Показатель адиабаты для азота при различных давлениях. Требование к отчету по работе. Соотношение использованием числа степеней свободы

Статья является частью одноименной серии. Уравнение состояния Идеальный газ Термодинамические величины Термодинамические потенциалы Термодинамические циклы Фазовые переходы См. также «Физический портал»

Показатель адиабаты (иногда называемый коэффициентом Пуассона ) - отношение теплоёмкости при постоянном давлении ( C P {\displaystyle C_{P}} ) к теплоёмкости при постоянном объёме ( C V {\displaystyle C_{V}} ). Иногда его ещё называют фактором изоэнтропийного расширения . Обозначается греческой буквой ( гамма) или κ {\displaystyle \kappa } ( каппа). Буквенный символ в основном используется в химических инженерных дисциплинах. В теплотехнике используется латинская буква k {\displaystyle k} .

Уравнение:

γ = C P C V = c P c V , {\displaystyle \gamma ={\frac {C_{P}}{C_{V}}}={\frac {c_{P}}{c_{V}}},} C {\displaystyle C} - теплоёмкость газа, c {\displaystyle c} - удельная теплоёмкость (отношение теплоёмкости к единице массы) газа, индексы P {\displaystyle _{P}} и V {\displaystyle _{V}} обозначают условие постоянства давления или постоянства объёма, соответственно.

Для показателя адиабаты справедлива теорема Реша (1854) :

γ = χ t χ s , {\displaystyle \gamma ={\frac {\chi _{t}}{\chi _{s}}},}

где χ t {\displaystyle \chi _{t}} и χ s {\displaystyle \chi _{s}} - изотермический и адиабатический (изоэнтропический) коэффициенты всестороннего сжатия .

Для понимания этого соотношения можно рассмотреть следующий эксперимент. Закрытый цилиндр с закреплённым неподвижно поршнем содержит воздух. Давление внутри равно давлению снаружи. Этот цилиндр нагревается до определённой, требуемой температуры. До тех пор, пока поршень закреплён в неподвижном состоянии, объём воздуха в цилиндре остаётся неизменным, в то время как температура и давление возрастают. Когда требуемая температура будет достигнута, нагревание прекращается. В этот момент поршень «освобождается» и, благодаря этому, начинает перемещаться под давлением воздуха в цилиндре без теплообмена с окружающей средой (воздух расширяется адиабатически). Совершая работу , воздух внутри цилиндра охлаждается ниже достигнутой ранее температуры. Чтобы вернуть воздух к состоянию, когда его температура опять достигнет упомянутого выше требуемого значения (при всё ещё «освобождённом» поршне) воздух необходимо нагреть. Для этого нагревания извне необходимо подвести примерно на 40 % (для двухатомного газа - воздуха) большее количество теплоты, чем было подведено при предыдущем нагревании (с закреплённым поршнем). В этом примере количество теплоты, подведённое к цилиндру при закреплённом поршне, пропорционально C V {\displaystyle C_{V}} , тогда как общее количество подведённой теплоты пропорционально C P {\displaystyle C_{P}} . Таким образом, показатель адиабаты в этом примере равен 1,4 .

Другой путь для понимания разницы между C P {\displaystyle C_{P}} и C V {\displaystyle C_{V}} состоит в том, что C P {\displaystyle C_{P}} применяется тогда, когда работа совершается над системой, которую принуждают к изменению своего объёма (то есть путём движения поршня, который сжимает содержимое цилиндра), или если работа совершается системой с изменением её температуры (то есть нагреванием газа в цилиндре, что вынуждает поршень двигаться). C V {\displaystyle C_{V}} применяется только если P d V {\displaystyle PdV} - а это выражение обозначает совершённую газом работу - равно нулю. Рассмотрим разницу между подведением тепла при закреплённом поршне и подведением тепла при освобождённом поршне. Во втором случае давление газа в цилиндре остаётся постоянным, и газ будет как расширяться, совершая работу над атмосферой, так и увеличивать свою внутреннюю энергию (с увеличением температуры); теплота, которая подводится извне, лишь частично идёт на изменение внутренней энергии газа, в то время как остальное тепло идёт на совершение газом работы.

показатели адиабаты для различных температур и газов
темп. газ темп. газ темп. газ
−181 °C

() До теплоемкости при постоянном объеме (). Иногда его еще называют фактором изоентропийного расширения и обозначают греческой буквой (гамма) или (каппа). Символ в основном используется в химических инженерных дисциплинах. В теплотехнике преимущественно используется латинский буква .

Показатели адиабаты для различных газов
Темп. Газ γ Темп. Газ γ Темп. Газ γ
-181 ? C H 2 1.597 200 ? C Сухой воздух 1.398 20 ? C NO 1.400
-76 ? C 1.453 400 ? C 1.393 20 ? C N 2 O 1.310
20 ? C 1.410 1000 ? C 1.365 -181 ? C N 2 1.470
100 ? C 1.404 2000 ? C 1.088 15 ? C 1.404
400 ? C 1.387 0 ? C CO 2 1.310 20 ? C Cl 2 1.340
1000 ? C 1.358 20 ? C 1.300 -115 ? C CH 4 1.410
2000 ? C 1.318 100 ? C 1.281 -74 ? C 1.350
20 ? C He 1.660 400 ? C 1.235 20 ? C 1.320
20 ? C H 2 O 1.330 1000 ? C 1.195 15 ? C NH 3 1.310
100 ? C 1.324 20 ? C CO 1.400 19 ? C Ne 1.640
200 ? C 1.310 -181 ? C O 2 1.450 19 ? C Xe 1.660
-180 ? C Ar 1.760 -76 ? C 1.415 19 ? C Kr 1.680
20 ? C 1.670 20 ? C 1.400 15 ? C SO 2 1.290
0 ? C Сухой воздух 1.403 100 ? C 1.399 360 ? C Hg 1.670
20 ? C 1.400 200 ? C 1.397 15 ? C C 2 H 6 1.220
100 ? C 1.401 400 ? C 1.394 16 ? C C 3 H 8 1.130
- Это теплоемкость газа; - удельная теплоемкость (отношение теплоемкости к единице массы) газа.

Индексы и обозначают условие постоянства давления или объема соответственно.

Для понимания этого соотношения можно рассмотреть следующий эксперимент:

Закрытый цилиндр с закрепленным неподвижно поршнем содержит воздуха. Давление внутри равно давлению извне. Этот цилиндр нагревается до определенной, необходимой температуры. Пока поршень не двигается, объем воздуха в цилиндре остается постоянным, в то время как температура и давление возрастают. Когда необходимая температура будет достигнута, нагрев прекращается. В этот момент поршень "освобождается" и, благодаря этому, он начинает двигаться без теплообмена с окружающей средой (воздух расширяется адиабатически). Осуществляя работу, воздух внутри цилиндра охлаждается ниже достигнутой ранее температуры. Чтобы вернуть воздуха до состояния, когда его температура вновь достигнет упомянутого выше требуемого значения (при "освобожденном" поршни) воздуха необходимо дополнительно нагреть. Для этого нагрев извне необходимо подвести примерно на 40% (для двухатомного газа - воздух) большее количество теплоты, чем были подведены при предварительном нагреве (с закрепленным поршнем). В этом примере количество теплоты, подведена к цилиндру с закрепленным поршнем, пропорциональна , Тогда как общее количество подведенной теплоты пропорциональна . Таким образом, показатель адиабаты в этом примере составит 1,4.

Другой подход для понимания разницы между и заключается в том, что применяется тогда, когда работа осуществляется над системой, принуждают к изменению своего объема (т.е. путем движения поршня, сжимающего содержание цилиндра), или если работа осуществляется системой с изменением ее температуры (т.е. нагревом газа в цилиндре, что заставляет поршень двигаться) . применяется только если выполнено газом работа равна нулю (). Отметим различие между подводом тепла при закрепленном поршни и подводом тепла при освобожденном поршни. Во втором случае давление газа в цилиндре остается постоянным, и газ будет расширяться, совершая работу как по перемещению поршня, так и увеличивая свою внутреннюю энергию (с увеличением температуры); теплота, которая подводится извне, частично идет на изменение внутренней энергии газа, тогда как остальные тепла уходит на выполнение газом работы.


1. Соотношение для идеального газа

1.1. Соотношение использованием универсальной газовой постоянной

Для идеального газа теплоемкость не зависит от температуры. Соответственно, можно выразить энтальпию как и внутренняя энергия может быть представлена ​​как . Таким образом, можно сказать, что показатель адиабаты - это отношение энтальпии к внутренней энергии:

С другой стороны, теплоемкости могут быть выражены также через показатель адиабаты () И универсальную газовую постоянную ():

Может оказаться, что трудно будет найти информацию о табличные значения , В то время как табличные значения приводятся чаще. В этом случае можно использовать следующую формулу для определения :


1.2. Соотношение использованием числа степеней свободы

Показатель адиабаты () Для идеального газа может быть выражен через число степеней свободы () Молекул газа:

Таким образом, для одноатомного идеального газа (три степени свободы) показатель адиабаты равен:

,

в то время как для двухатомного идеального газа (пять степеней свободы) (при комнатной температуре):

.

Воздуха на земле представляет собой в основном смесь двухатомных газов (~ 78% азот а (N 2) и ~ 21% кислород а (O 2)), и при нормальных условиях его можно рассматривать как идеальный. Двухатомный газ имеет пять степеней (три поступательных и два вращательных степени свободы). Как следствие, показатель адиабаты для воздуха имеет величину:

.

Это хорошо согласуется с экспериментальными измерениями показателя адиабаты воздуха, примерно дают значения 1,403 (приведенное выше в таблице).


2. Соотношение для реальных газов

По мере того, как температура растет, високоенергетичниши вращательные и колебательные состояния становятся доступными для молекулярных газов, и таким образом, количество степеней свободы растет, а показатель адиабаты уменьшается.

Статья является частью одноименной серии. Уравнение состояния Идеальный газ Термодинамические величины Термодинамические потенциалы Термодинамические циклы Фазовые переходы См. также «Физический портал»

Показатель адиабаты (иногда называемый коэффициентом Пуассона ) - отношение теплоёмкости при постоянном давлении ( C P {\displaystyle C_{P}} ) к теплоёмкости при постоянном объёме ( C V {\displaystyle C_{V}} ). Иногда его ещё называют фактором изоэнтропийного расширения . Обозначается греческой буквой ( гамма) или κ {\displaystyle \kappa } ( каппа). Буквенный символ в основном используется в химических инженерных дисциплинах. В теплотехнике используется латинская буква k {\displaystyle k} .

Уравнение:

γ = C P C V = c P c V , {\displaystyle \gamma ={\frac {C_{P}}{C_{V}}}={\frac {c_{P}}{c_{V}}},} C {\displaystyle C} - теплоёмкость газа, c {\displaystyle c} - удельная теплоёмкость (отношение теплоёмкости к единице массы) газа, индексы P {\displaystyle _{P}} и V {\displaystyle _{V}} обозначают условие постоянства давления или постоянства объёма, соответственно.

Для показателя адиабаты справедлива теорема Реша (1854) :

γ = χ t χ s , {\displaystyle \gamma ={\frac {\chi _{t}}{\chi _{s}}},}

где χ t {\displaystyle \chi _{t}} и χ s {\displaystyle \chi _{s}} - изотермический и адиабатический (изоэнтропический) коэффициенты всестороннего сжатия .

Для понимания этого соотношения можно рассмотреть следующий эксперимент. Закрытый цилиндр с закреплённым неподвижно поршнем содержит воздух. Давление внутри равно давлению снаружи. Этот цилиндр нагревается до определённой, требуемой температуры. До тех пор, пока поршень закреплён в неподвижном состоянии, объём воздуха в цилиндре остаётся неизменным, в то время как температура и давление возрастают. Когда требуемая температура будет достигнута, нагревание прекращается. В этот момент поршень «освобождается» и, благодаря этому, начинает перемещаться под давлением воздуха в цилиндре без теплообмена с окружающей средой (воздух расширяется адиабатически). Совершая работу , воздух внутри цилиндра охлаждается ниже достигнутой ранее температуры. Чтобы вернуть воздух к состоянию, когда его температура опять достигнет упомянутого выше требуемого значения (при всё ещё «освобождённом» поршне) воздух необходимо нагреть. Для этого нагревания извне необходимо подвести примерно на 40 % (для двухатомного газа - воздуха) большее количество теплоты, чем было подведено при предыдущем нагревании (с закреплённым поршнем). В этом примере количество теплоты, подведённое к цилиндру при закреплённом поршне, пропорционально C V {\displaystyle C_{V}} , тогда как общее количество подведённой теплоты пропорционально C P {\displaystyle C_{P}} . Таким образом, показатель адиабаты в этом примере равен 1,4 .

Другой путь для понимания разницы между C P {\displaystyle C_{P}} и C V {\displaystyle C_{V}} состоит в том, что C P {\displaystyle C_{P}} применяется тогда, когда работа совершается над системой, которую принуждают к изменению своего объёма (то есть путём движения поршня, который сжимает содержимое цилиндра), или если работа совершается системой с изменением её температуры (то есть нагреванием газа в цилиндре, что вынуждает поршень двигаться). C V {\displaystyle C_{V}} применяется только если P d V {\displaystyle PdV} - а это выражение обозначает совершённую газом работу - равно нулю. Рассмотрим разницу между подведением тепла при закреплённом поршне и подведением тепла при освобождённом поршне. Во втором случае давление газа в цилиндре остаётся постоянным, и газ будет как расширяться, совершая работу над атмосферой, так и увеличивать свою внутреннюю энергию (с увеличением температуры); теплота, которая подводится извне, лишь частично идёт на изменение внутренней энергии газа, в то время как остальное тепло идёт на совершение газом работы.

показатели адиабаты для различных температур и газов
темп. газ темп. газ темп. газ
−181 °C

Расчет давления во фронте воздушной ударной волны при разрушении емкости проводится по формулам (3.12), (3.45), в последней из которых величина aMQ v н заменяется на Е, значение коэффициента b 1 = 0,3.

Серьезную опасность представляет разлет осколков, образующихся при разрушении емкости. Движение осколка с известной начальной скоростью можно описать системой уравнений вида

\s\up15(x" = -\f((0C1S1 \b (x" -\f((0C2S2 \b (x"2 + y"2 (3.45)

где m - масса осколка, кг;C 1 ,C 2 - коэффициенты лобового сопротивления и подъемной силы осколка соответственно;S 1 ,S 2 - площадь лобовой и боковой поверхности осколка, м 2 ;r 0 - плотность воздуха, кг/м 3 ;a - угол вылета осколка;x, y - координатные оси.

Решение этой системы уравнений приведено на рис. 3.7.

В приближенных расчетах для оценки дальности разлета осколков допускается использовать соотношение

где L m - максимальная дальность разлета осколков, м;V 0 - начальная скорость полета осколков,м/с;g = 9,81 м/с 2 - ускорение свободного падения.

Соотношение (3.46) получено для случая полета осколков в безвоздушном пространстве. При больших величинах V 0 оно дает завышение значения L m . Дальность L m , определенную таким образом, следует ограничить сверху величиной L *

L m £ L * = 238 3.47,

где Е - энергия рассматриваемого взрыва, Дж;Q v тр - теплота взрыва тротила (табл.2), Дж/кг.Значения L * получены при взрывах тротиловых зарядов в металлической оболочке (бомб, снарядов).

При взрыве емкости со сжатым горючим газом энергия взрыва Е, Дж, находится по соотношению

E = + MQ v п 3.48,

где M = awM 0 - масса газа, участвующего во взрыве, кг;Q v п - теплота взрыва горючего газа, Дж/кг;a, w - коэффициенты, определяемые согласно (3.32), (3.45);

Масса газа в емкости до взрыва M 0 = Vr 0 , где величины P 0 , P г, V имеют то же значение, что и в формуле (3.46), а величина r 0 - плотность газа при атмосферном давлении.



Как отмечалось в разделе 3.4, показатель адиабаты продуктов взрыва ГВС g » 1,25. Более точные значения показателя адиабаты некоторых газов, используемые для расчета последствий взрыва, приведены в табл.3.8.

Таблица 3.8

В рассматриваемом случае также имеет место соотношение Е »E ув + Е оск + Е т, где Е - энергия взрыва, Е ув = b 1 Е - энергия, расходуемая на формирование воздушной ударной волны, Е оск = b 2 Е - кинетическая энергия осколков, Е т = b 0 Е - энергия, идущая на тепловое излучение. Согласно данным здесь коэффициенты b 1 = 0,2, b 2 = 0,5, b 3 = 0,3.

Расчет давления во фронте воздушной ударной волны и дальности разлета осколков при известных значениях энергии взрыва Е и коэффициентов b 1 , b 2 , b 3 приводится по аналогии с рассмотренным случаем взрыва емкости с инертным газом.

Необходимо отметить различие событий, происходящих при разгерметизации сосудов, содержащих газ под давлением, и сосудов, содержащих сжиженные газы. Если в первом случае основным поражающим фактором являются осколки оболочки, то во втором - осколки могут не образоваться, так как при нарушении герметичности баллонов с сжиженными газами их внутреннее давление практически одновременно с разгерметизацией становится равным внешнему и далее вступают в действие процессы истечения сжиженного газа из разрушенного баллона в окружающую среду и его испарения. При этом в случае взрыва основными поражающими факторами являются ударная волна и тепловое излучение.