Определение заряда иона водорода. Случай исцеления от саркомы. Кислород и водород в «дыхательной топке» организма

Говорят: «не знаешь закон Ома – сиди дома». Так давайте же узнаем (вспомним), что это за закон, и смело пойдем гулять.

Основные понятия закона Ома

Как понять закон Ома? Нужно просто разобраться в том, что есть что в его определении. И начать следует с определения силы тока, напряжения и сопротивления.

Сила тока I

Пусть в каком-то проводнике течет ток. То есть, происходит направленное движение заряженных частиц – допустим, это электроны. Каждый электрон обладает элементарным электрическим зарядом (e= -1,60217662 × 10 -19 Кулона). В таком случае через некоторую поверхность за определенный промежуток времени пройдет конкретный электрический заряд, равный сумме всех зарядов протекших электронов.

Отношение заряда к времени и называется силой тока. Чем больший заряд проходит через проводник за определенное время, тем больше сила тока. Сила тока измеряется в Амперах .

Напряжение U, или разность потенциалов

Это как раз та штука, которая заставляет электроны двигаться. Электрический потенциал характеризует способность поля совершать работу по переносу заряда из одной точки в другую. Так, между двумя точками проводника существует разность потенциалов, и электрическое поле совершает работу по переносу заряда.

Физическая величина, равная работе эффективного электрического поля при переносе электрического заряда, и называется напряжением. Измеряется в Вольтах . Один Вольт – это напряжение, которое при перемещении заряда в 1 Кл совершает работу, равную 1 Джоуль .

Сопротивление R

Ток, как известно, течет в проводнике. Пусть это будет какой-нибудь провод. Двигаясь по проводу под действием поля, электроны сталкиваются с атомами провода, проводник греется, атомы в кристаллической решетке начинают колебаться, создавая электронам еще больше проблем для передвижения. Именно это явление и называется сопротивлением. Оно зависит от температуры, материала, сечения проводника и измеряется в Омах .


Формулировка и объяснение закона Ома

Закон немецкого учителя Георга Ома очень прост. Он гласит:

Сила тока на участке цепи прямо пропорционально напряжению и обратно пропорциональна сопротивлению.

Георг Ом вывел этот закон экспериментально (эмпирически) в 1826 году. Естественно, чем больше сопротивление участка цепи, тем меньше будет сила тока. Соответственно, чем больше напряжение, тем и ток будет больше.

Кстати! Для наших читателей сейчас действует скидка 10% на

Данная формулировка закона Ома – самая простая и подходит для участка цепи. Говоря "участок цепи" мы подразумеваем, что это однородный участок, на котором нет источников тока с ЭДС. Говоря проще, этот участок содержит какое-то сопротивление, но на нем нет батарейки, обеспечивающей сам ток.

Если рассматривать закон Ома для полной цепи, формулировка его будет немного иной.

Пусть у нас есть цепь, в ней есть источник тока, создающий напряжение, и какое-то сопротивление.

Закон запишется в следующем виде:

Объяснение закона Ома для полой цепи принципиально не отличается от объяснения для участка цепи. Как видим, сопротивление складывается из собственно сопротивления и внутреннего сопротивления источника тока, а вместо напряжения в формуле фигурирует электродвижущая сила источника.

Кстати, о том, что такое что такое ЭДС , читайте в нашей отдельной статье.

Как понять закон Ома?

Чтобы интуитивно понять закон Ома, обратимся к аналогии представления тока в виде жидкости. Именно так думал Георг Ом, когда проводил опыты, благодаря которым был открыт закон, названный его именем.

Представим, что ток – это не движение частиц-носителей заряда в проводнике, а движение потока воды в трубе. Сначала воду насосом поднимают на водокачку, а оттуда, под действием потенциальной энергии, она стремиться вниз и течет по трубе. Причем, чем выше насос закачает воду, тем быстрее она потечет в трубе.

Отсюда следует вывод, что скорость потока воды (сила тока в проводе) будет тем больше, чем больше потенциальная энергия воды (разность потенциалов)

Сила тока прямо пропорциональна напряжению.

Теперь обратимся к сопротивлению. Гидравлическое сопротивление – это сопротивление трубы, обусловленное ее диаметром и шероховатостью стенок. Логично предположить, что чем больше диаметр, тем меньше сопротивление трубы, и тем большее количество воды (больший ток) протечет через ее сечение.

Сила тока обратно пропорциональна сопротивлению.

Такую аналогию можно проводить лишь для принципиального понимания закона Ома, так как его первозданный вид – на самом деле довольно грубое приближение, которое, тем не менее, находит отличное применение на практике.

В действительности, сопротивление вещества обусловлено колебанием атомов кристаллической решетки, а ток – движением свободных носителей заряда. В металлах свободными носителями являются электроны, сорвавшиеся с атомных орбит.


В данной статье мы постарались дать простое объяснение закона Ома. Знание этих на первый взгляд простых вещей может сослужить Вам неплохую службу на экзамене. Конечно, мы привели его простейшую формулировку закона Ома и не будем сейчас лезть в дебри высшей физики, разбираясь с активным и реактивным сопротивлениями и прочими тонкостями.

Если у Вас возникнет такая необходимость, Вам с удовольствием помогут сотрудники нашего . А напоследок предлагаем Вам посмотреть интересное видео про закон Ома. Это действительно познавательно!

Закон Ома является основным законом, который используют при расчетах цепей постоянного тока. Он является фундаментальным и может применяться для любых физических систем, где есть потоки частиц и поля, преодолевается сопротивление.

Законы или правила Кирхгофа являются приложением к закону Ома, используемым для расчета сложных электрических цепей постоянного тока.

Закон Ома

Обобщенный закон Ома для неоднородного участка цепи (участка цепи, содержащего источник ЭДС) имеет вид:

Разность потенциалов на концах участка цепи; - ЭДС источника на рассматриваемом участке цепи; R - внешнее сопротивление цепи; r - внутреннее сопротивление источника ЭДС. Если цепь разомкнута, значит, тока в ней нет (), то из (2) получим:

ЭДС, действующая в незамкнутой цепи, равна разности потенциалов на ее концах. Получается, для нахождения ЭДС источника следует измерить разность потенциалов на его клеммах при незамкнутой цепи.

Закон Ома для замкнутой цепи записывают как:

Величину иногда называют полным сопротивлением цепи. Формула (2) показывает, что электродвижущая сила источника тока, деленная на полное сопротивление равна силе тока в цепи.

Закон Кирхгофа

Пусть имеется произвольная разветвленная сеть проводников. В отдельных участках включены разнообразные источники тока. ЭДС источников постоянны и будем считать известными. При этом токи во всех участках цепи и разности потенциалов на них можно вычислить при помощи закона Ома и закона сохранения заряда.

Для упрощения решения задач по расчетам разветвлённых электрических цепей, имеющих несколько замкнутых контуров, несколько источников ЭДС, используют законы (или правила) Кирхгофа. Правила Кирхгофа служат для того, чтобы составить систему уравнений, из которой находят силы тока в элементах сложной разветвленной цепи.

Первый закон Кирхгофа

Сумма токов в узле цепи с учетом их знаков равна нулю:

Первое правило Кирхгофа является следствием закона сохранения электрического заряда. Алгебраическая сумма токов, сходящихся в любом узле цепи - это заряд, который приходит в узел за единицу времени.

При составлении уравнение используя законы Кирхгофа важно учитывать знаки с которыми силы токов входят в эти уравнения. Следует считать, что токи, идущие к точке разветвления, и исходящие от разветвления имеют противоположные знаки. При этом нужно для себя определить какое направление (к узлу или от узла) считать положительным.

Второй закон Кирхгофа

Произведение алгебраической величины силы тока (I) на сумму вешних и внутренних сопротивлений всех участков замкнутого контура равно сумме алгебраических значений сторонних ЭДС () рассматриваемого контура:

Каждое произведение определяет разность потенциалов, которая существовала бы между концами соответствующего участка, если бы ЭДС в нем была равно нулю. Величину называют падением напряжения, которое вызывается током.

Второй закон Кирхгофа иногда формулируют следующим образом:

Для замкнутого контура сумма падений напряжения есть сума ЭДС в рассматриваемом контуре.

Второе правило (закон) Кирхгофа является следствием обобщенного закона Ома. Так, если в изолированной замкнутой цепи есть один источник ЭДС, то сила тока в цепи будет такой, что сумма падения напряжения на внешнем сопротивлении и внутреннем сопротивлении источника будет равна сторонней ЭДС источника. Если источников ЭДС несколько, то берут их алгебраическую сумму. Знак ЭДС выбирается положительным, если при движении по контуру в положительном направлении первым встречается отрицательный полюс источника. (За положительное направление обхода контура принимают направление обхода цепи либо по часовой стрелке, либо против нее).

Примеры решения задач

ПРИМЕР 1

Задание Вольтметр включили последовательно в цепь с сопротивлением, равным , при этом прибор показал напряжение . Сопротивление заменили на . При этом показания вольтметра изменились, и напряжение на вольтметре стало . Каково сопротивление , если сопротивление вольтметра равно r?


Решение По закону Ома сила тока, которая течет через вольтметр и сопротивление равна (в первом случае рис.1(а)):

Во втором случае:

Сила тока в любом месте цепи рис.1(а) равна , следовательно, напряжение, которое показывает вольтметр в первом случае равно:

Из (1.3), получим:

Во втором случае, имеем:

Приравняем левые части выражений (1.4) и (1.5):

Из формулы (1.6), выразим искомое сопротивление:

В 1827 году Георг Ом опубликовал свои исследования, которые составляют основу формулы, используемую и по сей день. Ом выполнил большую серию экспериментов, которые показали связь между приложенным напряжением и током, протекающим через проводник.

Этот закон является эмпирическим, то есть основанный на опыте. Обозначение «Ом» принято в качестве официальной единицы СИ для электрического сопротивления.

Закон Ома для участка цепи гласит, что электрический ток в проводнике прямо пропорционален разности потенциалов в нем и обратно пропорционален его сопротивлению. Принимая во внимание, что сопротивление проводника (не путать с ) величина постоянная, можно оформить это следующей формулой:

  • I — тока в амперах (А)
  • V — напряжение в вольтах (В)
  • R — сопротивления в омах (Ом)

Для наглядности: резистор имеющий сопротивление 1 Ом, через который протекает ток силой в 1 А на своих выводах имеет разность потенциалов (напряжение) в 1 В.

Немецкий физик Кирхгоф (известен своими правилами Кирхгофа) сделал обобщение, которое больше используется в физике:

  • σ – проводимость материала
  • J — плотность тока
  • Е — электрическое поле.

Закон Ома и резистор

Резисторы являются пассивными элементами, которые оказывают сопротивление потоку электрического тока в цепи. , который функционирует в соответствии с законом Ома, называется омическим сопротивлением. Когда ток проходит через такой резистор, то падение напряжения на его выводах пропорционально величине сопротивления.

Формула Ома остается справедливой и для цепей с переменным напряжением и током. Для конденсаторов и катушек индуктивности закон Ома не подходит, так как их ВАХ (вольт-амперная характеристика) по сути, не является линейной.

Формула Ома действует так же для схем с несколькими резисторами, которые могут быть соединены последовательно, параллельно или иметь смешанное соединение. Группы резисторов, соединенные последовательно или параллельно могут быть упрощены в виде эквивалентного сопротивления.

В статьях о и соединении более подробно описано как это сделать.

Немецкий физик Георг Симон Ом опубликовал в 1827 свою полную теорию электричества под названием «теория гальванической цепи». Он нашел, что падение напряжения на участке цепи является результатом работы тока, протекающего через сопротивление этого участка цепи. Это легло в основу закона, который мы используем сегодня. Закон является одним из основных уравнений для резисторов.

Закон Ома — формула

Формула закона Ома может быть использована, когда известно две из трех переменных. Соотношение между сопротивлением, током и напряжением может быть записано по-разному. Для усвоения и запоминания может быть полезен «треугольник Ома».

Ниже приведены два примера использования такого треугольного калькулятора.

Имеем резистор сопротивлением в 1 Ом в цепи с падением напряжения от 100В до 10В на своих выводах. Какой ток протекает через этот резистор? Треугольник напоминает нам, что:
Имеем резистор сопротивлением в 10 Ом через который протекает ток в 2 Ампера при напряжении 120В. Какое будет падение напряжения на этом резисторе? Использование треугольника показывает нам, что: Таким образом, напряжение на выводе будет 120-20 = 100 В.

Закон Ома — мощность

Когда через резистор протекает электрический ток, он рассеивает определенную часть мощности в виде тепла.

Мощность является функцией протекающего тока I (А) и приложенного напряжения V (В):

  • Р — мощность в ваттах (В)

В сочетании с законом Ома для участка цепи, формулу можно преобразовать в следующий вид:

Идеальный резистор рассеивает всю энергию и не сохраняет электрическую или магнитную энергию. Каждый резистор имеет предел мощности, которая может быть рассеяна, не оказывая повреждение резистору. Это мощность называется номинальной.

Окружающие условия могут снизить или повысить это значение. Например, если окружающий воздух горячий, то способность рассеять излишнее тепло у резистора снижается, и на оборот, при низкой температуре окружающего воздух рассеиваемая способность резистора возрастает.

На практике, резисторы редко имеют обозначение номинальной мощности. Тем не менее, большинство из резисторов рассчитаны на 1/4 или 1/8 Вт.

Ниже приведена круговая диаграмма, которая поможет вам быстро определить связь между мощностью, силой тока, напряжением и сопротивлением. Для каждого из четырех параметров показано, как вычислить свое значение.

Закон Ома — калькулятор

Данный онлайн калькулятор закона Ома позволяет определить взаимосвязь между силой тока, электрическим напряжением, сопротивлением проводника и мощностью. Для расчета введите любые два параметра и нажмите кнопку расчет.

Из формулы (66.2), объединяющей оба закона Фарадея, следует, что если заряд численно равен постоянной Фарадея , то масса равна , т. е. при прохождении через электролит заряда, равного 96 484 Кл, выделяется [кг] любого вещества, т. е. моля этого вещества. Иначе говоря, для выделения одного моля вещества через электролит должен протечь заряд , численно равный [Кл]. Таким образом, при выделении моля одновалентного вещества (1,008 г водорода, 22,99 г натрия, 107,87 г серебра и т. д.) через электролит проходит заряд, численно равный Кл; при выделении моля двухвалентного вещества (16,00 г кислорода, 65,38 г цинка, 63,55 г меди и т. д.) через электролит проходит заряд, численно равный Кл, и т. д.

Но мы знаем, что в одном моле любого вещества содержится одно и то же число атомов, равное постоянной Авогадро моль-1. Таким образом, каждый, ион одновалентного вещества, выделяющийся на электроде, несет на себе заряд

Кл. (69.1)

При выделении каждого атома двухвалентного вещества через электролит проходит заряд Кл, вдвое больший, и т. д. Вообще при выделении каждого атома -валентного вещества через электролит переносится заряд [Кл].

Мы видим, что заряды, переносимые при электролизе с каждым ионом, представляют собой целые кратные некоторого минимального количества электричества, равного Кл. Любой одновалентный ион (ион калия, серебра и т. д.) переносит один такой заряд. Любой двухвалентный ион (ион цинка, ртути и т. д.) переносит два таких заряда. Никогда не встречаются при электролизе случаи, когда бы с ионом переносился заряд, содержащий дробную часть от Кл. Немецкий физик и физиолог Герман Гельмгольц (1821-1894), обративший внимание на это следствие из закона Фарадея, сделал отсюда заключение, что указанное количество электричества Кл представляет собой наименьшее количество электричества, существующее в природе; этот минимальный заряд получил название элементарного заряда. Одновалентные анионы (ионы хлора, йода и т. д.) несут на себе один отрицательный элементарный заряд, одновалентные катионы (ионы водорода, натрия, калия, серебра и т. д.) – один положительный элементарный заряд, двухвалентные анионы – два отрицательных элементарных заряда, двухвалентные катионы – два положительных элементарных заряда и т. д.

Таким образом, в явлениях электролиза исследователи впервые столкнулись с проявлениями дискретной (прерывистой) природы электричества (§ 5) и сумели определить элементарный электрический заряд. Позже были обнаружены и другие явления, в которых проявляется дискретная природа электричества, и были найдены другие способы измерения элементарного отрицательного заряда – заряда электрона. Все эти измерения дали для заряда электрона то же значение, какое мы получили только что из закона Фарадея. Это является лучшим подтверждением правильности того ионного механизма прохождения тока через электролиты, который мы обрисовали в предыдущем параграфе.

Ионы принято обозначать знаками «+» или «-» около соответствующих формул (обычно справа вверху). Число знаков «+» или «-» равно валентности иона (например, ионы меди бывают или , ионы хлора – только , и т. д.).

... ». Как же плохо хорошо учиться в школе. Я еще тогда усвоил, что вода состоит из двух атомов водорода и одного - кислорода, и диссоциирует на два иона H+ и OH-. Видимо, я упустил какое-то высшее знание, согласно которому в воде теперь не атомарный, а молекулярный водород . Газ. Хотя да, все правильно, ведь первая ж часть формулы воды - «H2».И только потом «О». Два...

https://www.сайт/journal/118186

Взаимодействия между ковалентными и водородными связями между атомами кислорода и атомами водорода может происходить миграция протона (Н+) по эстафетному механизму, приводящие к... обезличенности информации (более обобщённая информация), осуществляется с участием ионов , пептидов, аминокислот на уровне клеточных мембран (определённые клетки... (Gaston Naessens) (Канада) сообщали о наблюдении таких микрочастиц, обладающих отрицательным электрическим зарядом, в крови и других живых жидкостях. В целом можно...

https://www.сайт/journal/114229

Формы воды, которая буквально пропитывает минерал. Исследователи нашли в лунном апатите ионы гидроокиси - отрицательно заряженные молекулы, аналогичные тем, из которых состоит вода, но лишенные одного атома водорода . По мнению ученых, вода на Луне находится повсюду - ... будет гораздо проще, чем предполагалось, создать на лунной поверхности космическую станцию. Вода, разделенная на водород и кислород, послужит источником ракетного топлива для полетов на другие планеты, а кислород будет...

https://www.сайт/journal/129842

водород . Водород ионная Ионный

https://www..html

Разложены: таковы золото, железо, а также иные газы, как, например, водород . Но алхимики думают, что атомы, на которые наука разлагает простые тела, ... лучи астраля имеют символом солнце и красный цвет и называются по-еврейски - аод; отрицательные же лучи имеют символом луну и голубой Цвет И называются по-еврейски аоб. Аод... называются вместе аор, что и Значит астраль или астральный Свет. В основании аода лежит "иона " сила расширения пространства и жизни (ее символ - голубь), а в основании аоба Лежит...

https://www.сайт/magic/11716

Фотонные свойства. Первоосновой является, как Вы помните со школьной скамьи, водород . Водород меняет свои доядерные свойства. Это выражается в том, что меняется ионная среда. То есть, сегодня существуют эмпирические факты, отслеженные факты, которые... может произойти оплодотворение. Вне этого диапазона зачатие будет невозможным. Биопроцесс, который происходит в человеке, тоже нарушен. Ионный диапазон у человека несколько шире, чем у рыб. Но нам нельзя допускать, чтобы он сузился, иначе детородная...

https://www.сайт/journal/140254

Может быть обусловлена рядом причин. Возможно накопление в тканях ионов аммония или молочной кислоты, могут быть и нейропсихические нарушения... дым, является смертельным коктейлем включающим: мышьяк, полоний-210, метан, водород , аргон и цианистый водород (более 4000 компонентов, многие из которых являются фармакологически активными, токсичными... или запоров. Всем этим нарушениям могут предшествовать: острые отрицательные эмоции, конфликтные ситуации, психические травмы с последующим нарушением...

https://www.сайт/magic/16663

Скорость истечения относительно ракеты, считаемая постоянной. Для термоядерной реакции превращения водорода в гелий a=0,0066, так что w/c=0,115. При реакции аннигиляции вещества... w/c мало и составляет 0,12 при b=0,5. Таким образом, применение на ионной ракете в качестве источника энергии аннигиляционного реактора позволяет достичь огромных скоростей... Такой парус, напоминающий рыболовную сеть и работающий на основе отрицательного фотофореза, по оценкам физиков, может приводить в движение небольшие...