001; 0,0001; 0,00001; и так далее, стремясь к нулю. Поэтому:

Необходимо вычислить предел функции

Приступая к решению второго примера, видим неопределенность . Отсюда находим старшую степень числителя и знаменателя - это x 3 , выносим в числителе и знаменателе его за скобки и далее сокращаем на него:

Ответ

Первым шагом в нахождении этого предела , подставим значение 1 вместо x , в результате чего имеем неопределенность . Для её решения разложим числитель на множители , сделаем это методом нахождения корней квадратного уравнения x 2 + 2 x - 3 :

D = 2 2 - 4*1*(-3) = 4 +12 = 16 D = √16 = 4

x 1,2 = (-2 ± 4) / 2 x 1 = -3; x 2 = 1.

Таким образом, числитель будет таким:

Ответ

Это определение его конкретного значения или определенной области, куда попадает функция, которая ограничена пределом.

Чтобы решить пределы, следуйте правилам:

Разобравшись в сути и основных правилах решения предела , вы получите базовое понятие о том, как их решать.

Постоянное число а называется пределом последовательности {x n }, если для любого сколь угодно малого положительного числа ε > 0 существует номер N, что все значения x n , у которых n>N, удовлетворяют неравенству

|x n - a| < ε. (6.1)

Записывают это следующим образом: или x n → a.

Неравенство (6.1) равносильно двойному неравенству

a- ε < x n < a + ε, (6.2)

которое означает, что точки x n , начиная с некоторого номера n>N, лежат внутри интервала (a- ε, a+ ε), т.е. попадают в какую угодно малую ε-окрестность точки а .

Последовательность, имеющая предел, называется сходящейся , в противном случае - расходящейся .

Понятие предел функции является обобщением понятия предел последовательности, так как предел последовательности можно рассматривать как предел функции x n = f(n) целочисленного аргумента n .

Пусть дана функция f(x) и пусть a - предельная точка области определения этой функции D(f), т.е. такая точка, любая окрестность которой содержит точки множества D(f), отличные от a . Точка a может принадлежать множеству D(f), а может и не принадлежать ему.

Определение 1. Постоянное число А называется предел функции f(x) при x→ a, если для всякой последовательности {x n } значений аргумента, стремящейся к а , соответствующие им последовательности {f(x n)} имеют один и тот же предел А.

Это определение называют определением предел функции по Гейне, или “на языке последовательностей ”.

Определение 2 . Постоянное число А называется предел функции f(x) при x→ a, если, задав произвольное как угодно малое положительное число ε , можно найти такое δ >0 (зависящее от ε ), что для всех x , лежащих в ε-окрестности числа а , т.е. для x , удовлетворяющих неравенству
0 <
x-a < ε , значения функции f(x) будут лежать в ε-окрестности числа А, т.е. |f(x)-A| < ε.

Это определение называют определением предел функции по Коши, или “на языке ε - δ “.

Определения 1 и 2 равносильны. Если функция f(x) при x → a имеет предел , равный А, это записывается в виде

. (6.3)

В том случае, если последовательность {f(x n)} неограниченно возрастает (или убывает) при любом способе приближения x к своему пределу а , то будем говорить, что функция f(x) имеет бесконечный предел, и записывать это в виде:

Переменная величина (т.е. последовательность или функция), предел которой равен нулю, называется бесконечно малой величиной.

Переменная величина, предел которой равен бесконечности, называется бесконечно большой величиной .

Чтобы найти предел на практике пользуются следующими теоремами.

Теорема 1 . Если существует каждый предел

(6.4)

(6.5)

(6.6)

Замечание . Выражения вида 0/0, ∞/∞, ∞-∞ , 0*∞ , - являются неопределенными, например, отношение двух бесконечно малых или бесконечно больших величин, и найти предел такого вида носит название “раскрытие неопределенностей”.

Теорема 2. (6.7)

т.е. можно переходить к пределу в основании степени при постоянном показателе, в частности, ;

(6.8)

(6.9)

Теорема 3.

(6.10)

(6.11)

где e » 2.7 - основание натурального логарифма. Формулы (6.10) и (6.11) носят название первый замечательного предело и второй замечательный предел.

Используются на практике и следствия формулы (6.11):

(6.12)

(6.13)

(6.14)

в частности предел,

Eсли x → a и при этом x > a, то пишут x →a + 0. Если, в частности, a = 0, то вместо символа 0+0 пишут +0. Аналогично если x→ a и при этом xa-0. Числа и называются соответственно предел справа и предел слева функции f(x) в точке а . Чтобы существовал предел функции f(x) при x→ a необходимо и достаточно, чтобы . Функция f(x) называется непрерывной в точке x 0 , если предел

. (6.15)

Условие (6.15) можно переписать в виде:

,

то есть возможен предельный переход под знаком функции, если она непрерывна в данной точке.

Если равенство (6.15) нарушено, то говорят, что при x = x o функция f(x) имеет разрыв. Рассмотрим функцию y = 1/x. Областью определения этой функции является множество R , кроме x = 0. Точка x = 0 является предельной точкой множества D(f), поскольку в любой ее окрестности, т.е. в любом открытом интервале, содержащем точку 0, есть точки из D(f), но она сама не принадлежит этому множеству. Значение f(x o)= f(0) не определено, поэтому в точке x o = 0 функция имеет разрыв.

Функция f(x) называется непрерывной справа в точке x o , если предел

,

и непрерывной слева в точке x o, если предел

.

Непрерывность функции в точке x o равносильна ее непрерывности в этой точке одновременно и справа и слева.

Для того, чтобы функция была непрерывна в точке x o , например, справа, необходимо, во-первых, чтобы существовал конечный предел , а во-вторых, чтобы этот предел был равен f(x o). Следовательно, если хотя бы одно из этих двух условий не выполняется, то функция будет иметь разрыв.

1. Если предел существует и не равен f(x o), то говорят, что функция f(x) в точке x o имеет разрыв первого рода, или скачок .

2. Если предел равен +∞ или -∞ или не существует, то говорят, что в точке x o функция имеет разрыв второго рода .

Например, функция y = ctg x при x → +0 имеет предел, равный +∞ , значит, в точке x=0 она имеет разрыв второго рода. Функция y = E(x) (целая часть от x ) в точках с целыми абсциссами имеет разрывы первого рода, или скачки.

Функция, непрерывная в каждой точке промежутка , называется непрерывной в . Непрерывная функция изображается сплошной кривой.

Ко второму замечательному пределу приводят многие задачи, связанные с непрерывным ростом какой-либо величины. К таким задачам, например, относятся: рост вклада по закону сложных процентов, рост населения страны, распад радиоактивного вещества, размножение бактерий и т.п.

Рассмотрим пример Я. И. Перельмана , дающий интерпретацию числа e в задаче о сложных процентах. Число e есть предел . В сбербанках процентные деньги присоединяются к основному капиталу ежегодно. Если присоединение совершается чаще, то капитал растет быстрее, так как в образовании процентов участвует большая сумма. Возьмем чисто теоретический, весьма упрощенный пример. Пусть в банк положено 100 ден. ед. из расчета 100 % годовых. Если процентные деньги будут присоединены к основному капиталу лишь по истечении года, то к этому сроку 100 ден. ед. превратятся в 200 ден.ед. Посмотрим теперь, во что превратятся 100 ден. ед., если процентные деньги присоединять к основному капиталу каждые полгода. По истечении полугодия 100 ден. ед. вырастут в 100 × 1,5 = 150, а еще через полгода - в 150 × 1,5 = 225 (ден. ед.). Если присоединение делать каждые 1/3 года, то по истечении года 100 ден. ед. превратятся в 100 × (1 +1/3) 3 » 237 (ден. ед.). Будем учащать сроки присоединения процентных денег до 0,1 года, до 0,01 года, до 0,001 года и т.д. Тогда из 100 ден. ед. спустя год получится:

100 × (1 +1/10) 10 » 259 (ден. ед.),

100 × (1+1/100) 100 » 270 (ден. ед.),

100 × (1+1/1000) 1000 » 271 (ден. ед.).

При безграничном сокращении сроков присоединения процентов наращенный капитал не растет беспредельно, а приближается к некоторому пределу, равному приблизительно 271. Более чем в 2,71 раз капитал, положенный под 100% годовых, увеличиться не может, даже если бы наросшие проценты присоединялись к капиталу каждую секунду, потому что предел

Пример 3.1. Пользуясь определением предела числовой последовательности, доказать, что последовательность x n =(n-1)/n имеет предел, равный 1.

Решение. Нам надо доказать, что, какое бы ε > 0 мы ни взяли, для него найдется натуральное число N, такое, что для всех n N имеет место неравенство |x n -1| < ε.

Возьмем любое e > 0. Так как ; x n -1 =(n+1)/n - 1= 1/n, то для отыскания N достаточно решить неравенство 1/n< e . Отсюда n>1/ e и, следовательно, за N можно принять целую часть от 1/ e , N = E(1/ e ). Мы тем самым доказали, что предел .

Пример 3 .2 . Найти предел последовательности, заданной общим членом .

Решение. Применим теорему предел суммы и найдем предел каждого слагаемого. При n ∞ числитель и знаменатель каждого слагаемого стремится к бесконечности, и мы не можем непосредственно применить теорему предел частного. Поэтому сначала преобразуем x n , разделив числитель и знаменатель первого слагаемого на n 2 , а второго на n . Затем, применяя теорему предел частного и предел суммы, найдем:

.

Пример 3.3 . . Найти .

Решение. .

Здесь мы воспользовались теоремой о пределе степени: предел степени равен степени от предела основания.

Пример 3 .4 . Найти ().

Решение. Применять теорему предел разности нельзя, поскольку имеем неопределенность вида ∞-∞ . Преобразуем формулу общего члена:

.

Пример 3 .5 . Дана функция f(x)=2 1/x . Доказать, что предел не существует.

Решение. Воспользуемся определением 1 предела функции через последовательность. Возьмем последовательность { x n }, сходящуюся к 0, т.е. Покажем, что величина f(x n)= для разных последовательностей ведет себя по-разному. Пусть x n = 1/n. Очевидно, что , тогда предел Выберем теперь в качестве x n последовательность с общим членом x n = -1/n, также стремящуюся к нулю. Поэтому предел не существует.

Пример 3 .6 . Доказать, что предел не существует.

Решение. Пусть x 1 , x 2 ,..., x n ,... - последовательность, для которой
. Как ведет себя последовательность {f(x n)} = {sin x n } при различных x n → ∞

Если x n = p n, то sin x n = sin p n = 0 при всех n и предел Если же
x n =2
p n+ p /2, то sin x n = sin(2 p n+ p /2) = sin p /2 = 1 для всех n и следовательно предел . Таким образом, не существует.

Виджет для вычисления пределов on-line

В верхнем окошке вместо sin(x)/x введите функцию, предел которой надо найти. В нижнее окошко введите число, к которому стремится х и нажмите кнопку Calcular, получите искомый предел. А если в окне результата нажмете на Show steps в правом верхнем углу, то получите подробное решение.

Правила ввода функций: sqrt(x)- квадратный корень, cbrt(x) - кубический корень, exp(x) - экспонента, ln(x) - натуральный логарифм, sin(x) - синус, cos(x) - косинус, tan(x) - тангенс, cot(x) - котангенс, arcsin(x) - арксинус, arccos(x) - арккосинус, arctan(x) - арктангенс. Знаки: * умножения, / деления, ^ возведение в степень, вместо бесконечности Infinity. Пример: функция вводится так sqrt(tan(x/2)).

Теория пределов – это один из разделов математического анализа. Вопрос решения пределов является достаточно обширным, поскольку существуют десятки приемов решений пределов различных видов. Существуют десятки нюансов и хитростей, позволяющих решить тот или иной предел. Тем не менее, мы все-таки попробуем разобраться в основных типах пределов, которые наиболее часто встречаются на практике.

Начнем с самого понятия предела. Но сначала краткая историческая справка. Жил-был в 19 веке француз Огюстен Луи Коши, который дал строгие определения многим понятиям матана и заложил его основы. Надо сказать, этот уважаемый математик снился, снится и будет сниться в кошмарных снах всем студентам физико-математических факультетов, так как доказал огромное количество теорем математического анализа, причём одна теорема убойнее другой. В этой связи мы пока не будем рассматривать определение предела по Коши , а попытаемся сделать две вещи:

1. Понять, что такое предел.
2. Научиться решать основные типы пределов.

Прошу прощения за некоторую ненаучность объяснений, важно чтобы материал был понятен даже чайнику, что, собственно, и является задачей проекта.

Итак, что же такое предел?

А сразу пример, чего бабушку лохматить….

Любой предел состоит из трех частей :

1) Всем известного значка предела .
2) Записи под значком предела, в данном случае . Запись читается «икс стремится к единице». Чаще всего – именно , хотя вместо «икса» на практике встречаются и другие переменные. В практических заданиях на месте единицы может находиться совершенно любое число, а также бесконечность ().
3) Функции под знаком предела, в данном случае .

Сама запись читается так: «предел функции при икс стремящемся к единице».

Разберем следующий важный вопрос – а что значит выражение «икс стремится к единице»? И что вообще такое «стремится»?
Понятие предела – это понятие, если так можно сказать, динамическое . Построим последовательность: сначала , затем , , …, , ….
То есть выражение «икс стремится к единице» следует понимать так – «икс» последовательно принимает значения, которые бесконечно близко приближаются к единице и практически с ней совпадают .

Как решить вышерассмотренный пример? Исходя из вышесказанного, нужно просто подставить единицу в функцию, стоящую под знаком предела:

Итак, первое правило: Когда дан любой предел, сначала просто пытаемся подставить число в функцию .

Мы рассмотрели простейший предел, но и такие встречаются на практике, причем, не так уж редко!

Пример с бесконечностью:

Разбираемся, что такое ? Это тот случай, когда неограниченно возрастает, то есть: сначала , потом , потом , затем и так далее до бесконечности.

А что в это время происходит с функцией ?
, , , …

Итак: если , то функция стремится к минус бесконечности :

Грубо говоря, согласно нашему первому правилу, мы вместо «икса» подставляем в функцию бесконечность и получаем ответ .

Еще один пример с бесконечностью:

Опять начинаем увеличивать до бесконечности и смотрим на поведение функции:

Вывод: при функция неограниченно возрастает :

И еще серия примеров:

Пожалуйста, попытайтесь самостоятельно мысленно проанализировать нижеследующее и запомните простейшие виды пределов:

, , , , , , , , ,
Если где-нибудь есть сомнения, то можете взять в руки калькулятор и немного потренироваться.
В том случае, если , попробуйте построить последовательность , , . Если , то , , .

! Примечание : строго говоря, такой подход с построением последовательностей из нескольких чисел некорректен, но для понимания простейших примеров вполне подойдет.

Также обратите внимание на следующую вещь. Даже если дан предел с большим числом вверху, да хоть с миллионом: , то все равно , так как рано или поздно «икс» начнёт принимать такие гигантские значения, что миллион по сравнению с ними будет самым настоящим микробом .

Что нужно запомнить и понять из вышесказанного?

1) Когда дан любой предел, сначала просто пытаемся подставить число в функцию.

2) Вы должны понимать и сразу решать простейшие пределы, такие как , , и т.д.

Более того, у предела есть очень хороший геометрический смысл. Для лучшего понимания темы рекомендую ознакомиться с методическим материалом Графики и свойства элементарных функций . После прочтения этой статьи вы не только окончательно поймете, что такое предел, но и познакомитесь с интересными случаями, когда предела функции вообще не существует !

На практике, к сожалению, подарков немного. А поэтому переходим к рассмотрению более сложных пределов. Кстати, по этой теме есть интенсивный курс в pdf-формате, который особенно полезен, если у Вас ОЧЕНЬ мало времени на подготовку. Но материалы сайта, разумеется, не хуже:


Сейчас мы рассмотрим группу пределов, когда , а функция представляет собой дробь, в числителе и знаменателе которой находятся многочлены

Пример:

Вычислить предел

Согласно нашему правилу попытаемся подставить бесконечность в функцию. Что у нас получается вверху? Бесконечность. А что получается внизу? Тоже бесконечность. Таким образом, у нас есть так называемая неопределенность вида . Можно было бы подумать, что , и ответ готов, но в общем случае это вовсе не так, и нужно применить некоторый прием решения, который мы сейчас и рассмотрим.

Как решать пределы данного типа?

Сначала мы смотрим на числитель и находим в старшей степени:

Старшая степень в числителе равна двум.

Теперь смотрим на знаменатель и тоже находим в старшей степени:

Старшая степень знаменателя равна двум.

Затем мы выбираем самую старшую степень числителя и знаменателя: в данном примере они совпадают и равны двойке.

Итак, метод решения следующий: для того, чтобы раскрыть неопределенность необходимо разделить числитель и знаменатель на в старшей степени .



Вот оно как, ответ , а вовсе не бесконечность.

Что принципиально важно в оформлении решения?

Во-первых, указываем неопределенность, если она есть.

Во-вторых, желательно прервать решение для промежуточных объяснений. Я обычно использую знак , он не несет никакого математического смысла, а обозначает, что решение прервано для промежуточного объяснения.

В-третьих, в пределе желательно помечать, что и куда стремится. Когда работа оформляется от руки, удобнее это сделать так:

Для пометок лучше использовать простой карандаш.

Конечно, можно ничего этого не делать, но тогда, возможно, преподаватель отметит недочеты в решении либо начнет задавать дополнительные вопросы по заданию. А оно Вам надо?

Пример 2

Найти предел
Снова в числителе и знаменателе находим в старшей степени:

Максимальная степень в числителе: 3
Максимальная степень в знаменателе: 4
Выбираем наибольшее значение, в данном случае четверку.
Согласно нашему алгоритму, для раскрытия неопределенности делим числитель и знаменатель на .
Полное оформление задания может выглядеть так:

Разделим числитель и знаменатель на

Пример 3

Найти предел
Максимальная степень «икса» в числителе: 2
Максимальная степень «икса» в знаменателе: 1 ( можно записать как )
Для раскрытия неопределенности необходимо разделить числитель и знаменатель на . Чистовой вариант решения может выглядеть так:

Разделим числитель и знаменатель на

Под записью подразумевается не деление на ноль (делить на ноль нельзя), а деление на бесконечно малое число.

Таким образом, при раскрытии неопределенности вида у нас может получиться конечное число , ноль или бесконечность.


Пределы с неопределенностью вида и метод их решения

Следующая группа пределов чем-то похожа на только что рассмотренные пределы: в числителе и знаменателе находятся многочлены, но «икс» стремится уже не к бесконечности, а к конечному числу .

Пример 4

Решить предел
Сначала попробуем подставить -1 в дробь:

В данном случае получена так называемая неопределенность .

Общее правило : если в числителе и знаменателе находятся многочлены, и имеется неопределенности вида , то для ее раскрытия нужно разложить числитель и знаменатель на множители .

Для этого чаще всего нужно решить квадратное уравнение и (или) использовать формулы сокращенного умножения. Если данные вещи позабылись, тогда посетите страницу Математические формулы и таблицы и ознакомьтесь с методическим материалом Горячие формулы школьного курса математики . Кстати его лучше всего распечатать, требуется очень часто, да и информация с бумаги усваивается лучше.

Итак, решаем наш предел

Разложим числитель и знаменатель на множители

Для того чтобы разложить числитель на множители, нужно решить квадратное уравнение:

Сначала находим дискриминант:

И квадратный корень из него: .

В случае если дискриминант большой, например 361, используем калькулятор, функция извлечения квадратного корня есть на самом простом калькуляторе.

! Если корень не извлекается нацело (получается дробное число с запятой), очень вероятно, что дискриминант вычислен неверно либо в задании опечатка.

Далее находим корни:

Таким образом:

Всё. Числитель на множители разложен.

Знаменатель. Знаменатель уже является простейшим множителем, и упростить его никак нельзя.

Очевидно, что можно сократить на :

Теперь и подставляем -1 в выражение, которое осталось под знаком предела:

Естественно, в контрольной работе, на зачете, экзамене так подробно решение никогда не расписывают. В чистовом варианте оформление должно выглядеть примерно так:

Разложим числитель на множители.





Пример 5

Вычислить предел

Сначала «чистовой» вариант решения

Разложим числитель и знаменатель на множители.

Числитель:
Знаменатель:



,

Что важного в данном примере?
Во-первых, Вы должны хорошо понимать, как раскрыт числитель, сначала мы вынесли за скобку 2, а затем использовали формулу разности квадратов. Уж эту-то формулу нужно знать и видеть.

Рекомендация: Если в пределе (практически любого типа) можно вынести число за скобку, то всегда это делаем.
Более того, такие числа целесообразно выносить за значок предела . Зачем? Да просто чтобы они не мешались под ногами. Главное, потом эти числа не потерять по ходу решения.

Обратите внимание, что на заключительном этапе решения я вынес за значок предела двойку, а затем – минус.

! Важно
В ходе решения фрагмент типа встречается очень часто. Сокращать такую дробь нельзя . Сначала нужно поменять знак у числителя или у знаменателя (вынести -1 за скобки).
, то есть появляется знак «минус», который при вычислении предела учитывается и терять его совсем не нужно.

Вообще, я заметил, что чаще всего в нахождении пределов данного типа приходится решать два квадратных уравнения, то есть и в числителе и в знаменателе находятся квадратные трехчлены.


Метод умножения числителя и знаменателя на сопряженное выражение

Продолжаем рассматривать неопределенность вида

Следующий тип пределов похож на предыдущий тип. Единственное, помимо многочленов, у нас добавятся корни.

Пример 6

Найти предел

Начинаем решать.

Сначала пробуем подставить 3 в выражение под знаком предела
Еще раз повторяю – это первое, что нужно выполнять для ЛЮБОГО предела . Данное действие обычно проводится мысленно или на черновике.

Получена неопределенность вида , которую нужно устранять.

Как Вы, наверное, заметили, у нас в числителе находится разность корней. А от корней в математике принято, по возможности, избавляться. Зачем? А без них жизнь проще.