Потенциальная. Метод потенциальных функций. Потенциальная функция и потенциал

В 60-х годах М. А. Айзерман, Э. М. Браверман, Л. И. Розоноэр предложили для решения задач обучения распознаванию образов использовать разработанный ими метод потенциальных функций . Этот метод также реализует идею рекуррентной процедуры минимизации среднего риска. Применительно к задаче обучения распознаванию образов суть метода заключается в следующем. На пространстве входных векторов задается функция, которая называется «потенциалом». Потенциал определяет близость двух точек, , и обычно задается как функция расстояния между точками. Потенциальная функция, как правило, такова, что она монотонно уменьшается с увеличением расстояния. Примерами потенциальной функции могут служить

, ,

где – расстояние от точки до точки ; – константа.

С помощью таких функций на пространстве образуется потенциальное поле. Считается, что вектор относится к первому классу, если потенциал поля в точке положителен; в противном случае вектор относится ко второму классу. Процесс обучения, таким образом, заключается в построении с помощью обучающей последовательности потенциального поля.

Геометрическая интерпретация метода построения потенциального поля очень наглядна (рис. 9).

Пусть для обучения машине предъявляется обучающая последовательность . При появлении первого элемента обучающей последовательности «выпускается» потенциал с центром в точке . Знак потенциала определяется тем, к какому классу относится предъявленный пример: если к первому, то знак у потенциала положительный, если ко второму, то отрицательный. Теперь на пространстве задан некоторый потенциал. Для второго элемента обучающей последовательности может быть вычислена величина потенциала . Если величина потенциала положительная, а элемент обучающей последовательности относится к первому классу, то потенциальное поле на пространстве не меняется; если же величина потенциала в точке положительная, а вектор должен быть отнесен ко второму классу, то из точки «выпускается» новый потенциал, но с отрицательным знаком. Теперь на пространстве действует новый суммарный потенциал

Аналогично, если при классификации элемента обучающей последовательности с помощью суммарного потенциала совершается ошибка, потенциал меняется так, чтобы по возможности выправить ошибку.

Таким образом, результатом обучения в методе потенциальных функций является построение на пространстве потенциального поля

(здесь штрих у суммы означает, что суммирование проводится не по всем элементам обучающей последовательности, а лишь по тем, на которых совершалась «ошибка»).

Это поле разбивает все пространство на две части: часть пространства , где значение суммарного потенциала положительно (все точки в этой части пространства считаются принадлежащими первому классу), и части, где значения потенциала отрицательны (точки в этой части пространства считаются принадлежащими второму классу). Поверхность, на которой потенциал принимает нулевые значения, является разделяющей поверхностью.

Оказывается, что для всякого вида потенциала существует система функций (вообще говоря, бесконечная!) такая, что все возможные разделяющие поверхности, которые могут быть получены с помощью метода потенциальных функций, могут быть получены с помощью персептрона Розенблатта, где соответствующее спрямляющее пространство задается преобразованиями . С другой стороны, для каждого персептрона легко находится соответствующая потенциальная функция.

Таким образом, метод потенциальных функций близок к персептронным методам Розенблатта. Для метода потенциальных функций возможны те же модификации, что и для персептрона Розенблатта.

Представим себе, что имеем плоский фильтрационный поток любой жидкости или газа, подчиняющийся закону Дарси. При рассмотрении одномерных течений было показано, что если фильтрация протекает по закону Дарси, существует потенциальная функция, удовлетворяющая уравнению Лапласа. Но если существует потенциальная функция, то наряду с ней существует функция, также удовлетворяющая уравнению Лапласа. Зная функцию, всегда можно определить функцию путем интегрирования уравнения (8.4).

Потенциальная функция течения определяется зависимостью основных параметров жидкости (или газа) и пористой среды от давления. Допустим, что эта зависимость однозначная; тогда можно заключить, что в основной плоскости течения линии равного давления (изобары) совпадают с эквипотенциальными линиями (х, у) = С. Но кривые (х, у)=С* взаимно ортогональны с эквипотенциальными линиями. Следовательно, направление векторов скорости фильтрации будет совпадать в любой данной точке М с направлением касательной к кривой семейства (х, у)=С*, то есть кривые этого семейства можно считать линиями тока. (При установившемся движении линии тока и траектории частиц жидкости совпадают). Функция (х, у) называется функцией тока.

Потенциальную функцию течения и функцию тока всегда можно принять за действительную и мнимую части некоторой функции F(z) комплексного переменного z (8.1).

Функция F (z) называется характеристической функцией течения (комплексным потенциалом).

Исследование любого плоского течения жидкости или газа в пористой среде должно начинаться с определения характеристической функции, соответствующей данной задаче. Найдя ее, мы можем считать задачу решенной. В самом деле, отделив в характеристической функции действительную часть от мнимой, т. е. представив ее в виде, показанном формулой (8.1), можно определить потенциальную функцию (х, у) и функцию тока (х, у). В результате можно представить полную картину потока: принимая различные значения функции, получим уравнения семейства эквипотенциальных линий (х, у) = С, а придавая различные значения, найдем уравнения семейства линий тока (х, у) = С*. По эквипотенциальным линиям определяется распределение давлений в пласте, по линиям тока - направление движения и характер поля скоростей фильтрации.

Проекции вектора массовой скорости фильтрации на оси координат можно записать в виде:

Примечание. Функции тока может быть дан следующий смысл. Фиксируем некоторую линию тока (х, у) = 0 и вообразим канал, ограниченный цилиндрическими поверхностями с образующими, перпендикулярными плоскости течения, проведенными через линию тока = 0 и другую линию тока (х, у) = С* и двумя плоскостями - плоскостью движения и ей параллельной, отстоящей от первой плоскости на расстояние, равное единице (рис. 8.2).

Рис. 8.2. Распределение потока между двумя параллельными плоскостями 1 и 2

При рассмотрении двух произвольных поперечных сечения канала щ1 и щ2 видно, что количество массы жидкости, протекающей через эти сечения в единицу времени (расход) будет одно и то же; внутри такого канала количество массы жидкости при установившемся движении измениться не может; через боковые стенки канала, образованные линиями тока = 0 и (х, у) = С*1, и через плоскости движения жидкость не протекает, следовательно, втекает жидкости в единицу времени через щ1 столько, сколько вытекает через щ2.

Функцией тока можно назвать функцию, принимающую на линии тока (х, у) = С* значение, равное массе жидкости (газа), протекающей в единицу времени через поперечное сечение канала, построенного на линиях = 0 и (х, у) = С*1 . Функция тока определена с точностью до произвольной постоянной, зависящей от выбора начальной линии тока = 0.

Массовую скорость фильтрации можно очень просто определить в любой точке пласта, найдя производную от характеристической функции по комплексному аргументу z. Чтобы это показать, составим полный дифференциал от характеристической функции F (z):

Вынося во второй скобке множитель i за знак скобки и воспользовавшись затем уравнениями Коши - Римана (8.4) получим:

Учитывая (8.5), перепишем (8.7) в виде

Из (8.7) и (8.8) следует, что производная dF/dz есть комплексное число, модуль которого равен модулю массовой скорости фильтрации:

Таким образом, модуль производной от характеристической функции течения равен модулю массовой скорости фильтрации.

Для однородной несжимаемой жидкости функция тока будет иметь значение объемного (а не массового) расхода жидкости через поперечное сечение канала, построенного на линиях тока =0 и =С*. Модуль же производной от характеристической функции течения будет равен скорости (а не массовой скорости) фильтрации жидкости u.

Здравствуйте, я давно читаю Хабрахабр и часто мне попадались статьи про нейронные сети, в частности про однослойный перцептрон. Но пока еще мне не встретилась статья про другие виды распознающих функций перцептронного вида. Как следует из названия статьи данный вид распознающих функций называется методом потенциальных функций .

Сразу оговорюсь, целью данной статьи является не предоставить работающую программу на основе данного метода, а рассказать собственно про сам алгоритм, на чем он основан и в чем его преимущества.

Для начала я опишу основные понятия теории распознавания образов, применяющиеся в данной статьей, затем дам краткое пояснение метода и потом уже распишу его подробно.

Основные понятия
Изображение - отображение объекта на воспринимающие органы. То есть, описание объекта, как множество признаков. Часто объект представляется в виде вектора. Если множество признаков постоянное, то объект отождествляется с его изображением.
Образ (класс) - подмножество множества объектов или изображений.
Решающая функция - функция, на вход которой подается изображение, определяющая принадлежность объекта некоторому классу.

Краткое описание
Суть данного метода, а впрочем, любого алгоритма, применяемого для распознавания образов состоит в том, чтобы составить такую решающую функцию, которая будет для каждого объекта определять принадлежность его к нужному классу.
В данном случае, решающая функция составляется итеративно, по маркированной обучающей выборке (для каждого объекта из ОВ известен его класс).

Физическая интерпретация
Представим n-мерное метрическое пространство, где n - количество признаков, необходимых для описания объекта.
Пусть все объекты обучающей выборки (в дальнейшем обозначим ее как ОВ), принадлежащие классу W1 создают положительный потенциал, который принимает максимальное значение в точке, соответствующей объекту и быстро убывает с расстоянием, а объекты, принадлежащие классу W2 отрицательный.
Тогда в областях, где преобладают объекты класса W1 будет положительный потенциал, и наоборот.
Фактически, каждому объекту из обучающей выборки присваивается заряд, который «притягивает» классифицируемый объект к соответствующему классу.

Потенциальная функция
Перейдем собственно к методу. Для начала опишем собственно потенциальную функцию. Как ясно из раздела про физическую интерпретацию, тут мы проводим аналогии с зарядами и потенциал. Поэтому, в качестве необходимой нам функции нужно взять такую, которая в данной точке даст максимальное значение и будет быстро убывать при увеличении расстояния.
Потенциальную функцию будем обозначать, как K(x,xk), где xk, k=1..m - это один из объектов(векторов) из обучающей выборки.
Обычно, в качестве потенциальной функции используют симметрическую функцию, двух переменных - X и Xk.
Например, K(x,xk) = exp {-a || x-xk||^2 }

Решающая функция. Кумулятивный потенциал.
В качестве решающей функции используем кумулятивный потенциал - положительную совокупность значений отдельных потенциальных функций, если объект принадлежит к классу w1 и отрицательная, если объект принадлежит классу w2.
Кумулятивный потенциал находится следующим образом:

Где Rk+1 =

Условиями прекращения работы алгоритма будет безошибочное определение L0 объектов, подряд. Где L0 - число, заданное пользователем. Задается оно в зависимости от того, какое качество работы алгоритма требуется, исходя из следующих фактов:

P - вероятность совершения ошибки после предъявления Lk выборочных объектов.
Тогда для любых e>0 и a>0, вероятность того, что p L0> log (ea) / log (1-e)

Вывод. Достоинства и недостатки.
В конечном итоге, мы получаем некую функцию K(x), которая определяет принадлежность данного объекта к одному из двух классов с заданной вероятностью ошибки.
Достоинства метода потенциальных функций заключаются в нелинейном разбиении множества объектов. Что позволяет решать задачи, которые сложно решить другими методами.
А недостатки - в трудном выборе подходящей потенциальной функции и трудоемкости вычислений, при большом объеме обучающей выборке.

Статья получилась несколько краткой, но я надеюсь, вы узнали для себя что-то новое. Основную идею я рассказал, за кадром осталось математическое обоснование сходимости алгоритма нахождения решающей функции и скорости сходимости, а так же и более строгое математическое определение потенциальной функции.

Целью данной статьи было рассказать о других, менее распространенных методах, используемых для распознавания образов. Если будет интерес, можно рассказать и про стохастический и логический подходы к данной проблеме.

Под силой, приложенной к материальной точке и имеющей потенциальную или силовую функцию, подразумевается такая сила, проекции которой X, У, Z на оси координат выражаются производными от некоторой функции и (от координат x, у, z точки) по соответственным координатам, т.е. Такая функция U называется функцией этой силы. Сколько известно, первым, указавшим на существование такой функции, и именно у сил тяготения, был Лаплас ("Меcanique celeste"); а самый термин: Потенциальная функция и потенциал функция встречается в сочинении Грина: "An essay on the application of mathematical analysis to the theories of electricity and magnetism", напечатанном в 1828-м г.; но нельзя поручиться за то, что Грин первый ввел это название. Если система материальных точек подвержена только таким силам, проекции которых на оси координат суть производные по соответственным координатам от некоторой функции U от координат точек системы, то эту функцию U называют потенциалом сил этой системы. То обстоятельство, что все силы природы принадлежат именно к числу таких сил; дает весьма важное значение потенциалу и Потенциальная функция и потенциал функции в механике и физике. Прежде всего следует указать, как изменяется общий закон изменения живой силы материальной системы, если силы, действующие на нее, имеют потенциал. Дело в том, что сумма элементарных работ таких сил при бесконечно-малом перемещении системы равняется дифференциалу или бесконечно-малому изменению dU потенциала, а так как та же сумма, по общему закону изменения живой силы, равняется бесконечно-малому изменению dT живой силы Т системы, то dT=dU и отсюда Т - U=h, где h величина постоянная на всем движении системы. Обыкновенно называют живую силу системы ее кинетической энергией, а отрицательно взятую функцию U - потенциальной энергией. Равенство Т - U=h выражает, что сумма обеих энергий остается постоянной при движении, или как говорят: полная энергия системы остается при движении постоянной. К числу сил, имеющих потенциал, принадлежат силы взаимного притяжения или отталкивания между двумя материальными точками, если эти силы равны и противоположны, направлены по линии, проходящей через обе точки и величины их равны какой либо функции f(r) расстояния r точек. Потенциал таких взаимнодействующих сил есть где верхний знак (плюс) должен быть поставлен в случае сил отталкивания, а нижний (минус) в случае сил притяжения. Например, для сил тяготения, подчиняющихся закону Ньютона, величина сил притяжения между материальными точками масс m и M равна отношению e mM к r2, поэтому потенциал этих двух сил будет здесь e множитель, точная величина которого может быть определена при полном знании вида поверхности земли, внутреннего строения ее и величин ускорения силы тяжести в разных местах ее поверхности. Если имеется сплошное тело. частицы которого притягивают материальную точку по закону Ньютона, то равнодействующую сил притяжения можно будет определить, если определим Потенциальная функция и потенциал функцию этих сил. Лаплас, Пуассон и Гаусс ("Allgemeine Lebrsatze in Beziehung auf die im verkehrten Verhaltnisse des Quadrats der Entfernung wirkenden Krafte"; "C. F. Gauss Werke", т. 5) доказали, что Потенциальная функция и потенциал функция таких сил обладает следующими свойствами, если размеры тела не бесконечно-велики и если плотность его нигде не имеет бесконечно большой величины: a) Потенциальная функция и потенциал функция V сил притяжения телом точки есть функция ее координат x, y, z, сплошная и конечная, b) производные ее тоже сплошны и конечны. c) Сумма трех производных второго порядка: при положении точки вне тела и d) эта сумма D2V равна - 4pesm при положении точки внутри тела; здесь s означает плотность тела в том месте, где находится притягиваемая точка, m - массу ее. Свойство c доказано Лапласом, свойство d - Пуассоном. Потенциальная функция и потенциал функция однородного шара плотности s, радиуса R и массы M =4/3peR2 на точку массы равной единице выражается отношением eM к r (где r есть расстояние точки от центра шара), если точка находится вне шара; поэтому сила притяжения, действующая на точку, направлена к центру шара, обратно пропорциональна квадрату расстояния r и такова, как будто бы вся масса шара была сосредоточена в его центре. Если точка находится в массе шара на расстоянии r от центра, то Потенциальная функция и потенциал функция выражается так: 2pes (R2 - 1/3 r2) и сила притяжения опять направлена к центру шара, но имеет величину 4/3epsr, или т.е. равна отношению eM1 к r2, где M1=4/3psr3 есть масса той части шара, которая находится внутри сферы радиуса у. отсюда следует, что тот слой шара, который заключается между сферами радиусов R и r, не оказывает притяжения на точку. Если определять притяжение, оказываемое однородным сферическим слоем, заключающимся между концентрическими сферами или однородным слоем, заключающимся между двумя концентрическими и подобными эллипсоидами, на точку, находящуюся внутри пустых полостей которого либо из этих тел, то окажется, что действия сил внутри полости нет.

Потенциальная функция и потенциал. - Под силой, приложенной к материальной точке и имеющей потенциальную или силовую функцию, подразумевается такая сила, проекции которой X, У, Z на оси координат выражаются производными от некоторой функции и (от координат x, у, z точки) по соответственным координатам, т.е.

Такая функция U называется П. функцией этой силы. Сколько известно,

первым, указавшим на существование такой функции, и именно у сил тяготения, был Лаплас ("Меcanique celeste"); а самый термин: П. функция встречается в сочинении Грина: "An essay on the application of mathematical analysis to the theories of electricity and magnetism", напечатанном в 1828-м г.; но нельзя поручиться за то, что Грин первый ввел это название. Если система материальных точек подвержена только таким силам, проекции которых на оси координат суть производные по соответственным координатам от некоторой функции U от координат точек системы, то эту функцию U называют потенциалом сил этой системы. То обстоятельство, что все силы природы принадлежат именно к числу таких сил; дает весьма важное значение потенциалу и П. функции в механике и физике. Прежде всего следует указать, как изменяется общий закон изменения живой силы материальной системы, если силы, действующие на нее, имеют потенциал. Дело в том, что сумма элементарных работ таких сил при бесконечно-малом перемещении системы равняется дифференциалу или бесконечно-малому изменению dU потенциала, а так как та же сумма, по общему закону изменения живой силы, равняется бесконечно-малому изменению dT живой силы Т системы, то dT=dU и отсюда Т - U=h, где h величина постоянная на всем движении системы. Обыкновенно называют живую силу системы ее кинетической энергией, а отрицательно взятую функцию U - потенциальной энергией. Равенство Т - U=h выражает, что сумма обеих энергий остается постоянной при движении, или как говорят: полная энергия системы остается при движении постоянной. К числу сил, имеющих потенциал, принадлежат силы взаимного притяжения или отталкивания между двумя материальными точками, если эти силы равны и противоположны, направлены по линии, проходящей через обе точки и величины их равны какой либо функции f(r) расстояния r точек. Потенциал таких взаимнодействующих сил есть

Где верхний знак (плюс) должен быть поставлен в случае сил

отталкивания, а нижний (минус) в случае сил притяжения. Например, для сил тяготения, подчиняющихся закону Ньютона, величина сил притяжения между материальными точками масс m и M равна отношению e mM к r2, поэтому потенциал этих двух сил будет

Здесь e множитель, точная величина которого может быть определена при

полном знании вида поверхности земли, внутреннего строения ее и величин ускорения силы тяжести в разных местах ее поверхности. Если имеется сплошное тело. частицы которого притягивают материальную точку по закону Ньютона, то равнодействующую сил притяжения можно будет определить, если определим П. функцию этих сил. Лаплас, Пуассон и Гаусс ("Allgemeine Lebrsatze in Beziehung auf die im verkehrten Verhaltnisse des Quadrats der Entfernung wirkenden Krafte"; "C. F. Gauss Werke", т. 5) доказали, что П. функция таких сил обладает следующими свойствами, если размеры тела не бесконечно-велики и если плотность его нигде не имеет бесконечно большой величины: a) П. функция V сил притяжения телом точки есть функция ее координат x, y, z, сплошная и конечная, b) производные ее

Тоже сплошны и конечны. c) Сумма трех производных второго порядка: при положении точки вне тела и d) эта сумма D2V равна - 4pesm при

положении точки внутри тела; здесь s означает плотность тела в том месте, где находится притягиваемая точка, m - массу ее. Свойство c доказано Лапласом, свойство d - Пуассоном. П. функция однородного шара плотности s, радиуса R и массы M =4/3peR2 на точку массы равной единице выражается отношением eM к r (где r есть расстояние точки от центра шара), если точка находится вне шара; поэтому сила притяжения, действующая на точку, направлена к центру шара, обратно пропорциональна квадрату расстояния r и такова, как будто бы вся масса шара была сосредоточена в его центре. Если точка находится в массе шара на расстоянии r от центра, то П. функция выражается так: 2pes (R2 - 1/3 r2) и сила притяжения опять направлена к центру шара, но имеет величину 4/3epsr, или

Т.е. равна отношению eM1 к r2, где M1=4/3psr3 есть масса той части

шара, которая находится внутри сферы радиуса у. отсюда следует, что тот слой шара, который заключается между сферами радиусов R и r, не оказывает притяжения на точку. Если определять притяжение, оказываемое однородным сферическим слоем, заключающимся между концентрическими сферами или однородным слоем, заключающимся между двумя концентрическими и подобными эллипсоидами, на точку, находящуюся внутри пустых полостей которого либо из этих тел, то окажется, что действия сил внутри полости нет.

Оригинал этой статьи взят из энциклопедии Брокгауза-Ефрона

==

При создании этой статьи использовался "малый энциклопедический словарь Брокгауза-Ефрона" (энциклопедия Брокгауза - Ефрона). В настоящее время текст этой статьи не является полным, точным и современным.

Прямо сейчас Вы можете внести все необходимые правки, воспользовавшись ссылкой Редактировать эту статью внизу или в панели навигации.