Марковский случайный процесс. Основные понятия марковских процессов. Марковский процесс с дискретным временем

Многие операции, которые приходится анализировать при выборе оптимального решения, развиваются как случайные процессы, зависящие от ряда случайных факторов.

Для математического описания многих операций, развивающихся в форме случайного процесса, может быть с успехом применен математический аппарат, разработанный в теории вероятностей для так называемых марковских случайных процессов.

Поясним понятие марковского случайного процесса.

Пусть имеется некоторая система S, состояние которой меняется с течением времени (под системой S может пониматься все что угодно: промышленное предприятие, техническое устройство, ремонтная мастерская и т. д.). Если состояние системы S меняется во времени случайным, заранее непредсказуемым образом, говорят, что в системе S протекает случайный процесс.

Примеры случайных процессов:

флуктуации цен на фондовом рынке;

обслуживание клиентов в парикмахерской или ремонтной мастерской;

выполнение плана снабжения группы предприятий и т. д.

Конкретное протекание каждого из этих процессов зависит от ряда случайных, заранее непредсказуемых факторов, таких как:

поступление на фондовый рынок непредсказуемых известий о политических изменениях;

случайный характер потока заявок (требований), поступающих со стороны клиентов;

случайные перебои в выполнении плана снабжения и т. д.

ОПРЕДЕЛЕНИЕ. Случайный процесс, протекающий в системе, называется марковским (или процессом без последствия ), если он обладает следующим свойством: для каждого момента времени t 0 вероятность любого состояния системы в будущем (при t > t 0) зависит только от ее состояния в настоящем (при t = t 0) и не зависит от того, когда и каким образом система пришла в это состояние (т. е. как развивался процесс в прошлом).

Другими словами, в марковском случайном процессе будущее развитие его зависит только от настоящего состояния и не зависит от “предыстории” процесса.

Рассмотрим пример. Пусть система S представляет собой фондовый рынок, который уже существует какое-то время. Нас интересует, как будет работать система в будущем. Ясно, по крайней мере в первом приближении, что характеристики работы в будущем (вероятности падения цен конкретных акций через неделю) зависят от состояния системы в настоящий момент (здесь могут вмешаться самые различные факторы типа решений правительства или результатов выборов) и не зависят от того, когда и как система достигла своего настоящего состояния (не зависят от характера движения цен на эти акции в прошлом).

На практике часто встречаются случайные процессы, которые, с той или другой степенью приближения можно считать марковскими.

Теория марковских случайных процессов имеет широкий спектр различных приложений. Нас будет интересовать главным образом применение теории марковских случайных процессов к построению математических моделей операций, ход и исход которых существенно зависит от случайных факторов.

Марковские случайные процессы подразделяются на классы в зависимости от того, как и в какие моменты времени система S" может менять свои состояния.

ОПРЕДЕЛЕНИЕ. Случайный процесс называется процессом с дискретными состояниями, если возможные состояния системы s x , s 2 , s v ... можно перечислить (пронумеровать) одно за другим, а сам процесс состоит в том, что время от времени система S скачком (мгновенно) перескакивает из одного состояния в другое.

Например, разработку проекта S осуществляют совместно два отдела, каждый из которых может совершить ошибку. Возможны следующие состояния системы:

5, - оба отдела работают нормально;

s 2 - первый отдел совершил ошибку, второй работает нормально;

s 3 - второй отдел совершил ошибку, первый работает нормально;

s 4 - оба отдела совершили ошибку.

Процесс, протекающий в системе, состоит в том, что она случайным образом в какие-то моменты времени переходит («перескакивает») из состояния в состояние. Всего у системы четыре возможных состояния. Перед нами - процесс с дискретными состояниями.

Кроме процессов с дискретными состояниями существуют случайные процессы с непрерывными состояниями : для этих процессов характерен постепенный, плавный переход из состояния в состояние. Например, процесс изменения напряжения в осветительной сети представляет собой случайный процесс с непрерывными состояниями.

Мы будем рассматривать только случайные процессы с дискретными состояниями.

При анализе случайных процессов с дискретными состояниями очень удобно пользоваться геометрической схемой - так называемым графом состояний. Граф состояний геометрически изображает возможные состояния системы и ее возможные переходы из состояния в состояние.

Пусть имеется система S с дискретными состояниями:

Каждое состояние будем изображать прямоугольником, а возможные переходы (“перескоки”) из состояния в состояние - стрелками, соединяющими эти прямоугольники. Пример графа состояния приведен на рис. 4.1.

Заметим, что стрелками отмечаются только непосредственные переходы из состояния в состояние; если система может перейти из состояния s 2 в 5 3 только через s y то стрелками отмечаются только переходы s 2 -> и л, 1 -> 5 3 , но не s 2 s y Рассмотрим несколько примеров:

1. Система S - фирма, которая может находиться в одном из пяти возможных состояний: s ] - работает с прибылью;

s 2 - утратила перспективу развития и перестала приносить прибыль;

5 3 - стала объектом для потенциального поглощения;

s 4 - находится под внешним управлением;

s 5 - имущество ликвидируемой фирмы продается на торгах.

Граф состояний фирмы показан на рис. 4.2.

Рис. 4.2

  • 2. Система S - банк, имеющий два отделения. Возможны следующие состояния системы:
  • 5, - оба отделения работают с прибылью;

s 2 - первое отделение работает без прибыли, второе работает с прибылью;

5 3 - второе отделение работает без прибыли, первое работает с прибылью;

s 4 - оба отделения работают без прибыли.

Предполагается, что улучшение состояния не происходит.

Граф состояний представлен на рис. 4.3. Отметим, что на графе не показан возможный переход из состояния s ] непосредственно в s 4 , который осуществится, если банк сразу будет работать в убыток. Возможностью такого события можно пренебречь, что и подтверждает практика.

Рис. 4.3

3. Система S - инвестиционная компания, состоящая из двух трейдеров (отделов): I и II; каждый из них может в какой-то момент времени начать работать в убыток. Если это происходит, то руководство компании немедленно принимает меры для восстановления прибыльной работы отдела.

Возможные состояния системы: s - деятельность обоих отделов прибыльна; s 2 - первый отдел восстанавливается, второй работает с прибылью;

s 3 - первый отдел работает с прибылью, второй восстанавливается;

s 4 - оба отдела восстанавливаются.

Граф состояний системы показан на рис. 4.4.

4. В условиях предыдущего примера деятельность каждого трейдера перед тем, как он начнет восстанавливать прибыльную работу отдела, подвергается изучению руководством фирмы в целях принятия мер по ее улучшению.

Состояния системы будем для удобства нумеровать не одним, а двумя индексами; первый будет означать состояния первого трейдера (1 - работает с прибылью, 2 - его деятельность изучается руководством, 3 - восстанавливает прибыльную деятельность отдела); второй - те же состояния для второго трейдера. Например, s 23 будет означать: деятельность первого трейдера изучается, второй - восстанавливает прибыльную работу.

Возможные состояния системы S:

s u - деятельность обоих трейдеров приносит прибыль;

s l2 - первый трейдер работает с прибылью, деятельность второго изучается руководством компании;

5 13 - первый трейдер работает с прибылью, второй восстанавливает прибыльную деятельность отдела;

s 2l - деятельность первого трейдера изучается руководством, второй работает с прибылью;

s 22 - деятельность обоих трейдеров изучается руководством;

  • 5 23 - работа первого трейдера изучается, второй трейдер восстанавливает прибыльную деятельность отдела;
  • 5 31 - первый трейдер восстанавливает прибыльную деятельность отдела, второй работает с прибылью;
  • 5 32 - прибыльная деятельность отдела восстанавливается первым трейдером, работа второго трейдера изучается;
  • 5 33 - оба трейдера восстанавливают прибыльную работу своего отдела.

Всего девять состояний. Граф состояний показан на рис. 4.5.

Марковские процессы были выведены учеными в 1907 году. Ведущие математики того времени развивали эту теорию, некоторые совершенствуют ее до сих пор. Эта система распространяется и в других научных областях. Практические цепи Маркова применяются в различных сферах, где человеку необходимо прибывать в состоянии ожидания. Но, чтобы четко понимать систему, нужно владеть знаниями о терминах и положениях. Главным фактором, который определяет Марковский процесс, считаются случайности. Правда, он не схож с понятием неопределенности. Для него присущи определенные условия и переменные.

Особенности фактора случайности

Это условие подчиняется статической устойчивости, точнее, ее закономерностям, которые не учитываются при неопределенности. В свою очередь, данный критерий позволяет использовать математические методы в теории Марковских процессов, как отмечал ученый, изучавший динамику вероятностей. Созданная им работа касалась непосредственно этих переменных. В свою очередь, изученный и развившийся случайный процесс, имеющий понятия состояния и перехода, а также применяемый в стохастических и математических задачах, при этом дает возможность этим моделям функционировать. Кроме всего прочего, он дает возможность совершенствоваться другим важным прикладным теоретическим и практическим наукам:

  • диффузионная теория;
  • теория массового обслуживания;
  • теория надежности и прочего;
  • химия;
  • физика;
  • механика.

Сущностные особенности не запланированного фактора

Этот Марковский процесс обусловлен случайной функцией, то есть любое значение аргумента считается данной величиной или той, что принимает заранее заготовленный вид. Примерами служат:

  • колебания в цепи;
  • скорость движения;
  • шероховатость поверхности на заданном участке.

Также принято считать, что фактом случайной функции выступает время, то есть происходит индексация. Классификация имеет вид состояния и аргумент. Этот процесс может быть с дискретными, а также непрерывными состояниями или временем. Причем случаи разные: все происходит или в одном, или в другом виде, или одновременно.

Детальный разбор понятия случайности

Построить математическую модель с необходимыми показателями эффективности в явно аналитическом виде было достаточно сложно. В дальнейшем реализовать данную задачу стало возможно, ведь возник Марковский случайный процесс. Разбирая детально это понятие, необходимо вывести некоторую теорему. Марковский процесс - это физическая система, изменившая свое положение и состояние, которые заранее не были запрограммированы. Таким образом, выходит, что в ней протекает случайный процесс. Например: космическая орбита и корабль, который выводится на нее. Результат достигнут лишь благодаря каким-то неточностям и корректировкам, без этого не реализуется заданный режим. Большинству происходящих процессов присущи случайность, неопределенность.

По существу вопроса, практически любой вариант, который можно рассмотреть, будет подвержен этому фактору. Самолет, техническое устройство, столовая, часы - все это подвержено случайным изменениям. Причем данная функция присуща любому происходящему процессу в реальном мире. Однако пока это не касается индивидуально настроенных параметров, происходящие возмущения воспринимаются как детерминированные.

Понятие Марковского случайного процесса

Проектировка какого-либо технического или механического прибора, устройства вынуждает создателя учитывать различные факторы, в частности неопределенности. Вычисление случайных колебаний и возмущений возникает в момент личной заинтересованности, например, при реализации автопилота. Некоторые процессы, изучаемые в науках вроде физики и механики, являются таковыми.

Но обращать на них внимание и проводить скрупулезные исследования следует начинать в тот момент, когда это непосредственно нужно. Марковский случайный процесс имеет следующее определение: характеристика вероятности будущего вида зависит от состояния, в котором он находится в данный момент времени, и не имеет отношения к тому, как выглядела система. Итак, данное понятие указывает на то, что результат можно предсказать, учитывая лишь вероятность и забыв про предысторию.

Подробное токование понятия

В настоящий момент система находится в определенном состоянии, она переходит и меняется, предсказать, что будет дальше, по сути, невозможно. Но, учитывая вероятность, можно сказать, что процесс будет завершен в определенном виде или сохранит предыдущий. То есть будущее возникает из настоящего, забывая о прошлом. Когда система или процесс переходит в новое состояние, то предысторию обычно опускают. Вероятность в Марковских процессах играет немаловажную роль.

Например, счетчик Гейгера показывает число частиц, которое зависит от определенного показателя, а не от того, в какой именно момент оно пришло. Здесь главным выступает вышеуказанный критерий. В практическом применении могут рассматриваться не только Марковские процессы, но и подобные им, к примеру: самолеты участвуют в бою системы, каждая из которых обозначена каким-либо цветом. В данном случае главным критерием вновь выступает вероятность. В какой момент произойдет перевес в числе, и для какого цвета, неизвестно. То есть этот фактор зависит от состояния системы, а не от последовательности гибели самолетов.

Структурный разбор процессов

Марковским процессом называется любое состояние системы без вероятностного последствия и без учета предыстории. То есть, если включить будущее в настоящее и опустить прошлое. Перенасыщение данного времени предысторией приведет к многомерности и выведет сложные построения цепей. Поэтому лучше эти системы изучать простыми схемами с минимальными числовыми параметрами. В результате эти переменные считаются определяющими и обусловленными какими-либо факторами.

Пример Марковских процессов: работающий технический прибор, который в этот момент исправен. В данном положении вещей интерес представляет вероятность того, что устройство будет функционировать еще длительный период времени. Но если воспринимать оборудование как отлаженное, то этот вариант уже не будет принадлежать к рассматриваемому процессу ввиду того, что нет сведений о том, сколько аппарат работал до этого и производился ли ремонт. Однако если дополнить эти две переменные времени и включить их в систему, то ее состояние можно отнести к Марковскому.

Описание дискретного состояния и непрерывности времени

Модели Марковских процессов применяются в тот момент, когда необходимо пренебречь предысторией. Для исследования в практике наиболее часто встречаются дискретные, непрерывные состояния. Примерами такой ситуации являются: в структуру оборудования входят узлы, которые в условиях рабочего времени могут выйти из строя, причем происходит это как незапланированное, случайное действие. В результате состояние системы подвергается ремонту одного или другого элемента, в этот момент какой-то из них будет исправен или они оба будут отлаживаться, или наоборот, являются полностью налаженными.

Дискретный Марковский процесс основан на теории вероятности, а также является переходом системы из одного состояния в другое. Причем данный фактор происходит мгновенно, даже если происходят случайные поломки и ремонтные работы. Чтобы провести анализ такого процесса, лучше использовать графы состояний, то есть геометрические схемы. Системные состояния в таком случае обозначены различными фигурами: треугольниками, прямоугольниками, точками, стрелками.

Моделирование данного процесса

Марковские процессы с дискретными состояниями - возможные видоизменения систем в результате перехода, осуществляющегося мгновенно, и которые можно пронумеровать. Для примера можно построить график состояния из стрелок для узлов, где каждая будет указывать путь различно направленных факторов выхода из строя, рабочего состояния и т. д. В дальнейшем могут возникать любые вопросы: вроде того, что не все геометрические элементы указывают верное направление, ведь в процессе способен испортиться каждый узел. При работе важно учитывать и замыкания.

Марковский процесс с непрерывным временем происходит тогда, когда данные заранее не фиксируются, они происходят случайно. Переходы ранее были не запланированы и происходят скачками, в любой момент. В данном случае вновь главную роль играет вероятность. Однако, если сложившаяся ситуация относится к указанной выше, то для описания потребуется разработать математическую модель, но важно разбираться в теории возможности.

Вероятностные теории

Данные теории рассматривают вероятностные, имеющие характерные признаки вроде случайного порядка, движения и факторов, математические задачи, а не детерминированные, которые являются определенными сейчас и потом. Управляемый Марковский процесс имеет фактор возможности и основан на нем. Причем данная система способна переходить в любое состояние мгновенно в различных условиях и временном промежутке.

Чтобы применять эту теорию на практике, необходимо владеть важными знаниями вероятности и ее применения. В большинстве случаев каждый пребывает в состоянии ожидания, которое в общем смысле и есть рассматриваемая теория.

Примеры теории вероятности

Примерами Марковских процессов в данной ситуации могут выступать:

  • кафе;
  • билетные кассы;
  • ремонтных цеха;
  • станции различного назначения и пр.

Как правило, люди ежедневно сталкиваются с этой системой, сегодня она носит название массового обслуживания. На объектах, где присутствует подобная услуга, есть возможность требования различных запросов, которые в процессе удовлетворяются.

Скрытые модели процесса

Такие модели являются статическими и копируют работу оригинального процесса. В данном случае основной особенностью является функция наблюдения за неизвестными параметрами, которые должны быть разгаданы. В результате эти элементы могут использоваться в анализе, практике или для распознавания различных объектов. Обычные Марковские процессы основаны на видимых переходах и на вероятности, в скрытой модели наблюдаются только неизвестные переменные, на которые оказывает влияние состояние.

Сущностное раскрытие скрытых Марковских моделей

Также она имеет распределение вероятности среди других значений, в результате исследователь увидит последовательность символов и состояний. Каждое действие имеет распределение по вероятности среди других значений, ввиду этого скрытая модель дает информацию о сгенерированных последовательных состояниях. Первые заметки и упоминания о них появились в конце шестидесятых годов прошлого столетия.

Затем их стали применять для распознавания речи и в качестве анализаторов биологических данных. Кроме того, скрытые модели распространились в письме, движениях, информатике. Также эти элементы имитируют работу основного процесса и пребывают в статике, однако, несмотря на это, отличительных особенностей значительно больше. В особенности данный факт касается непосредственного наблюдения и генерирования последовательности.

Стационарный Марковский процесс

Данное условие существует при однородной переходной функции, а также при стационарном распределении, считающимся основным и, по определению, случайным действием. Фазовым пространством для данного процесса является конечное множество, но при таком положении вещей начальная дифференциация существует всегда. Переходные вероятности в данном процессе рассматриваются при условиях времени или дополнительных элементах.

Детальное изучение Марковских моделей и процессов выявляет вопрос об удовлетворении равновесия в различных сферах жизни и деятельности общества. С учетом того, что данная отрасль затрагивает науку и массовое обслуживание, ситуацию можно исправить, проанализировав и спрогнозировав исход каких-либо событий или действий тех же неисправных часов или техники. Чтобы полностью использовать возможности Марковского процесса, стоит детально в них разбираться. Ведь этот аппарат нашел широкое применение не только в науке, но и в играх. Эта система в чистом виде обычно не рассматривается, а если и используется, то только на основе вышеупомянутых моделей и схем.

Под случайным процессом понимают изменение во времени состояний некоторой физической системы заранее неизвестным случайным образом. При этом под физической системой будем понимать любое техническое устройство, группу устройств, предприятие, отрасль, биологическую систему и т.д.

Случайный процесс протекающий в системе называется Марковским – если для любого момента времени ,вероятностные характеристики процесса в будущем (t > ) зависят только от его состояния в данный момент времени (в настоящем ) и не зависят от того, когда и как система пришла в это состояние в прошлом .(Например, счетчик Гейгера, регистрирующий число космических частиц).

Марковские процессы принято делить на 3 вида:

1. Марковская цепь – процесс, состояния которого дискретны (т.е. их можно перенумеровать), и время, по которому он рассматривается, также дискретно (т.е. процесс может менять свои состояния только в определенные моменты времени). Такой процесс идет (изменяется) по шагам (иначе - по тактам).

2. Дискретный марковский процесс – множество состояний дискретно (можно перечислить), а время непрерывно (переход из одного состояния в другое – в любой момент времени).

3. Непрерывный марковский процесс – множество состояний и время -непрерывные.

На практике Марковские процессы в чистом виде встречаются не часто. Однако нередко приходится иметь место с процессами, для которых влиянием предыстории можно пренебречь. Кроме того, если все параметры из «прошлого»,от которых зависит «будущее» включить в состоянии системы в «настоящем», то ее также можно рассматривать как Марковскую. Однако это часто приводит к значительному росту числа учитываемых переменных и невозможности получить решение задачи.

В исследование операций большое значение занимают так называемые Марковские случайные процессы с дискретными состояниями и непрерывным временем .

Процесс называется процессом с дискретными состояниями , если все его возможные состояния , ,... можно заранее перечислить (перенумеровать). Переход системы из состояния в состояние переходит практически мгновенно –скачком.

Процесс называется процессом с непрерывным временем , если моменты перехода из состояния в состояние могут принимать любые случайные значения на временной оси.

Например : Техническое устройство S состоит из двух узлов , каждый из которых в случайный момент времени может выйти из строя (отказать ). После этого мгновенно начинается ремонт узла (восстановление ),который продолжается случайное время.

Возможны следующие состояния системы:

Оба узла исправны;

Первый узел ремонтируется,второй исправен.


– второй узел ремонтируется,первый исправен

Оба узла ремонтируются.

Переход системы из состояния в состояние происходит в случайные моменты времени практически мгновенно. Состояния системы и связь между ними удобно отобразить с помощью графа состояний .

Состояния


Переходы

Переходы и отсутствуют т.к. отказы и восстановления элементов происходят независимо и случайно и вероятность одновременного выхода из строя (восстановления) двух элементов бесконечно мала и ею можно пренебречь.

Если все потоки событий, переводящие систему S из состояния в состояние –простейшие , то процесс, протекающий в такой системе будетМарковским . Это обуславливается тем, что простейший поток не обладает последействием, т.е. в нем «будущее» не зависит от «прошлого» и, кроме того, он обладает свойством ординарности – вероятность одновременного появления двух и более событий бесконечно мала, т.е невозможен переход из состояния в состояние, минуя несколько промежуточных состояний.

Для наглядности на графе состояний удобно у каждой стрелки перехода проставить интенсивность того потока событий, который переводит систему из состояния в состояние по данной стрелке ( -интенсивность потока событий, переводящего систему из состояния в . Такой граф называется размеченным.

Используя размеченный граф состояний системы можно построить математическую модель данного процесса.

Рассмотрим переходы системы из некоторого состояния в предыдущее или последующее . Фрагмент графа состояний в этом случае будет выглядеть следующим образом:

Пусть система в момент времени t находится в состоянии .

Обозначим (t)- вероятность i-ого состояния системы – вероятность того, что система в момент времени t находится в состоянии . Для любого момента времени t справедливо =1.

Определим вероятность того, что и в момент времени t+∆t система будет находиться в состоянии . Это может быть в следующих случаях:

1) и за время ∆ t из него не вышла. Это означает, что за время ∆t не возникло события, переводящего систему в состояние (поток с интенсивностью ) или события, переводящего её в состояние (поток с интенсивностью ). Определим вероятность этого при малых ∆t.

При экспоненциальном законе распределения времени между двумя соседними требованиями, соответствующему простейшему потоку событий вероятность того, что на интервале времени ∆t не возникнет ни одного требования в потоке с интенсивностью λ 1 будет равна

Разлагая функцию f(t) в ряд Тейлора (t>0) получим (для t=∆t)

f(∆t)=f(0)+ (0)* ∆t + *∆ + *∆ +…=

= +(-l) *∆t+ (∆ + *(∆ +…»1-l*∆t при ∆t®0

Аналогично для потока с интенсивностью λ 2 получим .

Вероятность, что на интервале времени ∆t (при ∆t®0) не возникнет ни одного требования будет равна

(∆t)/ = (∆t/ * (∆t/ = (1- *∆t)(1- *∆t) =

1 - - *∆t + 1 - ( + )*∆t + б.м.

Таким образом, вероятность того, что система за время ∆t не вышла из состояния , при малых ∆t будет равна

P( / )=1 – ( + )* ∆t

2) Система находилась в состоянии S i -1 и за время перешла в состояние S i . То есть в потоке с интенсивностью возникло хотя бы одно событие. Вероятность этого равна для простейшего потока с интенсивностью λ будет

Для нашего случая вероятность такого перехода будет равна

3)Система находилась в состоянии и за время ∆tперешла в состояние . Вероятность этого будет

Тогда вероятность, что система в момент времени (t+∆t) будет в состоянии S i равна

Вычтем из обеих частей P i (t), разделим на ∆tи, перейдя к пределу, при ∆t→0, получим

Подставив соответствующие значения интенсивностей переходов из состояний в состояния, получим систему дифференциальных уравнений, описывающих изменение вероятностей состояний системы как функций времени.

Данные уравнения называются уравнениями Колмогорова-Чепмена для дискретного марковского процесса.

Задав начальные условия (например, P 0 (t=0)=1,P i (t=0)=0 i≠0) и решив их, получим выражения для вероятностей состояния системы как функций времени. Аналитические решения достаточно просто получить, если число уравнений ≤ 2,3. Если их больше, то обычно решают уравнения численно- на ЭВМ (например методом Рунге-Кутта).

В теории случайных процессов доказано , что если число n состояний системы конечно и из каждого из них можно (за конечное число шагов) перейти в любое другое, то существует предел , к которому стремятся вероятности при t→ . Такие вероятности называются финальными вероятностями состояний, а установившийся режим - стационарным режимом функционирования системы.

Так как в стационарном режиме все , следовательно, все =0. Приравняв в системе уравнений левые части 0 и, дополнив их уравнением =1, получим систему линейных алгебраических уравнений, решив которую найдём значения финальных вероятностей.

Пример. Пусть в нашей системе интенсивности отказов и восстановления элементов следующие

Отказы 1эл:

2эл:

Ремонт 1эл:

2эл:


P 0 +P 1 +P 2 +P 3 =1

0=-(1+2)P 0 +2P 1 +3 P 2

0=-(2+2)P 1 +1P 0 +3P 3

0=-(1+3)P 2 +2P 0 +2P 3

0=-(2+3)P 3 +2P 1 +1P 2

Решив данную систему, получим

P 0 =6/15=0.4; P 1 =3/15=0.2; P 2 =4/15=0.27; P 3 =2/15≈0.13.

Т.е. в стационарном состоянии система в среднем

40% находится в состоянии S 0 (оба узла исправны),

20%- в состоянии S 1 (1-й эл-т ремонтируется, 2-й исправен),

27%- в состоянии S 2 (2-й эл-тремонтируется, 1исправен),

13%- в состоянии S 3 – оба эл-та в ремонте.

Знание финальных вероятностей позволяет оценить среднюю эффективность работы системы и загрузку службы ремонта.

Пусть система в состоянии S 0 приносит доход 8 усл.ед. в единицу времени; в состоянии S 1 -доход 3 усл.ед.; в состоянии S 2 - доход 5;в состоянии S 3 -доход=0

Стоимость ремонта в единицу времени для эл-та 1- 1(S 1, S 3) усл.ед., эл-та 2- (S 2, S 3) 2 усл.ед. Тогда в стационарном режиме:

Доход системы в единицу времени будет:

W дох =8P 0 +3P 1 +5P 2 +0P 3 =8·0.4+3·0.2+5·0.27+0·0.13=5.15 усл.ед.

Стоимость ремонта в ед. времени:

W рем =0P 0 +1P 1 +2P 2 +(1+2)P 3 =0·0.4+1·0.2+2·0.27+3·0.13=1.39 усл.ед.

Прибыль в единицу времени

W= W дох -W рем =5.15-1.39=3.76 усл.ед

Проведя определённые расходы можно изменить интенсивности λи μ и, соответственно, эффективность системы. Целесообразность таких расходов можно оценить, проведя пересчёт P i . и показателей эффективности системы.

Для системы массового обслуживания характерен случайный процесс. Изучение случайного процесса, протекающего в системе, выражение его математически и является предметом теории массового обслуживания.

Математический анализ работы системы массового обслуживания значительно облегчается, если случайный процесс этой работы является марковским. Процесс, протекающий в системе, называется марковским, если в любой момент времени вероятность любого состояния системы в будущем зависит только от состояния системы в текущий момент и не зависит от того, каким образом система пришла в это состояние. При исследовании экономических систем наибольшее применение имеют марковские случайные процессы с дискретными и непрерывными состояниями.

Случайный процесс называется процессом с дискретными состояниями, если все его возможные состояния можно заранее перечислить, а сам процесс состоит в том, что время от времени система скачком переходит из одного состояния в другое.

Случайный процесс называется процессом с непрерывным состоянием, если для него характерен плавный, постепенный переход из состояния в состояние.

Также можно выделить марковские процессы с дискретным и непрерывным временем. В первом случае переходы системы из одного состояния в другое возможны только в строго определенные, заранее фиксированные моменты времени. Во втором случае переход системы из состояния в состояние возможен в любой, заранее неизвестный, случайный момент. Если вероятность перехода не зависит от времени, то марковский процесс называют однородным.

В исследовании систем массового обслуживания большое значение имеют случайные марковские процессы с дискретными состояниями и непрерывным временем.

Исследование марковских процессов сводится к изучению матриц переходных вероятностей (). Каждый элемент такой матрицы (поток событий) представляет собой вероятность перехода из заданного состояния (которому соответствует строка) к следующему состоянию (которому соответствует столбец). В этой матрице предусмотрены все возможные переходы данного множества состояний. Следовательно, процессы, которые можно описывать и моделировать с помощью матриц переходных вероятностей, должны обладать зависимостью вероятности конкретного состояния от непосредственно предшествующего состояния. Так выстраивается цепь Маркова. При этом цепью Маркова первого порядка называется процесс, для которого каждое конкретное состояние зависит только от его предшествующего состояния. Цепью Маркова второго и более высоких порядков называется процесс, в котором текущее состояние зависит от двух и более предшествующих.

Ниже представлены два примера матриц переходных вероятностей.

Матрицы переходных вероятностей можно изобразить графами переходных состояний, как показано на рисунке.

Пример

Предприятие выпускает продукт, насытивший рынок. Если предприятие от реализации продукта в текущем месяце получит прибыль (П), то с вероятностью 0,7 получит прибыль и в следующем месяце, а с вероятностью 0,3 – убыток. Если в текущем месяце предприятие получит убыток (У), то с вероятностью 0,4 в следующем месяце оно получит прибыль, а с вероятностью 0,6 – убыток (вероятностные оценки получены в результате опроса экспертов). Рассчитать вероятностную оценку получения прибыли от реализации товара через два месяца работы предприятия.

В матричной форме эта информация будет выражена следующим образом (что соответствует примеру матрицы 1):

Первая итерация – построение матрицы двухступенчатых переходов.

Если предприятие в текущем месяце получит прибыль, то вероятность того, что в следующем месяце оно снова получит прибыль, равна

Если предприятие в текущем месяце получит прибыль, то вероятность того, что в следующем месяце оно получит убыток, равна

Если предприятие в текущем месяце получит убыток, то вероятность того, что в следующем месяце оно получит прибыль, равна

Если предприятие в текущем месяце получит убыток, то вероятность того, что в следующем месяце оно вновь получит убыток, равна

В результате расчетов получаем матрицу двухступенчатых переходов:

Результат достигается перемножением матрицы т,на матрицу с такими же значениями вероятностей:

Для проведения этих процедур в среде Excel необходимо выполнить следующие действия:

  • 1) формировать матрицу;
  • 2) вызывать функцию МУМНОЖ;
  • 3) указывать первый массив – матрицу;
  • 4) указывать второй массив (эта же матрица или другая);
  • 5) ОК;
  • 6) выделить зону новой матрицы;
  • 7) F2;
  • 8) Ctrl+Shift+Enter;
  • 9) получить новую матрицу.

Вторая итерация – построение матрицы трехступенчатых переходов. Аналогично рассчитываются вероятности получения прибыли или убытка на следующем шаге и рассчитывается матрица трехступенчатых переходов, она имеет следующий вид:

Таким образом, в ближайшие два месяца работы предприятия вероятность получения прибыли от выпуска продукта выше, по сравнению с вероятностью получения убытка. Однако следует заметить, что вероятность получения прибыли падает, поэтому предприятию необходимо осуществить разработку нового продукта для замены производимого продукта.

Допущения о пуассоновском характере потока заявок и о показательном распределении времени обслуживания ценны тем, что позволяют применить в теории массового обслуживания аппарат так называемых марковских случайных процессов.

Процесс, протекающий в физической системе, называется марковским (или процессом без последействия), если для каждого момента времени вероятность любого состояния системы в будущем зависит только от состояния системы в настоящий момент и не зависит от того, каким образом система пришла в это состояние.

Рассмотрим элементарный пример марковского случайного процесса. По оси абсцисс случайным образом перемещается точка . В момент времени точка находится в начале координат и остается там в течение одной секунды. Через секунду бросается монета; если выпал герб - точка перемещается на одну единицу длины вправо, если цифра - влево. Через секунду снова бросается монета и производится такое же случайное перемещение, и т. д. Процесс изменения положения точки (или, как говорят, «блуждания») представляет собой случайный процесс с дискретным временем и счетным множеством состояний

Схема возможных переходов для этого процесса показана на рис. 19.7.1.

Покажем, что этот процесс - марковский. Действительно, представим себе, что в какой-то момент времени система находится, например, в состоянии - на одну единицу правее начала координат. Возможные положения точки через единицу времени будут и с вероятностями 1/2 и 1/2; через две единицы - , , с вероятностями 1/4, ½, 1/4 и так далее. Очевидно, все эти вероятности зависят только от того, где находится точка в данный момент , и совершенно не зависят от того, как она пришла туда.

Рассмотрим другой пример. Имеется техническое устройство , состоящее из элементов (деталей) типов и , обладающих разной долговечностью. Эти элементы в случайные моменты времени и независимо друг от друга могут выходить из строя. Исправная работа каждого элемента безусловно необходима для работы устройства в целом. Время безотказной работы элемента - случайная величина, распределенная по показательному закону; для элементов типа и параметры этого закона различны и равны соответственно и . В случае отказа устройства немедленно принимаются меры для выявления причин и обнаруженный неисправный элемент немедленно заменяется новым. Время, потребное для восстановления (ремонта) устройства, распределено по показательному закону с параметром (если вышел из строя элемент типа ) и (если вышел из строя элемент типа ).

В данном примере случайный процесс, протекающий в системе, есть марковский процесс с непрерывным временем и конечным множеством состояний:

Все элементы исправны, система работает,

Неисправен элемент типа , система ремонтируется,

Неисправен элемент типа , система ремонтируется.

Схема возможных переходов дана на рис. 19.7.2.

Действительно, процесс обладает марковским свойством. Пусть например, в момент система находится в состоянии (исправна). Так как время безотказной работы каждого элемента - показательное, то момент отказа каждого элемента в будущем не зависит от того, сколько времени он уже работал (когда поставлен). Поэтому вероятность того, что в будущем система останется в состоянии или уйдет из него, не зависит от «предыстории» процесса. Предположим теперь, что в момент система находится в состоянии (неисправен элемент типа ). Так как время ремонта тоже показательное, вероятность окончания ремонта в любое время после не зависит от того, когда начался ремонт и когда были поставлены остальные (исправные) элементы. Таким образом, процесс является марковским.

Заметим, что показательное распределение времени работы элемента и показательное распределение времени ремонта - существенные условия, без которых процесс не был бы марковским. Действительно, предположим, что время исправной работы элемента распределено не по показательному закону, а по какому-нибудь другому - например, по закону равномерной плотности на участке . Это значит, что каждый элемент с гарантией работает время , а на участке от до может выйти из строя в любой момент с одинаковой плотностью вероятности. Предположим, что в какой-то момент времени элемент работает исправно. Очевидно, вероятность того, что элемент выйдет из строя на каком-то участке времени в будущем, зависит от того, насколько давно поставлен элемент, т. е. зависит от предыстории, и процесс не будет марковским.

Аналогично обстоит дело и с временем ремонта ; если оно не показательное и элемент в момент ремонтируется, то оставшееся время ремонта зависит от того, когда он начался; процесс снова не будет марковским.

Вообще показательное распределение играет особую роль в теории марковских случайных процессов с непрерывным временем. Легко убедиться, что в стационарном марковском процессе время, в течение которого система остается в каком-либо состоянии, распределено всегда по показательному закону (с параметром, зависящим, вообще говоря, от этого состояния). Действительно, предположим, что в момент система находится в состоянии и до этого уже находилась в нем какое-то время. Согласно определению марковского процесса, вероятность любого события в будущем не зависит от предыстории; в частности, вероятность того, что система уйдет из состояния в течение времени , не должна зависеть от того, сколько времени система уже провела в этом состоянии. Следовательно, время пребывания системы в состоянии должно быть распределено по показательному закону.

В случае, когда процесс, протекающий в физической системе со счетным множеством состояний и непрерывным временем, является марковским, можно описать этот процесс с помощью обыкновенных дифференциальных уравнений, в которых неизвестными функциями являются вероятности состояний . Составление и решение таких уравнений мы продемонстрируем в следующем на примере простейшей системы массового обслуживания.