Положительные и отрицательные заряды. Закон сохранения электрического заряда. Отрицательный и положительный электрический заряд. Электрон и протон. Что происходит при воздействии инфракрасного тепла? Механизм спасения от перегревания

Подобно понятию гравитационной массы тела в механике Ньютона, понятие заряда в электродинамике является первичным, основным понятием.

Электрический заряд - это физическая величина, характеризующая свойство частиц или тел вступать в электромагнитные силовые взаимодействия.

Электрический заряд обычно обозначается буквами q или Q .

Совокупность всех известных экспериментальных фактов позволяет сделать следующие выводы:

Существует два рода электрических зарядов, условно названных положительными и отрицательными.

Заряды могут передаваться (например, при непосредственном контакте) от одного тела к другому. В отличие от массы тела электрический заряд не является неотъемлемой характеристикой данного тела. Одно и то же тело в разных условиях может иметь разный заряд.

Одноименные заряды отталкиваются, разноименные - притягиваются. В этом также проявляется принципиальное отличие электромагнитных сил от гравитационных. Гравитационные силы всегда являются силами притяжения.

Одним из фундаментальных законов природы является экспериментально установленный закон сохранения электрического заряда .

В изолированной системе алгебраическая сумма зарядов всех тел остается постоянной:

q 1 + q 2 + q 3 + ... +q n = const.

Закон сохранения электрического заряда утверждает, что в замкнутой системе тел не могут наблюдаться процессы рождения или исчезновения зарядов только одного знака.

С современной точки зрения, носителями зарядов являются элементарные частицы. Все обычные тела состоят из атомов, в состав которых входят положительно заряженные протоны, отрицательно заряженные электроны и нейтральные частицы - нейтроны. Протоны и нейтроны входят в состав атомных ядер, электроны образуют электронную оболочку атомов. Электрические заряды протона и электрона по модулю в точности одинаковы и равны элементарному заряду e .

В нейтральном атоме число протонов в ядре равно числу электронов в оболочке. Это число называется атомным номером . Атом данного вещества может потерять один или несколько электронов или приобрести лишний электрон. В этих случаях нейтральный атом превращается в положительно или отрицательно заряженный ион.

Заряд может передаваться от одного тела к другому только порциями, содержащими целое число элементарных зарядов. Таким образом, электрический заряд тела - дискретная величина:

Физические величины, которые могут принимать только дискретный ряд значений, называются квантованными . Элементарный заряд e является квантом (наименьшей порцией) электрического заряда. Следует отметить, что в современной физике элементарных частиц предполагается существование так называемых кварков - частиц с дробным зарядом и Однако, в свободном состоянии кварки до сих пор наблюдать не удалось.

В обычных лабораторных опытах для обнаружения и измерения электрических зарядов используется электрометр ( или электроскоп) - прибор, состоящий из металлического стержня и стрелки, которая может вращаться вокруг горизонтальной оси (рис. 1.1.1). Стержень со стрелкой изолирован от металлического корпуса. При соприкосновении заряженного тела со стержнем электрометра, электрические заряды одного знака распределяются по стержню и стрелке. Силы электрического отталкивания вызывают поворот стрелки на некоторый угол, по которому можно судить о заряде, переданном стержню электрометра.

Электрометр является достаточно грубым прибором; он не позволяет исследовать силы взаимодействия зарядов. Впервые закон взаимодействия неподвижных зарядов был открыт французским физиком Шарлем Кулоном в 1785 г. В своих опытах Кулон измерял силы притяжения и отталкивания заряженных шариков с помощью сконструированного им прибора - крутильных весов (рис. 1.1.2), отличавшихся чрезвычайно высокой чувствительностью. Так, например, коромысло весов поворачивалось на 1° под действием силы порядка 10 -9 Н.

Идея измерений основывалась на блестящей догадке Кулона о том, что если заряженный шарик привести в контакт с точно таким же незаряженным, то заряд первого разделится между ними поровну. Таким образом, был указан способ изменять заряд шарика в два, три и т. д. раз. В опытах Кулона измерялось взаимодействие между шариками, размеры которых много меньше расстояния между ними. Такие заряженные тела принято называть точечными зарядами .

Точечным зарядом называют заряженное тело, размерами которого в условиях данной задачи можно пренебречь.

На основании многочисленных опытов Кулон установил следующий закон:

Силы взаимодействия неподвижных зарядов прямо пропорциональны произведению модулей зарядов и обратно пропорциональны квадрату расстояния между ними:

Силы взаимодействия подчиняются третьему закону Ньютона:

Они являются силами отталкивания при одинаковых знаках зарядов и силами притяжения при разных знаках (рис. 1.1.3). Взаимодействие неподвижных электрических зарядов называют электростатическим или кулоновским взаимодействием. Раздел электродинамики, изучающий кулоновское взаимодействие, называют электростатикой .

Закон Кулона справедлив для точечных заряженных тел. Практически закон Кулона хорошо выполняется, если размеры заряженных тел много меньше расстояния между ними.

Коэффициент пропорциональности k в законе Кулона зависит от выбора системы единиц. В Международной системе СИ за единицу заряда принят кулон (Кл).

Кулон - это заряд, проходящий за 1 с через поперечное сечение проводника при силе тока 1 А. Единица силы тока (Ампер) в СИ является наряду с единицами длины, времени и массы основной единицей измерения .

Коэффициент k в системе СИ обычно записывают в виде:

Где - электрическая постоянная .

В системе СИ элементарный заряд e равен:

Опыт показывает, что силы кулоновского взаимодействия подчиняются принципу суперпозиции:

Если заряженное тело взаимодействует одновременно с несколькими заряженными телами, то результирующая сила, действующая на данное тело, равна векторной сумме сил, действующих на это тело со стороны всех других заряженных тел.

Рис. 1.1.4 поясняет принцип суперпозиции на примере электростатического взаимодействия трех заряженных тел.

Принцип суперпозиции является фундаментальным законом природы. Однако, его применение требует определенной осторожности, в том случае, когда речь идет о взаимодействии заряженных тел конечных размеров (например, двух проводящих заряженных шаров 1 и 2). Если к системе из двух заряженных шаров поднсти третий заряженный шар, то взаимодействие между 1 и 2 изменится из-за перераспределения зарядов .

Принцип суперпозиции утверждает, что при заданном (фиксированном) распределении зарядов на всех телах силы электростатического взаимодействия между любыми двумя телами не зависят от наличия других заряженных тел.

«Физика - 10 класс»

Вначале рассмотрим наиболее простой случай, когда электрически заряженные тела находятся в покое.

Раздел электродинамики, посвящённый изучению условий равновесия электрически заряженных тел, называют электростатикой .

Что такое электрический заряд?
Какие существуют заряды?

Со словами электричество, электрический заряд, электрический ток вы встречались много раз и успели к ним привыкнуть. Но попробуйте ответить на вопрос: «Что такое электрический заряд?» Само понятие заряд - это основное, первичное понятие, которое не сводится на современном уровне развития наших знаний к каким-либо более простым, элементарным понятиям.

Попытаемся сначала выяснить, что понимают под утверждением: «Данное тело или частица имеет электрический заряд».

Все тела построены из мельчайших частиц, которые неделимы на более простые и поэтому называются элементарными .

Элементарные частицы имеют массу и благодаря этому притягиваются друг к другу согласно закону всемирного тяготения. С увеличением расстояния между частицами сила тяготения убывает обратно пропорционально квадрату этого расстояния. Большинство элементарных частиц, хотя и не все, кроме того, обладают способностью взаимодействовать друг с другом с силой, которая также убывает обратно пропорционально квадрату расстояния, но эта сила во много раз превосходит силу тяготения.

Так в атоме водорода, изображённом схематически на рисунке 14.1, электрон притягивается к ядру (протону) с силой, в 10 39 раз превышающей силу гравитационного притяжения.

Если частицы взаимодействуют друг с другом с силами, которые убывают с увеличением расстояния так же, как и силы всемирного тяготения, но превышают силы тяготения во много раз, то говорят, что эти частицы имеют электрический заряд. Сами частицы называются заряженными .

Бывают частицы без электрического заряда, но не существует электрического заряда без частицы.

Взаимодействие заряженных частиц называется электромагнитным .

Электрический заряд определяет интенсивность электромагнитных взаимодействий, подобно тому как масса определяет интенсивность гравитационных взаимодействий.

Электрический заряд элементарной частицы - это не особый механизм в частице, который можно было бы снять с неё, разложить на составные части и снова собрать. Наличие электрического заряда у электрона и других частиц означает лишь существование определённых силовых взаимодействий между ними.

Мы, в сущности, ничего не знаем о заряде, если не знаем законов этих взаимодействий. Знание законов взаимодействий должно входить в наши представления о заряде. Эти законы непросты, и изложить их в нескольких словах невозможно. Поэтому нельзя дать достаточно удовлетворительное краткое определение понятию электрический заряд .


Два знака электрических зарядов.


Все тела обладают массой и поэтому притягиваются друг к другу. Заряженные же тела могут как притягивать, так и отталкивать друг друга. Этот важнейший факт, знакомый вам, означает, что в природе есть частицы с электрическими зарядами противоположных знаков; в случае зарядов одинаковых знаков частицы отталкиваются, а в случае разных притягиваются.

Заряд элементарных частиц - протонов , входящих в состав всех атомных ядер, называют положительным, а заряд электронов - отрицательным. Между положительными и отрицательными зарядами внутренних различий нет. Если бы знаки зарядов частиц поменялись местами, то от этого характер электромагнитных взаимодействий нисколько бы не изменился.


Элементарный заряд.


Кроме электронов и протонов, есть ещё несколько типов заряженных элементарных частиц. Но только электроны и протоны могут неограниченно долго существовать в свободном состоянии. Остальные же заряженные частицы живут менее миллионных долей секунды. Они рождаются при столкновениях быстрых элементарных частиц и, просуществовав ничтожно малое время, распадаются, превращаясь в другие частицы. С этими частицами вы познакомитесь в 11 классе.

К частицам, не имеющим электрического заряда, относится нейтрон . Его масса лишь незначительно превышает массу протона. Нейтроны вместе с протонами входят в состав атомного ядра. Если элементарная частица имеет заряд, то его значение строго определено.

Заряженные тела Электромагнитные силы в природе играют огромную роль благодаря тому, что в состав всех тел входят электрически заряженные частицы. Составные части атомов - ядра и электроны - обладают электрическим зарядом.

Непосредственно действие электромагнитных сил между телами не обнаруживается, так как тела в обычном состоянии электрически нейтральны.

Атом любого вещества нейтрален, так как число электронов в нём равно числу протонов в ядре. Положительно и отрицательно заряженные частицы связаны друг с другом электрическими силами и образуют нейтральные системы.

Макроскопическое тело заряжено электрически в том случае, если оно содержит избыточное количество элементарных частиц с каким-либо одним знаком заряда. Так, отрицательный заряд тела обусловлен избытком числа электронов по сравнению с числом протонов, а положительный - недостатком электронов.

Для того чтобы получить электрически заряженное макроскопическое тело, т. е. наэлектризовать его, нужно отделить часть отрицательного заряда от связанного с ним положительного или перенести на нейтральное тело отрицательный заряд.

Это можно сделать с помощью трения. Если провести расчёской по сухим волосам, то небольшая часть самых подвижных заряженных частиц - электронов перейдёт с волос на расчёску и зарядит её отрицательно, а волосы зарядятся положительно.


Равенство зарядов при электризации


С помощью опыта можно доказать, что при электризации трением оба тела приобретают заряды, противоположные по знаку, но одинаковые по модулю.

Возьмём электрометр, на стержне которого укреплена металлическая сфера с отверстием, и две пластины на длинных рукоятках: одна из эбонита, а другая из плексигласа. При трении друг о друга пластины электризуются.

Внесём одну из пластин внутрь сферы, не касаясь её стенок. Если пластина заряжена положительно, то часть электронов со стрелки и стержня электрометра притянется к пластине и соберётся на внутренней поверхности сферы. Стрелка при этом зарядится положительно и оттолкнётся от стержня электрометра (рис. 14.2, а).

Если внести внутрь сферы другую пластину, вынув предварительно первую, то электроны сферы и стержня будут отталкиваться от пластины и соберутся в избытке на стрелке. Это вызовет отклонение стрелки от стержня, причём на тот же угол, что и в первом опыте.

Опустив обе пластины внутрь сферы, мы вообще не обнаружим отклонения стрелки (рис. 14.2, б). Это доказывает, что заряды пластин равны по модулю и противоположны по знаку.

Электризация тел и её проявления. Значительная электризация происходит при трении синтетических тканей. Снимая с себя рубашку из синтетического материала в сухом воздухе, можно слышать характерное потрескивание. Между заряженными участками трущихся поверхностей проскакивают маленькие искорки.

В типографиях происходит электризация бумаги при печати, и листы слипаются. Чтобы это не происходило, применяют специальные устройства для стекания заряда. Однако электризация тел при тесном контакте иногда используется, например, в различных электрокопировальных установках и др.


Закон сохранения электрического заряда.


Опыт с электризацией пластин доказывает, что при электризации трением происходит перераспределение имеющихся зарядов между телами, до этого нейтральными. Небольшая часть электронов переходит с одного тела на другое. При этом новые частицы не возникают, а существовавшие ранее не исчезают.

При электризации тел выполняется закон сохранения электрического заряда . Этот закон справедлив для системы, в которую не входят извне и из которой не выходят наружу заряженные частицы, т. е. для изолированной системы .

В изолированной системе алгебраическая сумма зарядов всех тел сохраняется.

q 1 + q 2 + q 3 + ... + q n = const. (14.1)

где q 1 , q 2 и т. д. - заряды отдельных заряженных тел.

Закон сохранения заряда имеет глубокий смысл. Если число заряженных элементарных частиц не меняется, то выполнение закона сохранения заряда очевидно. Но элементарные частицы могут превращаться друг в друга, рождаться и исчезать, давая жизнь новым частицам.

Однако во всех случаях заряженные частицы рождаются только парами с одинаковыми по модулю и противоположными по знаку зарядами; исчезают заряженные частицы тоже только парами, превращаясь в нейтральные. И во всех этих случаях алгебраическая сумма зарядов остаётся одной и той же.

Справедливость закона сохранения заряда подтверждают наблюдения над огромным числом превращений элементарных частиц. Этот закон выражает одно из самых фундаментальных свойств электрического заряда. Причина сохранения заряда до сих пор неизвестна.

Электрический заряд является физической величиной, которая присуща некоторым элементарным частицам. Он проявляет себя через силы притяжения и отталкивания между заряженными телами посредством электромагнитного поля. Рассмотрим физические свойства заряда и виды зарядов.

Общее представление об электрическом заряде

Материя, которая имеет отличный от нуля электрический заряд, активно взаимодействует с электромагнитным полем и, в свою очередь, создает это поле. Взаимодействие заряженного тела с электромагнитным полем является одним из четырех типов силовых взаимодействий, которые известны человеку. Говоря о зарядах и видах зарядов, следует отметить, что с точки зрения стандартной модели электрический заряд отражает способность тела или частицы обмениваться носителями электромагнитного поля - фотонами - с другим заряженным телом или электромагнитным полем.

Одна из важных характеристик различных видов заряда - сохранение их суммы в изолированной системе. То есть общий заряд сохраняется сколь угодно длительное время независимо от типа взаимодействия, которое имеет место внутри системы.

Электрический заряд не является непрерывным. В экспериментах Роберта Милликена была продемонстрирована дискретная природа электрического заряда. Виды зарядов, существующие в природе, могут быть положительными или отрицательными.

Положительные и отрицательные заряды

Носителями двух видов зарядов являются протоны и электроны. По историческим причинам заряд электрона считается отрицательным, имеет значение -1 и обозначается -e. Протон имеет положительный заряд +1 и обозначается +e.

Если тело содержит больше протонов, чем электронов, то оно считается положительно заряженным. Ярким примером положительного вида заряда в природе является заряд стеклянной палочки после того, как ее потрут шелковой тканью. Соответственно, если тело содержит больше электронов, чем протонов, оно полагается отрицательно заряженным. Этот вид электрического заряда наблюдается на пластиковой линейке, если ее потереть шерстью.

Отметим, что заряд протона и электрона хоть и очень маленький, он не является элементарным. Обнаружены кварки - "кирпичики", образующие элементарные частицы, которые имеют заряды ±1/3 и ±2/3 относительно заряда электрона и протона.

Единица измерения

Виды зарядов, как положительные, так и отрицательные, в международной системе единиц СИ измеряются в кулонах. Заряд в 1 кулон - это очень большой заряд, который определяется как проходящих за 1 секунду через поперечное сечение проводника при силе тока в нем, равной 1 ампер. Одному кулону соответствует 6,242*10 18 свободных электронов. Это означает, что заряд одного электрона равен -1/(6,242*10 18) = - 1,602*10 -19 кулона. Это же значение, только со знаком плюс, характерно для другого вида зарядов в природе - положительного заряда протона.

Краткая история электрического заряда

Еще со времен античной Греции известно, что если потереть кожу о янтарь, то он приобретает способность притягивать к себе легкие тела, например, солому или перья птиц. Это открытие принадлежит греческому философу Фалесу Милетскому, который жил 2500 лет назад.

В 1600 году английский медик Уильям Гилберт заметил, что многие материалы ведут себя подобно янтарю, если их потереть. Слово "янтарь" в древнегреческом языке звучит как "электрон". Гилберт стал использовать этот термин для всех подобных явлений. Позже появились другие термины, такие как "электричество" и "электрический заряд". В своих работах Гилберт также смог различить магнитные и электрические явления.

Открытие существования притяжения и отталкивания между электрически заряженными телами принадлежит физику Стефану Грею. Первым ученым, который предположил существование двух видов электрических зарядов, был французский химик и физик Шарль Франсуа Дюфе. Явление электрического заряда также подробно исследовал Бенджамин Франклин. В конце XVIII века французский физик Шарль Огюстен де Кулон открыл свой знаменитый закон.

Тем не менее все указанные наблюдения смогли оформиться в стройную теорию электричества только к середине XIX века. Здесь следует отметить важность работ Майкла Фарадея по изучению процессов электролиза и Джеймса Максвелла, который полностью описал электромагнитные феномены.

Современные представления о природе электричества и дискретном электрическом заряде обязаны своим существованием работам Джозефа Томсона, который открыл электрон, и Роберта Милликена, который измерил его заряд.

Магнитный момент и электрический заряд

Виды заряда выделил еще Бенджамин Франклин. Их два: положительный и отрицательный. Два заряда одинакового знака отталкиваются, а противоположного - притягиваются.

С появлением квантовой механики и физики элементарных частиц было показано, что помимо электрического заряда частицы обладают магнитным моментом, который носит название спина. Благодаря электрическим и магнитным свойствам элементарных частиц в природе существует электромагнитное поле.

Принцип сохранения электрического заряда

В соответствии с результатами множества экспериментов, принцип сохранения электрического заряда гласит, что не существует ни какого-либо способа разрушения заряда, ни его создания из ничего, и что в любых электромагнитных процессах в изолированной системе полный электрический заряд сохраняется.

В результате процесса электризации общее количество протонов и электронов не изменяется, существует лишь разделение зарядов. Электрический заряд может появиться в какой-либо части системы, где раньше его не было, но общий заряд системы при этом все равно не изменится.

Плотность электрического заряда

Под плотностью заряда понимается его количество на единицу длины, площади или объема пространства. В связи с этим говорят о трех типах его плотности: линейной, поверхностной и объемной. Поскольку существует два вида заряда, плотность также может быть положительной и отрицательной.

Несмотря на то что электрический заряд квантован, то есть является дискретным, в ряде опытов и процессов количество его носителей настолько велико, что можно считать, что они распределены по телу равномерно. Это хорошее приближение позволяет получить ряд важных экспериментальных законов для электрических явлений.

Исследуя на крутильных весах поведение двух точечных зарядов, то есть таких, для которых расстояние между ними значительно превышает их размеры, Шарль Кулон в 1785 году открыл закон взаимодействия между электрическими зарядами. Этот закон ученый сформулировал следующим образом:

Величина каждой силы, с которой взаимодействуют два точечных заряда в покое, прямо пропорциональна произведению их электрических зарядов и обратно пропорциональна квадрату расстояния, разделяющего их. Силы взаимодействия направлены вдоль линии, которая соединяет заряженные тела.

Отметим, что закон Кулона от вида зарядов не зависит: изменение знака заряда лишь изменит направление действующей силы на противоположное, сохранив при этом ее модуль. Коэффициент пропорциональности в законе Кулона зависит от диэлектрической постоянной среды, в которой рассматриваются заряды.

Таким образом, формула для кулоновской силы записывается в следующем виде: F = k*q 1 *q 2 /r 2 , где q 1, q 2 - величины зарядов, r - расстояние между зарядами, k = 9*10 9 Н*м 2 /Кл 2 - коэффициент пропорциональности для вакуума.

Константа k через универсальную диэлектрическую постоянную ε 0 и диэлектрическую постоянную материала ε выражается следующим образом: k = 1/(4*pi*ε*ε 0), здесь pi - число пи, а ε > 1 для любой среды.

Закон Кулона не справедлив в следующих случаях:

  • когда заряженные частицы начинают двигаться, и особенно когда их скорости приближаются к около световым скоростям;
  • когда расстояние между зарядами мало по сравнению с их геометрическими размерами.

Интересно отметить, что математический вид закона Кулона совпадает с таковым для закона всемирного тяготения, в котором роль электрического заряда играет масса тела.

Способы передачи электрического заряда и электризация

Под электризацией понимается процесс, в результате которого электрически нейтральное тело приобретает отличный от нуля заряд. Этот процесс связан с перемещением элементарных носителей заряда, чаще всего электронов. Наэлектризовать тело можно с помощью следующих способов:

  • В результате контакта. Если заряженным телом прикоснуться к другому телу, состоящему из проводящего материала, то последнее приобретет электрический заряд.
  • Трение изолятора о другой материал.
  • Электрическая индукция. Суть этого явления заключается в перераспределении электрических зарядов внутри тела за счет воздействия электрического внешнего поля.
  • Явление фотоэффекта, при котором электроны вырываются из твердого тела за счет воздействия на него электромагнитного излучения.
  • Электролиз. Физико-химический процесс, который происходит в расплавах и растворах солей, кислот и щелочей.
  • Термоэлектрический эффект. В данном случае электризация возникает за счет градиентов температуры в теле.

Связанный с материальным носителем; внутренняя характеристика элементарной частицы, определяющая ее электромагнитные взаимодействия.

Электрический заряд является физической величиной, характеризующей свойство тел или частиц вступать в электромагнитные взаимодействия, и определяющей значения сил и энергий при таких взаимодействиях. Электрический заряд - одно из основных понятий учения об электричестве. Вся совокупность электрических явлений есть проявление существования, движения и взаимодействия электрических зарядов. Электрический заряд является неотъемлемым свойством некоторых элементарных частиц .

Имеется два вида электрических зарядов, условно называемых положительными и отрицательными. Заряды одного знака отталкиваются, разных знаков - притягиваются друг к другу. Заряд наэлектризованной стеклянной палочки условно стали считать положительным, а смоляной (в частности, янтарной) - отрицательным. В соответствии с этим условием электрический заряд электрона отрицателен (греч. «электрон» - янтарь).

Заряд макроскопического тела определяется суммарным зарядом элементарных частиц, из которых состоит это тело. Чтобы зарядить макроскопическое тело нужно изменить число содержащихся в нем заряженных элементарных частиц, т. е. перенести на него или удалить с него некоторое количество зарядов одного знака. В реальных условиях такой процесс обычно связан с перемещением электронов. Тело считают заряженным только в том случае, если на нем находится избыток зарядов одного знака, составляющий заряд тела, обозначаемый обычно буквой q или Q .Если заряды размещены на точечных телах, то сила взаимодействия между ними может быть определена по закону Кулона . Единицей заряда в системе СИ является кулон - Кл.

Электрический заряд q любого тела дискретен, существует минимальный, элементарный электрический заряд - е, которому кратны все электрические заряды тел:

\(q = n e\)

Минимальный заряд, существующий в природе, - это заряд элементарных частиц. В единицах СИ модуль этого заряда равен: е = 1, 6.10 -19 Кл. Любые электрические заряды в целое число раз больше элементарного. Элементарным электрическим зарядом обладают все заряженные элементарные частицы. В конце 19 в. был открыт электрон - носитель отрицательного электрического заряда, а в начале 20 в, - протон, обладающий таким же по величине положительным зарядом; таким образом, было доказано, что электрические заряды существуют не сами по себе, а связаны с частицами, являются внутренним свойством частиц (позднее были открыты и другие элементарные частицы, несущие положительный или отрицательный заряд той же величины). Заряд всех элементарных частиц (если он не равен нулю) одинаков по абсолютной величине. Элементарные гипотетические частицы - кварки, заряд которых равен 2/3е или +1/3е , не наблюдались, однако в теории элементарных частиц предполагается их существование.

Инвариантность электрического заряда установлена экспериментально: величина заряда не зависит от скорости, с которой он движется (т. е. величина заряда инвариантна относительно инерциальных систем отсчета, и не зависит от того, движется он или покоится).

Электрический заряд аддитивен, т. е. заряд любой системы тел (частиц) равен сумме зарядов тел (частиц), входящих в систему.

Электрический заряд подчиняется закону сохранения, который был установлен после проведения множества опытов. В электрически замкнутой системе полный суммарный заряд сохраняется и остается постоянным при любых физических процессах, происходящих в системе. Этот закон справедлив для изолированных электрических замкнутых систем, в которые заряды не вносятся и из которых они не выносятся. Этот закон действует и для элементарных частиц, которые рождаются и аннигилируют парами, суммарных заряд которых равен нулю.

Происходящие в природе физические процессы не всегда объясняются действием законов молекулярно-кинетической теории, механики либо термодинамики. Существуют еще электромагнитные силы, которые действуют на расстоянии и не зависят от массы тела.

Их проявления впервые описаны в трудах древних ученых Греции, когда они янтарем, потертым о шерсть, притягивали легкие, маленькие частицы отдельных веществ.

Исторический вклад ученых в развитие электродинамики

Опыты с янтарем подробно изучались английским исследователем Уильямом Гильбертом . В последних годах XVI века он сделал отчет о своей работе, а предметы, способные притягивать другие тела на расстоянии, обозначил термином «наэлектризованные».

Французским физиком Шарлем Дюфе было определено существование зарядов с противоположными знаками: одни образовывались при трении стеклянных предметов о шелковую ткань, а другие - смол по шерсти. Он так и назвал их: стеклянные и смоляные. После завершения исследований Бенджамина Франклина было введено понятие отрицательных и положительных зарядов.

Шарль Кулон реализовал возможность измерения силы зарядов конструкцией крутильных весов собственного изобретения.

Роберт Милликен на основе серии проведенных опытов установил дискретный характер электрических зарядов любого вещества, доказав, что они состоят из определенного количества элементарных частиц. (Не путать с другим понятием этого термина - дробности, прерывистости.)

Труды перечисленных ученых послужили фундаментом современных знаний о процессах и явлениях, происходящих в электрических и магнитных полях, создаваемых электрическими зарядами и их движением, изучаемых электродинамикой.

Определение зарядов и принципы их взаимодействия

Электрическим зарядом характеризуют свойства веществ, обеспечивающих им возможность создавать электрические поля и взаимодействовать в электромагнитных процессах. Еще его называют количеством электричества и определяют как физическую скалярную величину. Для обозначения заряда приняты символы «q» или «Q», а при измерениях используют единицу «Кулон», названную в честь французского ученого, разработавшего уникальную методику.

Им был создан прибор, в корпусе которого использовались подвешенные на тонкой нити из кварца шарики. Они ориентировались в пространстве определенным образом, а их положение регистрировалось относительно проградуированной шкалы с равными делениями.

Через специальное отверстие в крышке к этим шарикам подводился другой шар, обладающий дополнительным зарядом. Возникающие силы взаимодействия заставляли отклоняться шарики, поворачивали их коромысло. Величина разницы отсчетов на шкале до ввода заряда и после него позволяла оценивать количество электричества в испытуемых образцах.

Заряд в 1 кулон характеризуется в системе СИ силой тока в 1 ампер, проходящей через поперечное сечение проводника за время, равное 1 секунде.

Все электрические заряды современная электродинамика разделяет на:

    положительные;

    отрицательные.

При взаимодействии их между собой у них возникают силы, направление которых зависит от существующей полярности.


Одинакового типа заряды, положительные либо отрицательные, всегда отталкиваются в противоположные стороны, стремясь, как можно дальше удалиться друг от друга. А у зарядов противоположных знаков действуют силы, стремящиеся сблизить их и соединить в одно целое.

Принцип суперпозиции

Когда в определенном объеме находится несколько зарядов, то для них действует принцип суперпозиции.


Его смысл в том, что каждый заряд определенным образом по рассмотренному выше способу взаимодействует со всеми остальными, притягиваясь к разноименным и отталкиваясь от однотипных. К примеру, на положительный заряд q1 действует сила притяжения F31 к отрицательному заряду q3 и отталкивания F21 - от q2.

Результирующая сила F1, действующая на q1, определяется геометрическим сложением векторов F31 и F21. (F1= F31+ F21).

Таким же методом определяются действующие результирующие силы F2 и F3 на заряды q2 и q3 соответственно.

Посредством принципа суперпозиции сделан вывод о том, что при определенном количестве зарядов в замкнутой системе между всеми ее телами действуют установившиеся электростатические силы, а потенциал в любой определенной точке этого пространства равен сумме потенциалов от всех отдельно приложенных зарядов.

Действие этих законов подтверждают созданные приборы электроскоп и электрометр , имеющие общий принцип работы.


Электроскоп состоит из двух одинаковых лепестков тонкой фольги, подвешенных в изолированном пространстве на токопроводящей нити, присоединенной к металлическому шарику. В обычном состоянии на этот шарик заряды не действуют, поэтому лепестки свободно висят в пространстве внутри колбы прибора.

Как можно передавать заряд между телами

Если к шарику электроскопа поднести заряженное тело, например, палочку, то заряд пройдет через шарик по токопроводящей нити к лепесткам. Они получат одноименный заряд и станут отодвигаться друг от друга на угол, пропорциональный приложенному количеству электричества.

У электрометра такое же принципиальное устройство, но он имеет небольшие отличия: один лепесток закреплен стационарно, а второй отходит от него и снабжен стрелкой, которая позволяет снимать отсчет с проградуированной шкалы.

Для переноса заряда от удаленного стационарно закрепленного и заряженного тела на электрометр можно воспользоваться промежуточными носителями.


Измерения, сделанные электрометром, не обладают высоким классом точности и на их основе сложно анализировать силы, действующие между зарядами. Для их исследования больше приспособлены крутильные весы Кулона. У них использованы шарики с диаметрами, значительно меньшими, чем их удаление друг от друга. Они обладают свойствами точечных зарядов - заряженных тел, размеры которых не влияют на точность прибора.

Измерения, выполненные Кулоном, подтвердили его догадку о том, что точечный заряд передается от заряженного тела к такому же по свойствам и массе, но незаряженному таким образом, чтобы равномерно распределиться между ними, уменьшаясь на источнике в 2 раза. Таким способом удалось уменьшать величину заряда в два, три и иное количество раз.

Силы, существующие между неподвижными электрическими зарядами, называют кулоновским либо статическим взаимодействием. Их изучает электростатика, являющаяся одним из разделов электродинамики.

Виды носителей электрических зарядов

Современная наука считает самой маленькой отрицательно заряженной частицей электрон , а положительной - позитрон . Они имеют одинаковую массу 9,1·10-31 кг. Элементарная частица протон обладает всего одним положительным зарядом и массой 1,7·10-27 кг. В природе количество положительных и отрицательных зарядов уравновешено.

В металлах движение электронов создает , а в полупроводниках носителями его зарядов являются электроны и дырки.

В газах ток образуется передвижением ионов - заряженных неэлементарных частиц (атомов или молекул) с положительными зарядами, называемыми катионами либо отрицательными - анионами.

Ионы образуются из нейтральных частиц.


Положительный заряд создается у частицы, потерявшей электрон под действием мощного электрического разряда, светового или радиоактивного облучения, потока ветра, движения масс воды или ряда других причин.

Отрицательные ионы образуются из нейтральных частиц, дополнительно получивших электрон.

Использование ионизации в медицинских целях и быту

Исследователи давно заметили способность отрицательных ионов воздействовать на организм человека, улучшать потребление кислорода воздуха, быстрее доставлять его к тканям и клеткам, ускорять процесс окисления серотонина. Это все в комплексе значительно повышает иммунитет, улучшает настроение, снимает боли.

Первый ионизатор, используемый для лечения людей, получил название люстры Чижевского , в честь советского ученого, который создал прибор, благотворно влияющий на здоровье человека.

В современных электроприборах для работы в бытовых условиях можно встретить встроенные ионизаторы в пылесосы, увлажнители воздуха, фены, сушилки…

Специальные ионизаторы воздуха очищают его состав, уменьшают количество пыли и вредных примесей.

Ионизаторы воды способны снижать количество химических реагентов в ее составе. Их используют для очистки бассейнов и водоемов, насыщая воду ионами меди или серебра, которые уменьшают рост водорослей, уничтожают вирусы и бактерии.